NTHU STAT 5410, 2022

• Q: what's a conservative conclusion when H_0 is accepted? $X^*\beta^* \approx \widehat{Y} \Leftrightarrow \widehat{\mathfrak{G}} \approx \mathfrak{G}$
\Rightarrow may <u>not</u> conclude $X\beta$ is the true model. We may say the true $E(Y) \approx X\beta$ on the
observed data points beg over-fitting, many possible In addition, R, Y++Y
• Q: can the procedure be modified to test overfitting?
→ over-fitting ⇒ high R ² , Y≈ Ŷ, RSS small ← In principle, Yes, if it's a model selection
• Note that fitting is not everything with $\frac{\delta^2}{\delta^2} \ll \frac{true}{\delta^2}$ (3) cross-validation
> it often possible to fit data perfectly by seems good. But. () informal methods like
introducing more effects/predictors
For data without replication, you can fit a model with $\underline{R^2=1}$ and zero $\hat{\sigma}^2 - \gamma = \hat{\gamma}$
>a very complex model can fit data perfectly (even exactly), but do not separate
Why is this - may have no explanation (may learn nothing beyond the data itself)
Consider = prediction unstable -> For \overline{Y} . overfitting: $Var1$ bias I , underfitting: $(check)$
(e.g, on region without data points, MSE=Var+Bias ²) Vart biast (in LNp.7)
$\Box_{\mathbf{Q}}$: what is the source of variation in your data? (X\beta and $\underline{\varepsilon}$) \leftarrow Recall. \mathbb{R}^2 \leftarrow 情機 var
what σ^2 is estimated (i.e., what is the source of variation in ε)? example: 現律 var
 replication generated from different units vs.
repeated measures of same unit - repeatability: variation under same condition
 repeatability vs. reproducibility in
measurement system analysis * two types of degrees of freedom:
◆ Reading: Faraway (2005, 1 st ed.), 6.3 ◆ Futher reading: D&S, 2.1 (2) replicates → study 陸福德·