NTHU STAT 5410, 2022 Lecture Notes

. 6-1
Generalized Least Square (GLS)—~Recall OLS estinator is BLUE under P
Grauss - Markov condition

» model: Y=X[+¢& E(£=0 and[varg &)= 1 =&quncorrelated and constant variance
no normality ————F Var(Y)=63] [Y.I @ how to model carrelation
Q: what if var(§ZI? £ may have non-constant varianceX® Samplingmodel ?L&‘er»»‘g(wP—f"’J
and/or are correlated! e.g. \ecorrelation between obsevabions in Y. [ Var(€)=Tar(Y)]—

. . . M data observed over time
» time series correlation [e.g., E~ARMA(r,m) previous observations correlated
Auto-regressionJ with future observation
» growth curve model, repeated measurement model 4 8aC coit o

[e.g., several observations taken from same person, or o L“"‘_'l",‘ B %

same unit] data Ji.4g from . cov(¥i.43) ’ £ tu2 Lo

—  same uni C = ;. Otar§j)=¢, < it T »t
Same unit COV( 9_&:* 6;,_&-! a) titaVar(6) G 0L (

> spatial correlation [e.g., data taken over contiguous *© 8 (<55 parameters)—3

Si;’;t_ geographical areas: census tracts, countries, or states cov(¥:.95)= cou(9+3:,0+83)=Var(0)
» 94di.9

ioa| 10 @ country. Nearby areas are often much alike]
cf.t—a nearby time points Var(€) <
»»nested errors [e.g., M sets of observations, each set = VarlY) =
random 1ifom common production run, from same/common Q %
effect {equipment, or from same survey-taker] —7 .
model block - diagonal
in DOE no paramefers-—; parameter motrix

* Consider the case var(&=c 2, where 2 (#£]) is known but ¢# is unknown, i.e., we
know the correlation and relative variance between the errors but we don't know the

absolute scale | off- diegonal part of £ ;
t- dia\go:floparéof}: T——-d:agonalparéof}:

S is a covariance matrix (‘. Var(€/6)=X) D:orthogonal matrix rDDT= I p- 62
Because 2, is symmetric and positive definite, we can write 2=SS8", where S is an

ZnXn

nxn nonsigular matrix (by Cholesky or spectral decomposition
Note. If VoY) = o2Z, wecan find q matrix A sit.
Tar(AY) = E*(AYYAT)=AEN(YY)A'= (ALA )62 = 6’
-1

not
uni g.ue

identical B ts
Y=XB+c = §''Y=8''XB+S§ ¢ = Y=X'B+¢ ,l-where
7 L known still a linean. model
Y'=S1Y, X'=§" X, &=5'g and (known response &
predictors )

E(£)=0 and var(&)=var(S-'£)=8" var(§)S =S5 ' FSS'S" T =FI
Lz*(s"ee™s™) 2
= For Y’ and X', the assumption in ordinary least square is satisfied —
+ GLS: find 8 that minimize L Gauss - Markov conditions (3 %)(5%)
L
ETe=Y-X'BI(Y-X'P=Y-XP'S 'S (Y-XP)=Y-XP'ZT!(Y-XP
minimize
— é: (XTX") IXTY' = (X'Z Xy X5 'Y Notel: £7¢’, ﬂ, and var( QA ) are
=8 Gus for original doba X,Y invariant to the choice of S.
= var(f )= FX"X"y = FX'ZX)! ’ Q: Whagdepends on the choice
i

GLS is like OLS regressing = =Y-‘X_§_ Ans. 2’=.‘$"¢ . g’_= s g

I—C- I—C- L . fB— AR . - _
Y'=S"'Yon X'=S IXs?i;ee'_s %_62; Note2: f=f..s if Q[F 'X]= Q[X] I\
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* Q: why should not use ordinary least square o\;:vhen M" %z ;X' p. 63
model: Y=XB+¢, E(§)=0 and var(£§)=c*2, OLS estimator ﬂ ors = (XIX) IXTY

E( /)’ ors =08, Var(ﬂ oLs )= F(XX) 'XTIX(X"X) ! = unbiased but variance
not minimized (Note: ¢/, g is BLUE of ¢c’8= Var(cT/} )<var(c’, /;’ oLs )

agj— L apply Grauss-Markov Thm on Y’= .X..é + _E_
» diagnostics (residual analysis) should be applied on Y'— '/)’ =5 (Y-X ﬂ =S-1g > £
because £ are 1.1.d. but not £ o l—»= EeE, w——depends on the 6:_;_?

3 contains parameters choice of S
* The practical problem is that glay not be known. It's usually necessary to make

some assumptions and examine the residuals to estimate 2 (check lab for an
example, IRWLS)

% Reading: Faraway (2005, 1% ed.), 6.1 % Futher reading: D&S, 9.2
add one more

%_?f(mgw: thzanfdl.zsl B Weighted Least Square (WLS) know relative variance

« Sometimes, the errors are uncorrelated, but have unequal variance where the form
of the inequality is known (= 2'is diagonal, it's a special case of GLS), example:

| S——— not; constant P
» error variance proportional to a function of predictors |

[e.g., var(€)=x20" (5w, I oo Yor(yi) o [ E(4)]2
or o< E(Yi) < Poisson Yi's

€ »data with replicates, which show a pattern of unequal
variance [e.g., var(&) = sample variance of observations
with same x; (= w, = 1/(sample variance))]

»>the observed y.'s are actually averages of several

observations. [e.g., suppose Y; 1s the average of
observations, var(&)=c"/n, (:> w; =n,)]

at . observe 4ij, J=i.- .ni @ Yij= xg‘...g‘a' €15 44 N(o.6?)
@offer summarized data (2, §;) | > YijS are of constant wriance

= Varl§i) = ¥/n; +Fis not cousturt variance s
* &:uncorrelated, but not constant variance = 2 is diagonal. Write 4t B Xs

T 0 wp --- O
0O 0 - wy
=L
where w/'s (LI 1/var(&)) are called weights;-ﬂgé relative variance = w0z wa
; . Y=
low weight ~ high variance; high weight - low variance (5% 0% 2
S™'= dlag({@, - -, [@n) ;Wi | 4i-(B)i
L S=diag(14/w,. ..., U\[w, ) then z 8" Buis =(x X )xy’= (X" %) XE" Y,_l\(mp,b-z)

v 1 a linear
= OLS regress S 'Y (1. e AW, )onS X(\/7x ) (Note. the column combination of
of ones, 1.e., intercept needs to be replaced w1th\/7,~ W; ) the cc;mpomts
= convenient for regression package without a weighted options Y= iwi i)
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* (Q: Why observations with smaller variance should be multiplied by heavier

p- 6-5
weight? intuitive interpretation? ¥e¢’s with small variance have more fgfrluence on Buis
_ _ _ pull the fitted I'ne toward these daota poi '

(9 iteratively re-weighted least squares (IRWLS): In all the previous examples, weights

(or 2'in GLS) are assumed known. Q: what if var(&) is not completely known, what
weights should we use? Q: where can you find the information of weights?<- Ans :

}:> model the mean response for ¥, E(Y)=X[ tor =7 residuals
» model the variance in ¥, var(¥Y)=f(X, p), where p are parameters for the

%‘ variance model or =¥(E(Y),€) 6wn-s or ’B\GLS
mdum to . fit the mean model to estimate £
estimate 8 re51duals< weights

in GLM fit the variance model to estimate p [ or T

» Example: var(&)=p,+0,x; E(€)=0 |
1. start with m;__l ;’_—9[ Var(Ei)=E(§_iz) = G+ QX

uasi- (2) use weighted least square to estimate 3 I
l,‘kemmod 3. use the residuals to estimate Py and P perhaps byrregressing residuals? on x 1 ' g:;;:’:f_
in G‘LM (4) re-compute the weights and go to 2. Continue until convergence (1988)

l Problems: converge? how is the inference about Saffected? d.f.=? ...etc o

alternative approach: jointly estimate the mean and variance parameters using

likelihood based method (in R, use gl s() function in the nl me library)
T——add distribution assumption
% Reading: Faraway (2005, 1%t ed.), 6.2 % Futher reading: D&S, 9.2

. <. [Fitked| Recall Qoodness of £it : R*8& G (YY) »°*
Testing for Lack of Fit | " “Note : good Fit = not necessary @ ﬂé’@ﬁ]
» model: Y=X/t& Q: many choices of X, how can we tell the chosen X fits the data?

- EE Y P V=xg] L XE
'A\ / Q: what 1s “fit”? what “fit” is appropriate? example:

» data generated from the “true model” --- a 2™-order
polynomial of x  E(41%)= B,+B8,%+Ba2X*

* solid line (fitted model=1%"-order): not capture the

quadratic pattern in data (zAE Hp‘@%- >[might

produce

* dashed line (fitted model=2"d-order): OK biased B

22 cf
Why not compare |of R incre.ases:n » dotted line (fitted model=8%-order): ﬂuctuated,i
R?* b twp R?*? deperds o fitted values and data are too close [%f{Z EAE

n-p=

. the ra X lmﬁmﬂf& too true model
> X too simple ¢/ .3"-?118?5: » X too complex %@“‘&e, Y=W
= not enough to explain the | = will explain the variation _ —j-x . E TTa o
mean structure in data caused by errors, in addition Br&= X;@ +E
—> lack of fit (under-fitting) to the mean structure fittedmoddd >
— ¢ over-estimated — overfit the data problem :rft o;ﬁ[&"ﬁ’
If we have some information 72 _esti curn Alelcross
f we :ow Ia:ge'g_i.shoald re. = 0 " under-estimated —-[ future dato. t‘:’q"da_
Q: what statistic carry the information about lack of fit or overfit? Ans: ¢ > =% >
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€3 R peat the simulation 50 times spanfx}= 0 "
epeat the S.lmu ation SV times Y— nY— P.n(Xng span {)'(, Xa}= Iﬂz nN®N2
= Black line: true model, 2"\-order polynomial  span fx,Xa X3}= (%= =(@2,8123

» Green lines: fitted lines under under-fitting model, 1%-order polynomials

= Red lines: fitted lines under over-fitting model, 8"-order polynomials
under-fitting: Y=XiBi+E

correct : Y=XiBi+X2Ba2+
over-fitking # -EL‘-
Y= _§+_&+ X3B3+E3
Define 02 _rsPaniX-'!_

03=spanix Xz}, Na=BNCL
025 =span{Xi,Xa, X3}, O = n3nd‘

Define Y= PaY, a=Ph,Y. ¥3=FhsY.

3
under-f-’H;an V=¥,
correct:  T=F+%

over-fitbing : = G+ 9+ ¥,

» Comparison

o Under-fitting lines: small variance, large bias Recall.

o Over-fitting lines: large variance, small bias MirE‘. a=c e

o Interpolation vs. extrapolation + bias? >
€« Note: high R’ (a measure of “goodness of fit”) doesn't imply the « p- 68

model is a good fit (check lab for examples of high R’ but lack of ﬁt)--overﬁ‘l:l::‘ng
» graphical checking (based on residuals ~ informal) (check a lab example)

lack of fit
* a possible testing procedure for lack of fit (= compare 0 to & )1 € o x
» when & is known trariance estimate - overfitting,
ples: under @ fitted Var( &Y check ~ 5t
] examp cS: m(,d@’: Y=xé+£ fﬂleemf 82% 62 €l= - . 'Lo .o x
o is known from past experience : — :

Co i Xi-» (Yir.---. Yin;), obtain
o source of variation in £1is only measurement error, (X, 300 . &: #V&r( F/Q) =]

check measuring device well understood, knowledge of z=xg +g s Vax(€) —

111}
LNp.bll | measurement error inherent in an instrument or by definition =1 2.

o each y, is an average of a very large number of observations, 02
effectively estimated (see an example in lab)

= test for lack of fit: fitted model: Y=XB+E , E~N(0.6°I), 62 known
Hy: E(Y)=Xp is correct  against H;: E(¥)=X/ is too simple e———

o (n p)G’~ FX,., if model is correct (u_nder H,),
RSS — where n=# of observatlons , p=# of parameters in 8 C null distribubion

ewam | o test statistic: (n- p)g °/0? 02 = RSS/G2 compared with ¥°,_,
gver- now

frtting? bé') rejectif (n-p) 6 °/0? > Z@n- o J‘Why" Why not 2-sided test ?+-
=

o if a lack of fit is found, a new (more complex) model is needed

=
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€% when & is unknown (= can we use data to estimate it?) 4 P9
Ls information is in residuals
= need “model-free method” to estimate & (residuals

(i.e., free of the E(¥)=Xf assumption) what model?

& Why? E=vy-xB < depends on the assignmeat of X

= because we want to use estimated ¢ to justify whether E(¥Y)=Xg is suitable,
the estimated ¢ should have no relationship with the choice of X

— X

» denote the estimated ¢ under model-free method by ¢ i ¢» Where p.e. stands for

“purc error”)  Can freak the £3 30 Jach distinck Ko 05 (Recall. one-sample case
= usually, only poss1bl e for data with replication (Q: why? -)] Yo Y"'v""‘_g:‘“:""”
o how to estimate ¢# (model-free)? Recall é’= Rs%f 5’=—'-£m(Yj‘7)°-e-v o?
o S_S% = zdistinct X zwithin_am_x (yx,i_ Ve )2 Zf;b(l::t Og. mme:‘: mm
. : @ obtain 32 of each sample
o d.f of p.e. =2 i x (# Of replications — 1) <) @ pool the information %
dinets in 835 togebher
e.g. (2- l)+(3- 1)+(5- 1)+(1- 1)=7 | £
/\ 2 — %Why?l %
o Ope =SS /df,. 4——; ns L * .
& (M- l)§_+ -H(me-)0x | : : él:
o test statistic: ool = T [ e (e . | “Va
(n=# of observations, p=# of parameters in £, (553 p %I: g
— isbi O
RSS calculated from the m(()Sel E(Y)=X, "E‘.‘s‘* o 50 N
s ElY) .-.gg? d.f. SS MS F p. 610
Residual (w) n-p RSSy RSSw/n,p = 83 Recall.

(compared to | Form of

RSSa
(k-p) (Rssw’RSSn,)/k-p
RSSw ~2 Fope iy diye) F-testin
Pure error(N) | df, . (R-k) | SS, . (RSSp)| SS,./df,. = Cpe ""_‘—"'-"_'I ki
o -Rssn dist.

Lack of fit n-p-df,. | RSS-SS,. | (RSS-SS,.)(n-p-df,.) _J_.ratio of MS General

o Note: 0 pz_e, is the estimate of ¢ when we fit a saturated model to the data

. — " LNp.5-11 (n=p)
k-sample] O+ E(Yijl 2 =uki , i=1,- K |# of distinck X:’s| ‘
model u=(ul',_.'u‘)emkla:" A (T8 (nll' <+l = N) w: E(Y"3|x.') xﬁ E

. , 23 o~ reduce the
Y=XB+E , X= i B__ s 8% :e dimension | |¥ Ofpamme{:ers
.9. ”‘ of Y from| (=P <k
; k to p ] W=span(X)
Why camnot| this is a comparison between the model of interest (i.e., W Xf) € Span (x)=n

ggﬁf and a saturated model (Q, whose R’ reaches the max1mum)t- not one if there

no repli that assigns a parameter to each unique combination of the =~ @re mpltca{:es
data ? | predictors = standard F-testing for H: wv.s. H;: Q\w (why? Ex Q)
» need replication to make the test, but it’s rare in obs’nal data

o possible solution: grouping (could be questionable
= different grouping schemes may cause different
conclusions)

o alternative view:

Q—Qﬂ w0
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