Generalized Least Square (GLS)
• model: $\underline{Y=X\beta+\epsilon}$, $\underline{E(\epsilon)=0}$ and $\underline{var(\epsilon)=\sigma^2 I} \Rightarrow \underline{\epsilon}$. uncorrelated and constant variance
Q : what if $\underline{var}(\boldsymbol{\varepsilon}) \neq \sigma^2 \boldsymbol{I}$? $\boldsymbol{\varepsilon}$ may have <u>non-constant variance</u> and/or are <u>correlated</u> , <u>e.g.</u> ,
\blacktriangleright time series correlation [e.g., $\varepsilon_t \sim ARMA(r,m)$]
growth curve model, repeated measurement model [e.g., several observations taken from same person, or same unit]
 spatial correlation [e.g., data taken over contiguous geographical areas: census tracts, countries, or states in a country. <u>Nearby areas</u> are often much <u>alike</u>]
nested errors [e.g., <u>M sets</u> of <u>observations</u> , <u>each set</u> from <u>common</u> production run, from <u>same/common</u> equipment, or from <u>same</u> survey-taker]
• Consider the case $\underline{var}(\boldsymbol{\varepsilon}) = \sigma^2 \boldsymbol{\Sigma}$, where $\boldsymbol{\Sigma}(\neq \boldsymbol{I})$ is <u>known</u> but σ^2 is unknown, i.e., we <u>know</u> the <u>correlation</u> and <u>relative variance</u> between the <u>errors</u> but we <u>don't know</u> the <u>absolute scale</u>
NTHU STAT 5410, 2022, Lecture Notes
made by SW. Cheng (NTHU, Taiwan)
• Because $\underline{\Sigma}_{n \times n}$ is symmetric and positive definite, we can write $\underline{\Sigma} = SS^T$, where \underline{S} is an $\underline{n \times n}$ nonsigular matrix (by Cholesky or spectral decompositions)
$Y = X\beta + \varepsilon \implies \underline{S^{-1}}Y = \underline{S^{-1}}X\beta + \underline{S^{-1}}\varepsilon \implies \underline{Y'} = \underline{X'}\beta + \underline{\varepsilon'}, \text{ where}$
$\underline{Y' = S^{-1}Y}, \underline{X' = S^{-1}X}, \underline{\varepsilon' = S^{-1}\varepsilon}$, and
$\underline{\mathrm{E}}(\boldsymbol{\varepsilon}') = \boldsymbol{\theta}$ and $\underline{\mathrm{var}}(\boldsymbol{\varepsilon}') = \mathrm{var}(\boldsymbol{S}^{-1}\boldsymbol{\varepsilon}) = \boldsymbol{S}^{-1}\mathrm{var}(\boldsymbol{\varepsilon})\boldsymbol{S}^{-\mathrm{T}} = \boldsymbol{S}^{-1}\boldsymbol{\sigma}^{2}\boldsymbol{S}\boldsymbol{S}^{\mathrm{T}}\boldsymbol{S}^{-\mathrm{T}} = \underline{\boldsymbol{\sigma}^{2}\boldsymbol{I}}$
$\Rightarrow \text{ For } \underline{Y' \text{ and } X'}, \text{ the assumption in ordinary least square is satisfied}$ • <u>GLS</u> : find <u>β</u> that <u>minimize</u>
$\underline{\mathcal{E}'} \underline{\mathcal{E}}' = (Y' - X'\beta)^T (Y' - X'\beta) = (Y - X\beta)^T S^{-1} S^{-1} (Y - X\beta) = (Y - X\beta)^T \underline{\mathcal{L}}^{-1} (Y - X\beta)$
$\Rightarrow \hat{\boldsymbol{\beta}} = (\boldsymbol{X'}^T \boldsymbol{X'})^{-1} \boldsymbol{X'}^T \boldsymbol{Y'} = (\underline{\boldsymbol{X}}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{Y} \qquad \qquad$
$\Rightarrow \underline{\operatorname{var}}(\hat{\boldsymbol{\beta}}) = \sigma^2 (X'^T X')^{-1} = \underline{\sigma^2} (X^T \boldsymbol{\Sigma}^{-1} X)^{-1}$
GLS is like OLS regressing
$\underline{Y'}=S^{-1}Y \text{ on } \underline{X'}=S^{-1}X \qquad \underline{\text{Note2}}: \ \hat{\boldsymbol{\beta}}=\hat{\boldsymbol{\beta}}_{\text{OLS}} \text{ if } \Omega[\boldsymbol{\Sigma}^{-1}X]=\Omega[X]$

	> wh	en <u> </u>	$\underline{\mathrm{own}}$ (\Rightarrow can	n we <u>use da</u>	nta to estimate it?)		p. 6-9
	∎ ne	ed "model-fre	e method"	to estimate	$c \sigma^2$		
	(i.	e., <u>free</u> of the	Ē(Υ)= Χβ	assumption)		
	• be	cause we wan	t to use <u>est</u>	timated σ^2 t	to justify whether <u>E(Y)</u> =	= Xβ is suitable,	,
	the estimated σ^2 should have no relationship with the choice of X						
	• denote the <u>estimated σ^2 under model-free method</u> by $\hat{\sigma}_{p.e}^2$, where <u>p.e.</u> stands for "pure error")						
	 usually, only possible for data with replication (Q: why?) 						
	• how to estimate σ^2 (model-free)?						
		$\Box - \underline{SS}_{\underline{p.e.}} = \Sigma_{\underline{dist}}$	$\frac{1}{1} \sum_{\text{within}}$	$\underline{an x} (\mathcal{Y}_{x,i} - \overline{\mathcal{Y}}_x)$)2		
	1	□ <u>d.f.</u> of <u>p.e.</u> =	$= \Sigma_{\text{distinct x}}$	# of <u>replica</u>	<u>tions – 1</u>)		
	e.g. $(2-\underline{1})+(3-\underline{1})+(5-\underline{1})+(1-\underline{1})=7$ $\hat{\sigma}_{p.e.}^2 = SS_{p.e.}/df_{p.e.}$						
$\square \text{ test statistic:} \qquad \bigcirc$							
		(<u><i>n</i>=</u> # of <u>o</u>]	bservations	<u>s, <i>p</i>=#</u> of <u>pa</u>	rameters in <i>β</i> ,	8	
		<u>RSS</u> cal	culated fro	m the mod	el $\underline{E}(Y) = X\beta$	<u> </u>	
			NTHU	STAT 5410,	2022, Lecture Notes		
			d.f.	SS	MS	F	p. 6-10
		Residual	<i>n-p</i>	RSS			
N		Lack of fit	$n-p-df_{p.e.}$	RSS-SS _{p.e.}	$\frac{(RSS-SS_{p.e.})}{(n-p-df_{p.e.})}$	$\frac{\text{ratio}}{(\text{compared to})}$	
	7	Pure error	df _{p.e.}	SS _{p.e.}	$SS_{\rm p.e.}/df_{\rm p.e.}$	$\Gamma_{\underline{n-p-df_{p.e.}},\underline{df_{p.e.}}})$	
		$\square Note: \hat{\sigma}_{p.e.}^2$	is the <u>estir</u>	nate of σ^2 v	when we fit a <u>saturated</u>	<u>model</u> to the da	ta
		- alternative	view:				
		this is a <u>cor</u>	<u>nparison</u> b	etween the	model of interest (i.e.,	ω: <i>Χβ</i>)	
	and a <u>saturated model</u> (Ω , whose $\overline{R^2 \text{ reaches the maximum}}$) that <u>assigns a parameter</u> to <u>each <i>unique</i> combination</u> of the predictors \Rightarrow standard <i>F</i> -testing for H_0 : ω v.s. H_1 : $\Omega \setminus \omega$						
	• ne	eed replication	to make t	he test, but	it's rare in obs'nal data		0
	+	possible solution	ution: grou	ping (could	l be questionable		
		\Rightarrow <u>different</u>	grouping s	chemes ma	y cause <u>different</u>	Č Š	
		conclusions)			Ŭ 0	

• Q: what's a conservative conclusion when H_0 is accepted?
\Rightarrow may not conclude $X\beta$ is the true model. We may say the true $E(Y) \approx X\beta$ on the
observed data points
• Q : can the procedure be modified to test overfitting?
• Note that fitting is not everything
➤ it often possible to fit data perfectly by introducing more effects/predictors
For data without replication, you can fit a model with $R^2=1$ and zero $\hat{\sigma}^2$
>a very complex model can fit data perfectly (even exactly), but
 may have no explanation (may learn nothing beyond the data itself)
 prediction unstable
(e.g, on region without data points, MSE=Var+Bias ²)
• Q: what is the source of variation in your data? (X β and ϵ)
what σ^2 is estimated (i.e., what is the source of variation in $\boldsymbol{\varepsilon}$)? example:
 replication generated from different units v.s.
repeated measures of same unit
repeatability v.s. reproducibility in
measurement system analysis
 Reading: Faraway (2005, 1st ed.), 6.3 Futher reading: D&S, 2.1 NTHU STAT 5410, 2022, Lecture Notes