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• model: Y=Xβ +ε, E(ε)=0 and var(ε)=σ2I ε: uncorrelated and constant variance

Generalized Least Square (GLS)

Q: what if var(ε)≠σ2I? ε may have non-constant variance

and/or are correlated, e.g.,

 time series correlation [e.g., εt~ARMA(r,m)]

 growth curve model, repeated measurement model 

[e.g., several observations taken from same person, or 

same unit]

 spatial correlation [e.g., data taken over contiguous 

geographical areas: census tracts, countries, or states 

in a country. Nearby areas are often much alike]

 nested errors [e.g., M sets of observations, each set

from common production run, from same/common

equipment, or from same survey-taker]

• Consider the case var(ε)=σ2Σ, where Σ (≠I) is known but σ2 is unknown, i.e., we 

know the correlation and relative variance between the errors but we don't know the 

absolute scale

p. 6-2

• Because Σn×n is symmetric and positive definite, we can write Σ=SST, where S is an 

n×n nonsigular matrix (by Cholesky or spectral decompositions) 

Y=Xβ +ε   S-1Y=S-1Xβ + S-1ε   Y'=X'β +ε' , where

Y' =S-1Y, X'=S-1X, ε'= S-1ε, and

E(ε')=0 and var(ε')=var(S-1ε)=S-1var(ε)S-T= S-1σ2SSTS-T =σ2I

 For Y' and X', the assumption in ordinary least square is satisfied

• GLS: find β that minimize

ε'Tε'=(Y'–X'β)T(Y'–X'β) = (Y-Xβ)TS-TS-1 (Y-Xβ) = (Y-Xβ)TΣ-1(Y-Xβ)

 = (X'TX')-1X'TY' = (XTΣ-1X)-1XTΣ-1Y

 var(     ) = σ2(X'TX')-1 = σ2(XTΣ-1X)-1

GLS is like OLS regressing 

Y'=S-1Y on X'=S-1X

β̂

β̂

Note1: ε'Tε', , and var(    ) are 

invariant to the choice of S.

Note2:     =          if Ω[Σ-1X]= Ω[X]

β̂β̂

β̂ β̂
OLS
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β̂
OLS

β̂ OLS β̂ OLS

β̂

• Sometimes, the errors are uncorrelated, but have unequal variance where the form 

of the inequality is known (Σ is diagonal, it's a special case of GLS), example:

Weighted Least Square (WLS)

 Reading: Faraway (2005, 1st ed.), 6.1  Futher reading: D&S, 9.2

β̂ β̂
OLSβ̂

• Q: why should not use ordinary least square when var(ε)≠σ2I?

model: Y=Xβ +ε, E(ε)=0 and var(ε)=σ2Σ, OLS estimator          = (XTX)-1XTY

E(         )=β , var(        )=σ2(XTX)-1XTΣX(XTX)-1  unbiased but variance 

not minimized (Note: cT is BLUE of cTβ  var(cT )≤var(cT ))

• diagnostics (residual analysis) should be applied on Y'–X' =S-1(Y–Xβ )=S-1 .

because ε' are i.i.d. but not ε

• The practical problem is that Σ may not be known. It's usually necessary to make 

some assumptions and examine the residuals to estimate Σ (check lab for an 

example, IRWLS)

error variance proportional to a function of predictors

[e.g., var(εi)=xi
2σ2 (wi =1/xi

2)]

ε̂β̂
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where wi's (∝ 1/var(εi)) are called weights. 

low weight ⇔ high variance;   high weight ⇔ low variance

• S=diag(1/      , ..., 1/       ), then Σ=SST

 OLS regress S-1Y (i.e.,          ) on S-1X (          ) (Note. the column

of ones, i.e., intercept needs to be replaced with       ) 

 convenient for regression package without a weighted options

xw iiyw ii

wi

w1 wn



data with replicates, which show a pattern of unequal 

variance [e.g., var(εi) ≈ sample variance of observations 

with same xi (wi = 1/(sample variance))]

the observed yi's are actually averages of several 

observations. [e.g., suppose yi is the average of ni

observations, var(εi)=σ2/ni ( wi = ni)]

• ε : uncorrelated, but not constant variance  Σ is diagonal. Write

---- -
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• iteratively re-weighted least squares (IRWLS): In all the previous examples, weights

(or Σ in GLS) are assumed known. Q: what if var(εi) is not completely known, what 

weights should we use? Q: where can you find the information of weights?

fit the mean model to estimate β
fit the variance model to estimate ρ

weightsresiduals

• Q: Why observations with smaller variance should be multiplied by heavier 

weight? intuitive interpretation?

 Reading: Faraway (2005, 1st ed.), 6.2  Futher reading: D&S, 9.2

 model the mean response for Y, E(Y)=Xβ
 model the variance in Y, var(Y)=f(X, ρ), where ρ are parameters for the 

variance model

 Example: var(εi)=ρ0+ρ1xi1

1. start with wi=1

2. use weighted least square to estimate β
3. use the residuals to estimate ρ0 and ρ1, perhaps by regressing residuals2 on x1

4. re-compute the weights and go to 2. Continue until convergence

Problems: converge? how is the inference about β affected? d.f.=? ...etc

 alternative approach: jointly estimate the mean and variance parameters using 

likelihood based method (in R, use gls() function in the nlme library)
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• model: Y=Xβ+ε, Q: many choices of X, how can we tell the chosen X fits the data?

 X too simple

 not enough to explain the 

mean structure in data

 lack of fit (under-fitting)

 over-estimated

Testing for Lack of Fit

 X too complex

 will explain the variation

caused by errors, in addition

to the mean structure

 overfit the data

 under-estimated

Q: what is “fit”? what “fit” is appropriate? example:

• data generated from the “true model” --- a 2nd-order 

polynomial of x

• solid line (fitted model=1st-order): not capture the 

quadratic pattern in data

• dashed line (fitted model=2nd-order): OK

• dotted line (fitted model=8th-order): fluctuated, 

fitted values and data are too close

 Q: what statistic carry the information about lack of fit or overfit?

σ̂ 2
σ̂ 2

Ans: .σ̂ 2
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 Repeat the simulation 50 times

 Black line: true model, 2nd-order polynomial

 Green lines: fitted lines under under-fitting model, 1st-order polynomials

 Red lines: fitted lines under over-fitting model, 8th-order polynomials

 Comparison

 Under-fitting lines: small variance, large bias

 Over-fitting lines: large variance, small bias

 Interpolation vs. extrapolation
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• a possible testing procedure for lack of fit ( compare to σ2 )σ̂ 2

 when σ2 is known

 examples:

 σ2 is known from past experience

σ̂ 2

σ 2ˆ

σ 2ˆ

 source of variation in ε is only measurement error, 

measuring device well understood, knowledge of 

measurement error inherent in an instrument or by definition

 each yi is an average of a very large number of observations, σi
2

effectively estimated (see an example in lab)

 Note: high R2 (a measure of “goodness of fit”) doesn't imply the 

model is a good fit (check lab for examples of high R2 but lack of fit)

 graphical checking (based on residuals  ←informal) (check a lab example)

 test for lack of fit:

H0: E(Y)=Xβ is correct against H1: E(Y)=Xβ is too simple

 (n-p) ~ σ2χ2
n-p if model is correct (under H0), 

where n=# of observations, p=# of parameters in β
 test statistic: (n-p) /σ2 = RSS/σ2, compared with χ2

n-p

 reject if    (n-p) /σ2 > χ2
n-p

(1-α)

 if a lack of fit is found, a new (more complex) model is needed
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 when σ2 is unknown ( can we use data to estimate it?)

σ
2

ˆ p.e.

xy

σ
2

ˆ p.e.

 need “model-free method” to estimate σ2

(i.e., free of the E(Y)=Xβ assumption)

 because we want to use estimated σ2 to justify whether E(Y)=Xβ is suitable, 

the estimated σ2 should have no relationship with the choice of X

 usually, only possible for data with replication (Q: why?)

 denote the estimated σ2 under model-free method by , where p.e. stands for 

“pure error”) 

 how to estimate σ2 (model-free)?

 SSp.e. = Σdistinct x Σwithin an x (yx,i- )2

 d.f. of p.e. = Σdistinct x (# of replications – 1)

e.g. (2-1)+(3-1)+(5-1)+(1-1)=7

 = SSp.e./dfp.e.

 test statistic: 

(n=# of observations, p=# of parameters in β, 

RSS calculated from the model E(Y)=Xβ)
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 need replication to make the test, but it’s rare in obs’nal data

 possible solution: grouping (could be questionable

 different grouping schemes may cause different 

conclusions)

d.f. SS MS F

Residual n-p RSS

Lack of fit n-p-dfp.e. RSS-SSp.e. (RSS-SSp.e.)/(n-p-dfp.e.) ratio of MS

(compared to 

Fn-p-dfp.e., dfp.e.
)

Pure error dfp.e. SSp.e. SSp.e./dfp.e.

 Note: is the estimate of σ2 when we fit a saturated model to the dataσ
2

ˆ p.e.

 alternative view: 

this is a comparison between the model of interest (i.e., ω: Xβ) 

and a saturated model (Ω, whose R2 reaches the maximum) 

that assigns a parameter to each unique combination of the 

predictors  standard F-testing for H0: ω v.s. H1: Ω\ω

• 

0 

0 ~ 
0 

• § 
• 

0 
0 
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• Q: what’s a conservative conclusion when H0 is accepted?

 may not conclude Xβ is the true model. We may say the true E(Y) ≈ Xβ on the 

observed data points

σ 2ˆ

 Reading: Faraway (2005, 1st ed.), 6.3  Futher reading: D&S, 2.1

• Q: can the procedure be modified to test overfitting?

• Note that fitting is not everything

it often possible to fit data perfectly by 

introducing more effects/predictors

• Q: what is the source of variation in your data? (Xβ and ε) 

what σ2 is estimated (i.e., what is the source of variation in ε)? example:

for data without replication, you can fit a model with R2=1 and zero .

a very complex model can fit data perfectly (even exactly), but ...

 may have no explanation (may learn nothing beyond the data itself)

 prediction unstable

(e.g, on region without data points, MSE=Var+Bias2)

 replication generated from different units v.s. 

repeated measures of same unit

 repeatability v.s. reproducibility in 

measurement system analysis
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