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• model: Y=Xβ +ε, E(ε)=0 and var(ε)=σ2I ε: uncorrelated and constant variance

Generalized Least Square (GLS)

Q: what if var(ε)≠σ2I? ε may have non-constant variance

and/or are correlated, e.g.,

 time series correlation [e.g., εt~ARMA(r,m)]

 growth curve model, repeated measurement model 

[e.g., several observations taken from same person, or 

same unit]

 spatial correlation [e.g., data taken over contiguous 

geographical areas: census tracts, countries, or states 

in a country. Nearby areas are often much alike]

 nested errors [e.g., M sets of observations, each set

from common production run, from same/common

equipment, or from same survey-taker]

• Consider the case var(ε)=σ2Σ, where Σ (≠I) is known but σ2 is unknown, i.e., we 

know the correlation and relative variance between the errors but we don't know the 

absolute scale
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• Because Σn×n is symmetric and positive definite, we can write Σ=SST, where S is an 

n×n nonsigular matrix (by Cholesky or spectral decompositions) 

Y=Xβ +ε   S-1Y=S-1Xβ + S-1ε   Y'=X'β +ε' , where

Y' =S-1Y, X'=S-1X, ε'= S-1ε, and

E(ε')=0 and var(ε')=var(S-1ε)=S-1var(ε)S-T= S-1σ2SSTS-T =σ2I

 For Y' and X', the assumption in ordinary least square is satisfied

• GLS: find β that minimize

ε'Tε'=(Y'–X'β)T(Y'–X'β) = (Y-Xβ)TS-TS-1 (Y-Xβ) = (Y-Xβ)TΣ-1(Y-Xβ)

 = (X'TX')-1X'TY' = (XTΣ-1X)-1XTΣ-1Y

 var(     ) = σ2(X'TX')-1 = σ2(XTΣ-1X)-1

GLS is like OLS regressing 

Y'=S-1Y on X'=S-1X

β̂

β̂

Note1: ε'Tε', , and var(    ) are 

invariant to the choice of S.

Note2:     =          if Ω[Σ-1X]= Ω[X]

β̂β̂

β̂ β̂
OLS
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β̂
OLS

β̂ OLS β̂ OLS

β̂

• Sometimes, the errors are uncorrelated, but have unequal variance where the form 

of the inequality is known (Σ is diagonal, it's a special case of GLS), example:

Weighted Least Square (WLS)

 Reading: Faraway (2005, 1st ed.), 6.1  Futher reading: D&S, 9.2

β̂ β̂
OLSβ̂

• Q: why should not use ordinary least square when var(ε)≠σ2I?

model: Y=Xβ +ε, E(ε)=0 and var(ε)=σ2Σ, OLS estimator          = (XTX)-1XTY

E(         )=β , var(        )=σ2(XTX)-1XTΣX(XTX)-1  unbiased but variance 

not minimized (Note: cT is BLUE of cTβ  var(cT )≤var(cT ))

• diagnostics (residual analysis) should be applied on Y'–X' =S-1(Y–Xβ )=S-1 .

because ε' are i.i.d. but not ε

• The practical problem is that Σ may not be known. It's usually necessary to make 

some assumptions and examine the residuals to estimate Σ (check lab for an 

example, IRWLS)

error variance proportional to a function of predictors

[e.g., var(εi)=xi
2σ2 (wi =1/xi

2)]

ε̂β̂
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where wi's (∝ 1/var(εi)) are called weights. 

low weight ⇔ high variance;   high weight ⇔ low variance

• S=diag(1/      , ..., 1/       ), then Σ=SST

 OLS regress S-1Y (i.e.,          ) on S-1X (          ) (Note. the column

of ones, i.e., intercept needs to be replaced with       ) 

 convenient for regression package without a weighted options

xw iiyw ii

wi

w1 wn



data with replicates, which show a pattern of unequal 

variance [e.g., var(εi) ≈ sample variance of observations 

with same xi (wi = 1/(sample variance))]

the observed yi's are actually averages of several 

observations. [e.g., suppose yi is the average of ni

observations, var(εi)=σ2/ni ( wi = ni)]

• ε : uncorrelated, but not constant variance  Σ is diagonal. Write

---- -
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• iteratively re-weighted least squares (IRWLS): In all the previous examples, weights

(or Σ in GLS) are assumed known. Q: what if var(εi) is not completely known, what 

weights should we use? Q: where can you find the information of weights?

fit the mean model to estimate β
fit the variance model to estimate ρ

weightsresiduals

• Q: Why observations with smaller variance should be multiplied by heavier 

weight? intuitive interpretation?

 Reading: Faraway (2005, 1st ed.), 6.2  Futher reading: D&S, 9.2

 model the mean response for Y, E(Y)=Xβ
 model the variance in Y, var(Y)=f(X, ρ), where ρ are parameters for the 

variance model

 Example: var(εi)=ρ0+ρ1xi1

1. start with wi=1

2. use weighted least square to estimate β
3. use the residuals to estimate ρ0 and ρ1, perhaps by regressing residuals2 on x1

4. re-compute the weights and go to 2. Continue until convergence

Problems: converge? how is the inference about β affected? d.f.=? ...etc

 alternative approach: jointly estimate the mean and variance parameters using 

likelihood based method (in R, use gls() function in the nlme library)
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• model: Y=Xβ+ε, Q: many choices of X, how can we tell the chosen X fits the data?

 X too simple

 not enough to explain the 

mean structure in data

 lack of fit (under-fitting)

 over-estimated

Testing for Lack of Fit

 X too complex

 will explain the variation

caused by errors, in addition

to the mean structure

 overfit the data

 under-estimated

Q: what is “fit”? what “fit” is appropriate? example:

• data generated from the “true model” --- a 2nd-order 

polynomial of x

• solid line (fitted model=1st-order): not capture the 

quadratic pattern in data

• dashed line (fitted model=2nd-order): OK

• dotted line (fitted model=8th-order): fluctuated, 

fitted values and data are too close

 Q: what statistic carry the information about lack of fit or overfit?

σ̂ 2
σ̂ 2

Ans: .σ̂ 2
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 Repeat the simulation 50 times

 Black line: true model, 2nd-order polynomial

 Green lines: fitted lines under under-fitting model, 1st-order polynomials

 Red lines: fitted lines under over-fitting model, 8th-order polynomials

 Comparison

 Under-fitting lines: small variance, large bias

 Over-fitting lines: large variance, small bias

 Interpolation vs. extrapolation
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• a possible testing procedure for lack of fit ( compare to σ2 )σ̂ 2

 when σ2 is known

 examples:

 σ2 is known from past experience

σ̂ 2

σ 2ˆ

σ 2ˆ

 source of variation in ε is only measurement error, 

measuring device well understood, knowledge of 

measurement error inherent in an instrument or by definition

 each yi is an average of a very large number of observations, σi
2

effectively estimated (see an example in lab)

 Note: high R2 (a measure of “goodness of fit”) doesn't imply the 

model is a good fit (check lab for examples of high R2 but lack of fit)

 graphical checking (based on residuals  ←informal) (check a lab example)

 test for lack of fit:

H0: E(Y)=Xβ is correct against H1: E(Y)=Xβ is too simple

 (n-p) ~ σ2χ2
n-p if model is correct (under H0), 

where n=# of observations, p=# of parameters in β
 test statistic: (n-p) /σ2 = RSS/σ2, compared with χ2

n-p

 reject if    (n-p) /σ2 > χ2
n-p

(1-α)

 if a lack of fit is found, a new (more complex) model is needed
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 when σ2 is unknown ( can we use data to estimate it?)

σ
2

ˆ p.e.

xy

σ
2

ˆ p.e.

 need “model-free method” to estimate σ2

(i.e., free of the E(Y)=Xβ assumption)

 because we want to use estimated σ2 to justify whether E(Y)=Xβ is suitable, 

the estimated σ2 should have no relationship with the choice of X

 usually, only possible for data with replication (Q: why?)

 denote the estimated σ2 under model-free method by , where p.e. stands for 

“pure error”) 

 how to estimate σ2 (model-free)?

 SSp.e. = Σdistinct x Σwithin an x (yx,i- )2

 d.f. of p.e. = Σdistinct x (# of replications – 1)

e.g. (2-1)+(3-1)+(5-1)+(1-1)=7

 = SSp.e./dfp.e.

 test statistic: 

(n=# of observations, p=# of parameters in β, 

RSS calculated from the model E(Y)=Xβ)

p. 6-10

 need replication to make the test, but it’s rare in obs’nal data

 possible solution: grouping (could be questionable

 different grouping schemes may cause different 

conclusions)

d.f. SS MS F

Residual n-p RSS

Lack of fit n-p-dfp.e. RSS-SSp.e. (RSS-SSp.e.)/(n-p-dfp.e.) ratio of MS

(compared to 

Fn-p-dfp.e., dfp.e.
)

Pure error dfp.e. SSp.e. SSp.e./dfp.e.

 Note: is the estimate of σ2 when we fit a saturated model to the dataσ
2

ˆ p.e.

 alternative view: 

this is a comparison between the model of interest (i.e., ω: Xβ) 

and a saturated model (Ω, whose R2 reaches the maximum) 

that assigns a parameter to each unique combination of the 

predictors  standard F-testing for H0: ω v.s. H1: Ω\ω

• 

0 

0 ~ 
0 

• § 
• 

0 
0 
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• Q: what’s a conservative conclusion when H0 is accepted?

 may not conclude Xβ is the true model. We may say the true E(Y) ≈ Xβ on the 

observed data points

σ 2ˆ

 Reading: Faraway (2005, 1st ed.), 6.3  Futher reading: D&S, 2.1

• Q: can the procedure be modified to test overfitting?

• Note that fitting is not everything

it often possible to fit data perfectly by 

introducing more effects/predictors

• Q: what is the source of variation in your data? (Xβ and ε) 

what σ2 is estimated (i.e., what is the source of variation in ε)? example:

for data without replication, you can fit a model with R2=1 and zero .

a very complex model can fit data perfectly (even exactly), but ...

 may have no explanation (may learn nothing beyond the data itself)

 prediction unstable

(e.g, on region without data points, MSE=Var+Bias2)

 replication generated from different units v.s. 

repeated measures of same unit

 repeatability v.s. reproducibility in 

measurement system analysis
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