Generalized Least Square (GLS)
» model: Y=X[+¢, E(£€)=0 and var(§)=c*I = & uncorrelated and constant variance

Q: what if var(§)ZFI? £ may have non-constant variance
and/or are correlated, e.g.,

» time series correlation [e.g., E~ARMA(1,m)]

» growth curve model, repeated measurement model N
[e.g., several observations taken from same person, or
same unit]

\4
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> spatial correlation [e.g., data taken over contiguous
geographical areas: census tracts, countries, or states
in a country. Nearby areas are often much alike]

» nested errors [e.g., M sets of observations, each set
from common production run, from same/common
equipment, or from same survey-taker]

* Consider the case var(&=c¢¢ 2, where 2 (#]) is known but ¢ is unknown, i.e., we
know the correlation and relative variance between the errors but we don't know the

absolute scale

p. 6-2

* Because 2, is symmetric and positive definite, we can write 2=S87, where § is an

Z=nXn

nxn nonsigular matrix (by Cholesky or spectral decompositions)

Y=Xf+c = §''Y=8'XB+S§ '¢ = Y=X'B+¢&, where

Y =SV, X'=S" X, &= 8" '€ and

E(£)=0 and var(&)=var(S-1£)=8" 'var(§)§" =S ' FSS'S" T =FI

= For Y’ and X', the assumption in ordinary least square is satisfied
* GLS: find B that minimize
ETe=(Y-X'PT(Y-X'p)=Y-XP)'S TS ! (Y- XP=(Y-XP'Z (Y- XD

— £ = (XTX') IXTY' = (XIS IX) IXTS 1Y Notel: 7¢, J;l, and var( QA ) are
invariant to the choice of S.

= var(f )= XXy = AX' S Xy !
GLS i1s like OLS regressing

Y'=S"1¥ on X'=§" 1X Note2: B=B s it Q[F X]= Q[X]




 Q: why should not use ordinary least square when var(&)#I?
model: Y=XB+¢, E(§)=0 and var(§)=c*2, OLS estimator ﬁ ors = XTX) XY

E( /;’ ors =0 , Var(ﬁ ors )= F(X'X) ' X" 2X(X"X) ! = unbiased but variance
not minimized (Note: ¢/, g is BLUE of ¢c’8= Var(cT/} )<var(c’, /;’ oLs )

« diagnostics (residual analysis) should be applied on Y'-X '/;’ =5 1(Y-X ﬁ)=S‘ e

because &' are i.1.d. but not &

 The practical problem is that 2 may not be known. It's usually necessary to make
some assumptions and examine the residuals to estimate 2 (check lab for an
example, IRWLS)

¢ Reading: Faraway (2005, 1%t ed.), 6.1 ¢ Futher reading: D&S, 9.2

Weighted Least Square (WLS)

» Sometimes, the errors are uncorrelated, but have unequal variance where the form
of the inequality is known (= 2'is diagonal, it's a special case of GLS), example:

» error variance proportional to a function of predictors
[e.g., var(&£)=xF (= w; =1/x7)]

»data with replicates, which show a pattern of unequal ) s
variance [e.g., var(&) = sample variance of observations

with same x; (= w; = 1/(sample variance))]

»>the observed y.'s are actually averages of several . :
observations. [e.g., suppose y; is the average of n,
observations, var(&)=F/n;(= w, = n,)]

* &:uncorrelated, but not constant variance = 2 1s diagonal. Write

1/wy o - 0 wp O -+ O
s 0 1l/wy -+ O — y-1_ Q wz Q
0 0 - 1/wp 0 0 - wpy

where w/'s (U 1/var(g)) are called weights.

low weight = high variance; high weight < low variance

o S=diag(14fw,., ..., 1/Jw, ), then Z=SST

— OLS regress S- 'Y (i.e., yw,»,) on "' X (Vw.x, ) (Note. the column
of ones, 1.e., intercept needs to be replaced withm )

= convenient for regression package without a weighted options




* (Q: Why observations with smaller variance should be multiplied by heavier Poe

weight? intuitive interpretation?

« iteratively re-weighted least squares (IRWLS): In all the previous examples, weights
(or 2'in GLS) are assumed known. Q: what if var(&) is not completely known, what
weights should we use? Q: where can you find the information of weights?

» model the mean response for ¥, E(Y)=Xf

» model the variance in ¥, var(¥Y)=f(X, p), where p are parameters for the
variance model

. fit the mean model to estimate 3
r651duals<

; ; weights
fit the variance model to estimate p 8

» Example: var(£)=0,+p0,x;,
L. start with w=1

2. use weighted least square to estimate £

3. use the residuals to estimate g, and p,, perhaps by regressing residuals? on x,

4. re-compute the weights and go to 2. Continue until convergence

Problems: converge? how is the inference about Saffected? d.f.=? ...etc

» alternative approach: jointly estimate the mean and variance parameters using
likelihood based method (in R, use gl s() function in the nl nme library)

+ Reading: Faraway (2005, 15t ed.), 6.2 ¢ Futher reading: D&S, 9.2

Testing for Lack of Fit p. 6-6
» model: Y=X/t& Q: many choices of X, how can we tell the chosen X fits the data?

Q: what 1s “fit”? what “fit” is appropriate? example:

« data generated from the “true model” --- a 2"d-order
polynomial of x

M * solid line (fitted model=1%"-order): not capture the
o Ny quadratic pattern in data

* dashed line (fitted model=2"d-order): OK

« dotted line (fitted model=8"-order): fluctuated,
fitted values and data are too close

> X too simple » X too complex
= not enough to explain the | = will explain the variation
mean structure in data caused by errors, in addition
= lack of fit (under-fitting) to the mean structure
— 6 ? over-estimated = overfit the data
— & * under-estimated

2

> Q: what statistic carry the information about lack of fit or overfit? Ans: ¢




» Repeat the simulation 50 times
= Black line: true model, 2"-order polynomial
» Green lines: fitted lines under under-fitting model, 1%-order polynomials

= Red lines: fitted lines under over-fitting model, 8-order polynomials

» Comparison

o Under-fitting lines: small variance, large bias
o Over-fitting lines: large variance, small bias

o Interpolation vs. extrapolation

= Note: high R’ (a measure of “goodness of fit”) doesn't imply the
model is a good fit (check lab for examples of high R? but lack of fit)

» graphical checking (based on residuals ~ informal) (check a lab example)

« a possible testing procedure for lack of fit (= compare 6 > to &)
» when & is known

= examples:
o O is known from past experience

o source of variation in £1is only measurement error,
measuring device well understood, knowledge of
measurement error inherent in an instrument or by definition

o each y, is an average of a very large number of observations,
effectively estimated (see an example in lab)

= test for lack of fit:
H,: E(Y)=Xp is correct against H,: E(¥)=Xp is too simple
o (n- 1;) ¢ ’~ #X,., if model is correct (u_nder Hy),
where n=# of observations, p=# of parameters in 8
o test statistic: (n- p)g */02 = RSS/02, compared with x2, )

o rejectif (n-p) 6 2/o% > X, %

o if a lack of fit is found, a new (more complex) model is needed




m]
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» when @ is unknown (= can we use data to estimate it?)

= need “model-free method” to estimate &
(i.e., free of the E(¥Y)=X/f assumption)

= because we want to use estimated ¢ to justify whether E(¥Y)=Xg is suitable,
the estimated ¢ should have no relationship with the choice of X

» denote the estimated ¢ under model-free method by ¢ i > Where p.e. stands for

“pure error”)
= usually, only possible for data with replication (Q: why?)

how to estimate & (model-free)?

= -3 )
S_S}& Zdistinct X Zwithin_an_x (yx,i Y )

ALE. Of P.€. = % e  (# Of replications — 1)

]
e.g. (2- D+(3- DH(S- DH(1- D=7
A2

o Ope = S_S}&/gif& g?

o test statistic: - 3
L] -
(n=# of observations, p=# of parameters in £3, S
RSS calculated from the model E(¥Y)=X/) o

d.f. SsS MS 3 p. 610

Residual n-p RSS

Lack of fit n-p-df,. | RSS-SS,. | (RSS-SS, )(n-p-df,.) ratio of MS
(compared to

F”' - e. e )
Pure error df, .. SS SS, df,. n-pdfp.e. dfp.e.

p.e.

» need replication to make the test, but it’s rare in obs’nal data

A2 . )
Note: O p.e. 1s the estimate of ¢ when we fit a saturated model to the data

alternative view:

this is a comparison between the model of interest (i.e., w: X/)
and a saturated model (Q, whose R’ reaches the maximum)
that assigns a parameter to each uniqgue combination of the
predictors = standard F*testing for H: wv.s. H;: Q\w

o possible solution: grouping (could be questionable

= different grouping schemes may cause different

conclusions)




. . . p. 6-11
* Q: what’s a conservative conclusion when /1 is accepted?

= may not conclude Xfis the true model. We may say the true E(¥) = X on the
observed data points

* Q: can the procedure be modified to test overfitting?

* Note that fitting is not everything

> it often possible to fit data perfectly by
introducing more effects/predictors

»for data without replication, you can fit a model with R?>=1 and zero ¢ °

»a very complex model can fit data perfectly (even exactly), but ...
* may have no explanation (may learn nothing beyond the data itself)
= prediction unstable

(e.g, on region without data points, MSE=Var+Bias?)

* Q: what is the source of variation in your data? (XfBand &)
what 2 is estimated (i.e., what is the source of variation in £)? example:

= replication generated from different units v.s.
repeated measures of same unit

= repeatability v.s. reproducibility in
measurement system analysis

% Reading: Faraway (2005, 15ted.), 6.3  * Futher reading: D&S, 2.1




