NTHU STAT 5410, 2022 Lecture Notes

@ . Test: Q: how about test H: £,=0 (or c) in models 1 and 2 when orthogonality  **"

exists between, {z), 1} and z,°? -L\Zv’ﬂl the test results be identical? -~ axi+b
Xl Xz, 21 X

model 1: wy: y=By+€ vs. Q1 y=B+ Bz, +€ f}ég:
model 2: w,: y=4+f.x, € vs. Q) y=f+ iz Sz, tE il ¥ % WA
F=[(RSS,~RSS)(Af A f)VIRSSq 1dfol~F, o (|4 ’
RSS,~RSSg =RSS,~RSSy, (Q: why-{EEFFY 4
but, RSSq 2RSSy, and dfy #dfy . i.e., 66, # 6 092 hm'ﬂmﬁi—-’:—]d space

Q: when will the test results be consistent? (JQ ~ JQ when will be very different?

Note: although the tests do depend on the presence of x,, the dependence is usuall

not as strong as in non-orthogonal cases"amk ’?Za);g Qifmmﬁ : f’f;’"’”e ificant £ 57
« orthogonality is very unlikely to achieve in observational data (it's a feature of
experimental data from a good design. In experimental case, orthogonal design is an

important criterion). At best, predictors are almost uncorrelated and ' near" X2
¢ cf. 7

orthogonality holds. _ forthogonality l__ﬁﬂzd model: Y=XB+E X )3(3.7) Xy
@ Randomization: In an exp’t, suppose thatltrue model is Y=XB+Zy+€, but Z cannot

be measured or may not even be suspected = E(B)=B+X'X)'X'Zy =¥

Q: what’s the best way of controlling X to make X and Z as orthogonal as possible?
+ Reading: Faraway (2005, 1%t ed.), 3.6

: 3. m . N s :
¢ Futher reading: D&S, Appendix 6A {"' >t |} {Q, b} X&z ﬂdﬁl&‘w

p. 5-11

Identifiability

« model: Y=X+¢, where X is an nXp matrix = OLS estimator # = (X’X)"' X7Y

Q: what if the inverse of X7 X does not exist? » e m"g} < ‘ l l:;‘fk'(":f)g: o
« [ (or X) is called unidentifiable when X*X is singular (= rank(X)<p <

dim(Q)<p < at least one column of X is a linear combination of other columns)
s the normal equation X XB=X"Y has mﬁmtJ geqernlizad inversgof A: ANA=A
XXB le—0v Lot um%u.e
=x"¢ | many solutions. Any 3= (XTX) XY, is a solution,
;..3.‘ xn but should not be regarded as an estimate of 8.

(K000 (C0B= XY] ;
(X%) (XY XTy =XTY [ o | dim@= |/

> Y and & are still unique

* Q: Why does unidentifiability happen?

______________________________

, g There are uxﬁmﬂy_mm ways to express
E_I_Ej%';‘bservatlonal data, some examples: ¥ s a [inear combingtion. of X1, Za, X3
X2=QX+

same predictor measured in different scales and both are in the model

] X +X —X , OF X +X +X =c, and all three are in the model with intercept

@-What | X is supersaturated: p>n i.e., more effects than observations |¥'X*
is the px»p matrix

—>1
hat makrix| (Note. saturated X: When p=n and XZX is nonsingular = f# is | rank(x"x)

H undera identifiable, but no degrees of freedom left for estimation of o i n:r:(n.p )
Saturated — p

model ? because Y=Y and €= 0 = cannot do testing or C.L.)
LH;]-‘Q = such problems can be avoided by paying attention.

srdim(Y)=dim()=n
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» experimental data, e.g., two-sample case: p. 512
with mean A with mean ,u;j
treatment data: y,, ..., ynj control data: ¥, ,,, .., Y,4n Suppose we model the

response by an overall mean ,u and group effects ) and @y [(u.0n,02) | (i, 4ha)
. B 105 - 15 9
Y= n; +£ 1=n+l,...,n+m, 5 .g g .g g
- o1 !
o £ 123-3| 159
Wi’"f'—'ff’ . \l S ) — X (or ) is unidentifiable (21
trol R
control ¢, ) o o[ S o

= over-parameterized: some constraint must be 1 mpose on gg al, a,), sa

p=0or a\+a,=0 E (o+aa=0] U= z avera.seof-

13 . ul mmﬂ;t mm
* “unidentifiabile” means og,_ Ma: control mean | oh=-olz = Mi-Ma |2 means

1. insufficient data to estimate the parameters of interest, or

10
(mean difference) /5 [9

2. more parameters than are necessary to model the data o<[1,-¢
* an eigen-decomposition of X7X will Zj: ith column 0f X. Suppose X+ +QXp=0
Let @=(a,,0p), then (X"X)2=0=0-4 . xx)

reveal the linear combinations that gave

. . o >a y
rise to the unidentifiability (check lab) co:‘:eg;nd%:;veef;; ‘;JS- u)e( £ véhose “cor(«% 333..
34 st AX++0pZp 2 0

« what causes problem is data close to “unidentifiable,” (i.e., strong colhnearlty) :>
model is still identifiable, but standard error of estlmates can be very large (why

« statistical softwares handle unidentifiability differently. R R will )
automatically fit a reduced model when X is unidentifiable.

% Reading: Faraway (2005, 15t ed.), 2.9 raph <n LNp4t-
¢ Futher reading: D&S, 4.2, 20.4, Appendix 20A. d Ph’ pi-13

W 1-le Interpreting parameter estimates«<t» prediction (Recall. In LNp 5-9 »>%

X1. Xa ort-hogonau X1, X2 collinear
l ? Y= X[+ & what does ﬁl?f!fn? é‘ BB E‘& _m”x'xgx%&
‘l’_'w’“t, Some matters needing attention about g V=X, | E(V)=X8, |E(¥)=%Br x(xix )3 1(kafi)

= X X: +
Why? > JQ have units [e.g., fuel consumption data, fitted model: ;-r::edry;g: ;’.%-% E)

fuel = 154.19 + (= 4.23)Tax + (0.47)Dlic + (—6.14)Income + (18.54)log,(Miles)]
[t unit = watt of & Lo uniE = (unit of g)/(umitos x;)
,‘,’f;ﬁ.‘:—,_" > sign of A : direction of the relationship between the term and the response

mﬁ> interpretation of estimated value (see next two slides)

!“'L“""’f > better to also consider values 4. what i¥ the C.I. contains O ?

contained in its confidence interval—es| 2. what if (upper bound - lowser bound)
of the C.1. i's very large ?

3. what if (upper bound/ lov;er bound)
» the parameters of the C.I. s very larme or glmost- 10r0 ?
»« some f's have physical interpretation, especially those from a conceptual
model [e.g., attach weights x to a spring and measure the extension y]

» causality or association

= unfortunately, such cases are rare check LNp.1-2

= usually, B's do not have such physical interpretation

= in the case, the model Y=Xt+¢ is only an empirical model, i.e., a

Mocal ) convenience for repregienting a complex reality within the range of X =

approximation

the real meaning of a particular £, is not obvious, interpretation is difficult
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€ Some interpretations of parameter estimates ,,m  XB=E(7) p. 514
» anaive interpretation: [ be.o.ssocm{:ed with ‘/@ﬂ :
“A unit increase in X, willLcause ¢ an average change of ,B inY” [J causality
[e.g., Y: annual 1 income, and X: years of education] statement
= Q: what if there exist lurking variables? g Z)]
e.g., X: shoe size, Y: reading abilities, Z: age of child

[e.g, X Y g , Z: age ] C3 XY 2

= causal conclusion is doubtful«[But, cun be OK for predibon parpesely, B
» Q: what if the roles of predictor and response are mistakenly switched%e

[e.g., Y: fire damage, and X: numbers of firefighters called out] |4l three (X.Y) scatter
O Q' what if some important effects are not included in model? (P12 show X ¥

o X fixed. B(8,) = 8, + (XIX1) ' XT X8y« LNp5-G  [Besaresf | -
onnats Xrandom true model: E(Y | X1, X3) = X118, + X208, '

Bl Il 3fitted model: E(Y | Xy) = X1,

E[Farl1x. xa)|x] | E(Y | X1) £ X168, + E(X2 | X1)8,
+ Tar[EO x| X Var(Y | X1) 202482 Var(Xy | X1) B

» even though we have all important variables in the model
and no lurking variables, there still are problems, e.g.: MW“&ﬁM -
oS y= At X, 4B Xore At (BB X +B(X X S N

= in a properly designed experlment the naive interpretation is E——
madel: 3~powe.x+a,z

more regsopable (because of its use of orthqgonal designs 'and @ B.>o (B0
randomization); but for observational data, it's often questionable. |« gi<o

€% an alternative interpretation after adjusted for the other terms
“ A unit increase in X with all the other (spec1fied) terms held constanJ will be

g f “ﬁfd
associated with an average change of ,8 inY” asﬁi;%m be different

= Q: can other terms be held constant? e.g. .., obs'nal daka gﬁ;’i‘l" Xa&
o X, and X, are highly correlated exp'tal data : sliding level

o consider the model E(Y)= Lot B X+ 52X+ B X Xo=BH (Bt B,X) X B X,
= it requires the specification of the other terms/effectse—eg. B, « x, , Xa

p. 5-15

Q: what will happen in the analysis when ’B. * Xi ) XatXs
strong collinearity exists between effects? B, Xa.,xg

— estimates and tests of 3.’s may significantly change according to what other
e effects are included. It makes the interpretation almost impossible (check lab).
?&L In some cases, the problem can be removed by redefining the terms into new

lecture) | linear combinations that may be easier to interpret. i.e.,regard a. LMas |

» an interpretation from prediction VlGWpOlllt) ?:é,':mzwf&m nothing but a

regarding the parameters and their estimates as fictional quantities, and EE ximodbion

concentrating on prediction enable a rather cautious interpretation of 13
avoid “unit increase in Xi & held consbard:mo

given (91,05-++39:.05-+39p-1,0) — yo , observe (gj g,.--»g; 0t L. 9p-1.0) = yo + ,BZ 4—]
prediction is more stable than parameter estimation (check lab) :o T
= directly interpretable and success may be measured in future causallty
= dangers of extrapolation, be cautious when z, is outside the range of X conclusion

4 Prfn.cipal

Recall.
uniden-
tifiable,

many B
same Y
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* Q: how to make a stronger case for causality (be associated with — cause)? P °°

» include all relevant variables/effects = however, even though you try hard to

Recall— do so, the possibility of an unsuspectedlurking variable will always exists
Level of Uimportant variable

evidence (®) fit a variety of models and see if a similar effect is observed, i.e., whether the
Wo12)  ootimates of [, similar no matter what the fitted models are?
T Note when orthogonalﬂ:y exists = identical B¢
e—n?u-’k __ > use non-statistical knowledge of the physical nature of the relationship
_s,,w'g = conceptual model is more persuasive than empirical model
cancer

multiple studies under different conditions can help confirm a relationship.

» in a few cases, one can infer causality from an observational study.

: response: divorce, predictor: Sex .
l;;ams;i? [e.g.,cgahl g;d Moretti (2083): parents of a Xi, Xa: mdependgrd:
single girl are > 5% more likely to divorce than =>< orthogonality
parents of a single boy. This observational study randomization
functions like an experimental design because = remove the
the sex of a child is a purely random matter. ] possfb‘h{'y 0{-
Le X,: sex , X2: other possible variables lurking variables

even if these steps are accomplished, one can never be 100% sure of the
;mb <) causality relationship purely based on a statistical analysis. For example,
consider the history of the study of the link between smoking and lung cancer
= it takes decades of studies to go from association to causality————j

< Reading: Faraway (2005, 1sted.), 3.6, 3.7 FYI. a new field in statistics: causal inference <+—

. 5-17
What can go wrong? many many things ... Y=XpB+e, ||
source and quality of the data (Q: how was the data collected?) &N, &)

Note, the information contained in the date might be limited or wrong From the
» data may not be a random sample of thevpopulation. Situations such beginning .

as biased sample, a sample of convenience, or sample=population-»{chek grahs in L6 5-8

>important predictors may not have been observed (Q: how may you find out?a?

» observational data often make¥causal conclusions problematic, | <3

: , : . . : . too low R*
reason: lack of orthogonality, collinearity, lurking variables, ... - $o0 ’arge 32

» the range of X and qualitative nature of some predictors may » check with
limit effective¥predictions, it's unsafe to extrapolate too much L expertise

» Key: data collected should be representative of the population of interest DOE
» error component [we hope £0IN(0, PI) $-{BE#&] ~the otgective of data collectiond gy
» & may have unequal Variance e.g., € ~heavy- tailed distribution [ike

» £ may be Correlated‘*—m ! Cauchy —& outlier < robust regression
f® £ may not be normally distributed [Note. By E detection TN T
need 'tin | w this is less serious when sample size is large. Notice that even if]| erly on notmality

testi . N : : ight still
&,ng‘?, € is not normal, g might tend to normality due to CLT. With 'Zi—?a&? ?

Z;fw large sample size, ~normality of data is not much of a problem T

cf \anormality of B
= for small sample sizes, bootstrap method offers a solution / f,ﬁ:s- cdf Z;H‘&Q
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> errors in X +measurement error model | . ridge regression
»> serious collinearity in X o{ * Shrinkage method (like ’-ASSO»'“)_'
» some inferences strongly rely on the choice of full model, X/ (example?)

Q: where does the full model come from? | conceptual model|_ T Lab5-¢
cofudence | 1. physical theory may suggest a model --- wonderful but relatively uncommon
decrease |2 experience from past data --- may help suggesting a reliable model =al

3.no prior experience --- explore current data to find an empirical’model
= confidence in inference will depend on confidence in the model  distribution

» an empirical model can be regarded as a local approximation of @i.f\@ﬁ_‘.
underlying true system on some “safe” range of X truth inflation , gﬁ‘wﬂ
» many statistical theory rests on the assumption that the model (error and strutural ‘\
components) is correct. In practice, the best one can hope for is often “empirical
model=underlying system”. [Box: “all models are wrong but some are useful”]
* publication and experimenter bias /coaffrm{-[on, bias Ho: B;=o0is true
» significant level, say 5% = keep studying, sooner or later, one will come up
with a significant result (about 5% chance) even if one really does not exist.
Problem: significant results get published but not insignificant results ————
» experimenter bias = many ways of analyzing data, experimenters may be
tempted to pick the one that gives them the results they want/expect —p| FTEE8Y|
< Reading: Faraway (2005, 1% ed.), 3.8 ARG E9x52y2— MRAR

« structural component [ E(Y)=XB4~#8% - principal comgonent regression. L_|p- 518
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