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• Q: Why need interval/region estimation? What more information can it 

provide compared to point estimation?

e.g., estimate of β = 3.5, but accept H0: β = 0. How to give such result 

an explanation? Why point estimation cause such confusing?

• An interval/region estimation provides

Confidence intervals and regions

• duality of interval/region estimation and hypothesis test: 

For a 100(1-α)% confidence region, any point θ that 

lies within the region represents a null hypothesis that 

would not be rejected at the 100α% significance level 

while every point θ outside represents a null 

hypothesis that would be rejected. 

 plausible values for parameter

 uncertainty in parameter estimator

 information about its length and 

the values it covers may be helpful

 information related to testing

T (test statistic)

θ

acceptance 

region of 

H0: θ =θ0 vs. 

H1: θ ≠θ0

confidence 

interval 

based on 

TobsTobs

θ0

• meaning of 100(1-α)% confidence interval 

or region, e.g., 95% confidence interval
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 Confidence region for Aβ, where A is a full rank d×p matrix and d≤p

A ∼ N(Aβ, A(XTX)−1ATσ 2)  [(A −Aβ)T[A(XTX)−1AT]−1(A −Aβ)]/σ 2 ∼ χ2
d,

(n−p) / σ 2 ∼ χ2
n−p ,

and they are independent.

[(A −Aβ)T[A(XTX)−1AT]−1(A −Aβ)] / (d ) ∼ Fd,n−p

 100(1-α)% confidence region of Aβ: collection of Aβ ’s (or β) that satisfy

[(A −Aβ)T[A(XTX)−1AT]−1(A −Aβ)] / (d ) ≤ Fd,n−p
(α )

The regions are often ellipsoidally shaped (Q: why?).

• Examples:

 confidence region for β, i.e, A=Ip×p

( −β)TXTX( −β) ≤ (p ) Fp,n−p
(α )

(Q: What’s the confidence region for all effects?)

2σ̂

 confidence region of βi, βj, i.e, A =

β̂β̂

β̂ β̂ β̂

β̂β̂

• Model: Y = Xβ + ε; ε ∼ N(0, σ 2I); : OLS estimator  ∼ N(β, (XTX)−1σ 2)

2σ̂

β̂ β̂

general form β̂β̂ 2σ̂

2σ̂

2σ̂β̂β̂[(A −Aβ)T[A(XTX)−1AT]−1(A −Aβ)] ≤ (2 )F2,n−p
(α )
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 example: confidence region and intervals of βp15 and βp75

Q1: why the straight lines not tangential to the ellipse?

Q2: what can you say, based on the plot, about the 

results of testingH0
1:βp15=0, H0

2: βp75=0, and 

H0
3: βp15=βp75=0? 

⇐  = A(XTX)−1AT

confidence region of βi and βj:                                                      for some c

Q3: where will be the point (0,0) located if the data acceptH0
1, H0

2, reject H0
3? 

how to explain the result if (0,0) falls in other regions? (exercise)

Q4: what is the correlation between and ? how will the 

shape of ellipse change when the correlation becomes larger or smaller?

Q5: can you see why the situation in Q3 will happen more 

frequently when the correlation between and gets larger?

Q6: if and        are uncorrelated, what would be the shape of 

the confidence region? why situation in Q3 less possible to occur?
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 confidence interval for βi, i.e, A=(0,...,0,1,0,...,0)

(   −βi)2/(XTX)−1
ii ≤ F1,n−p

(α)  |(   −βi)/ | ≤ tn−p
(α/2)

alternative method: 

① ~ N(βi, σ 2(XTX)−1
ii), ② (n−p)      /σ 2  ∼ χ2

n−p, and ③ they are independent

 (   −βi)/ ∼ tn-p  C.I.: ± tn−p
(α/2) × .

( )iiT 1
)(ˆ −

XXσ

 confidence interval for prediction of mean response at x0

x0
T − x0

Tβ ∼ N(0, (x0
T(XTX)−1x0)σ 2)   (x0

T −x0
Tβ)/ ∼ tn−p

 C.I.: x0
T ± tn−p

(α/2) × .

 Q:  for a given dataset and α, the length of the C.I. is related to x0 only. What x0

will cause a wider C.I.? Ans: x0 that is away from the “center” of X

( )iiT 1
)(ˆ −

XXσ

iβ̂ 2σ̂ iβ̂

iβ̂ 2σ̂

iβ̂ ( )iiT 1
)(ˆ −

XXσ iβ̂

 interpolation and extrapolation

 interpolation: x0 lie “within the range” of X

 extrapolation: x0 lie “outside the range” of X

(Q: fitted model still hold outside the range?)
 quantitative x0 and qualitative x0






 −

0

1

0
)(ˆ xXXx TTσβ̂ β̂






 −

0

1

0 )(ˆ xXXx
TTσβ̂
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 C.I. for prediction of future observation at x0

x0
T − (x0

Tβ + ε) ∼ N(0, (x0
T(XTX)−1x0 + 1)σ 2)

 C.I.: x0
T ± tn−p

(α/2) ×

 a general form for confidence interval: 

estimate ± (critical value) × (standard error of estimate)

 Example: 95% pointwise confidence band for 

prediction of mean responses (model: y=β0+β1x+ε)

 Q1: why the confidence intervals get wider

when we move away from the range of data? 

 Q2: what's the danger of extrapolation?

 Reading: Faraway (2005, 1st ed.), 3.4, 3.5

 Futher reading: D&S, 5.3, 5.4, 5.5

 Q4: does the plot represent a simultaneous

confidence band for all prediction of mean response?

 Q3: does the widening reflect the possibility that the mean 

structure of the model may change outside the range? 

β̂






 + −

0

1

0
)( 1 ˆ xXXx

TTσβ̂
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• experimental data vs. observational data

It depends on whether we have control over predictors

examples: yield of crop. 

experimental: fertilizer, …, 

observational: exposure, weather, …

Sampling model population

Ans: experimental data: causation, 

observational data: often only association (Note. lurking variable)

 Q: Is this model description, Y=Xβ+ε, ε~N(0, σ 2I), appropriate for 

observational data? Note that

(1) observational X are random variables

(2) in LM, X are treated as fixed values, i.e., no distribution assigned for X

 Q: difference between “X is random” and “X measured with (random) error” 

example:

 Q: What difference between inferences based on 

experimental data and observational data?
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• for some data sets, we can regard the data as a sample drawn from a population. 

In the case, we want to say something about the unknown population values using 

estimated values that are obtained from the sampled data. (example?) 

• the data should be generated using a “(simple) random sample” of the population so 

that they can be representative

 yi|Xi=xi ∼ N((µY −βTµX) + βTxi, σ 2).

• an alternative view of regression: data (yi, xi), i=1,…,n, are 

randomly sampled from a multivariate Normal population,

• conditional distribution of multivariate normal: If

then

It is a linear model with β =ΣXX−1ΣXY , σ 2 = σY2 − ΣXYT ΣXX−1 ΣXY ≡ σY2(1− r2 ).

When we are interested in the “transformed” parameters, regression can be applied.

p. 5-8

• Q: what will happen if the sample is not random?

(i) biased sample 

(ii) sample of convenience

(iii) sample = population

these nonrandom samples can cause problems in the inference (e.g., R2, LNp.3-18)

 Reading: Faraway (2005, 1st ed.), 3.8, nonrandom samples 

Weisberg (2005), Applied Linear Regression, 3rd Ed., 4.2, 4.3

• Q: what information in these samples is proper?

(a) simple random sampling (b) simple random sampling given x (c) biased sampling

(a) (b) (c)

Joint distribution (X, Y) � � �

Conditional distribution Y|X � �� �

Marginal distribution X � � � or �
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Orthogonality

1β̂





• Q: consider the two models:

model 1: y = β0+β1x1+ε,
model 2: y = β0+β1x1+β2x2+ε

In general,      , in the two models are not 

identical (Q: why?)

[also, test H0: β1=0 (or c) not identical]

an exception: when x1 and x2 are orthogonal

• Y =Xβ + ε = X1β1 + X2β2 + ε, where β=[β1 β2]
T and X=[X1 X2] with the property 

X1
TX2=0  X1 and X2 are orthogonal (generalization?)

fitted model=model 1: Y=X1β1+ε
true model=model 2: Y=X1β1+X2β2+ε

Note. If fitted model=model 2


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• Estimation: = (X1
TX1)

−1X1
TY, = (X2

TX2)
−1X2

TY, and      ,      independent

 note that       will be the same regardless of

whether X2 is in the model or not (and vise versa).

• Q: what if only two predictors, say some xi in X1

and some xj in X2, are orthogonal?

1β̂ 2β̂1β̂2β̂
1β̂

p. 5-10• Test: Q: how about test H0: β1=0 (or c) in models 1 and 2 when orthogonality 

exists between {x1, 1} and x2? will the test results be identical?

 Reading: Faraway (2005, 1st ed.), 3.6
 Futher reading: D&S, Appendix 6A

β̂
• Randomization: In an exp’t, suppose that  true model is Y=Xβ+Zγ+ε, but Z cannot 

be measured or may not even be suspected  E(   )=β+(XTX)−1XTZγ
Q: what’s the best way of controlling X to make X and Z as orthogonal as possible?

model 1: ω1: y=β0+ε  vs. Ω1: y=β0+β1x1+ε
model 2: ω2 : y=β0+β2x2+ε  vs. Ω2: y=β0+β1x1+β2x2+ε
F=[(RSSω−RSSΩ)/(dfω−dfΩ)]/[RSSΩ /dfΩ]~F1, dfΩ

RSSω1
−RSSΩ 1

=RSSω2
−RSSΩ 2

(Q: why?)

but, RSSΩ 1
≠RSSΩ 2

, and dfΩ 1
≠dfΩ 2

, i.e., . 

Q: when will the test results be consistent? (                  ) when will be very different?

Note: although the tests do depend on the presence of x2, the dependence is usually 

not as strong as in non-orthogonal cases.

• orthogonality is very unlikely to achieve in observational data (it's a feature of 

experimental data from a good design. In experimental case, orthogonal design is an 

important criterion). At best, predictors are almost uncorrelated and "near" 

orthogonality holds.

x1

x2

1
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• Q: Why does unidentifiability happen?

 observational data, some examples:

 same predictor measured in different scales, and both are in the model

 X1+X2=X3, or X1+X2+X3=c, and all three are in the model with intercept

 X is supersaturated: p>n, i.e., more effects than observations

Identifiability

 the normal equationXTXβ =XTY has infinite 

many solutions. Any =(XTX)−XTY, is a solution, 

but should not be regarded as an estimate of β.

 and      are still uniqueŶ ε̂

β̂

β̂

• model: Y=Xβ+ε, where X is an n×p matrix  OLS estimator = (XTX)−1XTY

Q: what if the inverse of XTX does not exist?

• β (or X) is called unidentifiable when XTX is singular (⇔ rank(X)<p⇔
dim(Ω)<p⇔ at least one column of X is a linear combination of other columns) 

ε̂Ŷ

Y

dim(Ω)=2x1

x2

x3

(Note. saturatedX: when p=n and XTX is nonsingular  is 

identifiable, but no degrees of freedom left for estimation of σ
because Y = and = 0  cannot do testing or C.I.)

 such problems can be avoided by paying attention.

β̂

Ŷ ε̂

p. 5-12 experimental data, e.g., two-sample case:

 X (or β ) is unidentifiable

 over-parameterized: some constraint must be imposed on (µ, α1, α2), say 

µ=0 or α1+α2=0

 Reading: Faraway (2005, 1st ed.), 2.9
 Futher reading: D&S, 4.2, 20.4, Appendix 20A.

• “unidentifiabile” means 

1. insufficient data to estimate the parameters of interest, or 
2. more parameters than are necessary to model the data

treatment data: y1, ..., yn,   control data: yn+1, ..., ym+n.   Suppose we model the 

response by an overall mean µ and group effects α1 and α2:

yi=µ+α1+εi, i=1,...,n; yi=µ+α2+εi, i=n+1,...,n+m, 

• an eigen-decomposition of XTX will 

reveal the linear combinations that gave 

rise to the unidentifiability (check lab)

• what causes problem is data close to “unidentifiable,” (i.e., strong collinearity) 
model is still identifiable, but standard error of estimates can be very large (why?)

• statistical softwares handle unidentifiability differently. R will 

automatically fit a reduced model when X is unidentifiable. 
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Interpreting parameter estimates

β̂
β̂

β̂

β̂

 better to also consider values

contained in its confidence interval

 causality or association

 the parameters β .

• Q: Y = Xβ + ε,  what does mean?

Some matters needing attention about     :

 have units [e.g., fuel consumption data, fitted model:

fuel = 154.19 + (– 4.23)Tax + (0.47)Dlic + (−6.14)Income + (18.54)log2(Miles)]

 sign of : direction of the relationship between the term and the response

 interpretation of estimated value (see next two slides)

 some βi 's have physical interpretation, especially those from a conceptual 

model [e.g., attach weights x to a spring and measure the extension y] 

 unfortunately, such cases are rare

 usually, βi 's do not have such physical interpretation

 in the case, the model Y=Xβ+ε is only an empirical model, i.e., a 

convenience for representing a complex reality within the range of X

the real meaning of a particular βi is not obvious, interpretation is difficult

p. 5-14• Some interpretations of parameter estimates

 a naive interpretation: 

“A unit increase in Xi will cause an average change of      in Y ”

[e.g., Y: annual income, and X: years of education]

 Q: what if there exist lurking variables? 

[e.g., X: shoe size, Y: reading abilities, Z: age of child]

 causal conclusion is doubtful

 Q: what if the roles of predictor and response are mistakenly switched?

[e.g., Y: fire damage, and X: numbers of firefighters called out]

 Q: what if some important effects are not included in model?

Z

X Y

 X fixed.

 X random. true model:                                                    , 

fitted model:

iβ̂ ⇐ causality 

statement

 even though we have all important variables in the model 

and no lurking variables, there still are problems, e.g.:

y = β0+ β1 X1 +β2 X2+ε = β0+ (β1−β2) X1 +β2(X1+X2)+ε
 in a properly designed experiment, the naive interpretation is 

more reasonable (because of its use of orthogonal designs and 

randomization); but for observational data, it's often questionable.

Z=1
Z=0

Z=1
Z=0

Z=1

Z=0

(i)

(ii)

(iii)



p. 5-15 an alternative interpretation

0ŷ

 Q: can other terms be held constant? e.g. 

 X1 and X2 are highly correlated

 consider the model E(Y)=β0+β1X1+β2X2+β3X1X2=β0+(β1+β3X2)X1+β2X2

“ A unit increase in Xi with all the other (specified) terms held constant will be 

associated with an average change of      in Y ”
iβ̂

 it requires the specification of the other terms/effects. 

 an interpretation from prediction viewpoint 

 estimates and tests of βi’s may significantly change according to what other 

effects are included. It makes the interpretation almost impossible (check lab). 

In some cases, the problem can be removed by redefining the terms into new 

linear combinations that may be easier to interpret.

Q: what will happen in the analysis when 
strong collinearity exists between effects?

β̂
regarding the parameters and their estimates as fictional quantities, and 

concentrating on prediction enable a rather cautious interpretation of    :

given (g1,0,...,gi,0,...,gp−1,0) → ,  observe (g1,0,...,gi,0+1,...,gp−1,0) →
 prediction is more stable than parameter estimation (check lab) 

 directly interpretable and success may be measured in future

 dangers of extrapolation, be cautious when x0 is outside the range of X

iy β̂ˆ
0 +

p. 5-16• Q: how to make a stronger case for causality (be associated with → cause)?

 include all relevant variables/effects  however, even though you try hard to 

do so, the possibility of an unsuspected lurking variables will always exists

 fit a variety of models and see if a similar effect is observed, i.e., whether the 

estimates of βi similar no matter what the fitted models are?

 use non-statistical knowledge of the physical nature of the relationship

 conceptual model is more persuasive than empirical model

 multiple studies under different conditions can help confirm a relationship. 

 in a few cases, one can infer causality from an observational study. 

 Reading: Faraway (2005, 1st ed.), 3.6, 3.7

[e.g., Dahl and Moretti (2003): parents of a 

single girl are 5% more likely to divorce than 

parents of a single boy. This observational study

functions like an experimental design because 

the sex of a child is a purely random matter.]

 even if these steps are accomplished, one can never be 100% sure of the 

causality relationship purely based on a statistical analysis. For example, 

consider the history of the study of the link between smoking and lung cancer

 it takes decades of studies to go from association to causality
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What can go wrong? many many things ...

β̂

• source and quality of the data (Q: how was the data collected?)

data may not be a random sample of the population. Situations such 

as biased sample, a sample of convenience, or sample=population

Y=Xβ +ε,

ε~N(0, σ2I)

• error component [we hope ε∼N(0, σ2I) ]

ε may have unequal variance

ε may be correlated

ε may not be normally distributed 

important predictors may not have been observed (Q: how may you find out?)

observational data often make causal conclusions problematic, 

reason: lack of orthogonality, collinearity, lurking variables, …

the range of X and qualitative nature of some predictors may 

limit effective predictions, it's unsafe to extrapolate too much

Key: data collected should be representative of the population of interest

 this is less serious when sample size is large. Notice that even if 

ε is not normal, might tend to normality due to CLT. With 

large sample size,   normality of data is not much of a problem

 for small sample sizes, bootstrap method offers a solution

p. 5-18• structural component [ E(Y)=Xβ ]

 errors in X

 serious collinearity in X

 some inferences strongly rely on the choice of full model, Xβ (example?)

Q: where does the full model come from?

1. physical theory may suggest a model --- wonderful but relatively uncommon

2. experience from past data --- may help suggesting a reliable model

3. no prior experience --- explore current data to find an empirical model

 confidence in inference will depend on confidence in the model

 an empirical model can be regarded as a local approximation of the 

underlying true system on some “safe” range of X

 Reading: Faraway (2005, 1st ed.), 3.8

• many statistical theory rests on the assumption that the model (error and structural

components) is correct. In practice, the best one can hope for is often “empirical 

model≈underlying system”. [Box: “all models are wrong but some are useful”]

• publication and experimenter bias

 significant level, say 5%  keep studying, sooner or later, one will come up 

with a significant result (about 5% chance) even if one really does not exist. 

Problem: significant results get published but not insignificant results

 experimenter bias  many ways of analyzing data, experimenters may be 

tempted to pick the one that gives them the results they want/expect


