

• <u>likelihood-ratio</u> testing approach $joint pdf: [2\pi\sigma^2 I]^{\frac{1}{2}}exp[-(Y-XB)^{T}(\sigma^2 I)^{\frac{1}{2}}(Y-XB)/2]$ > If $L(\beta,\sigma Y)$ is the likelihood function under Normality assumption, the
likelihood-ratio test statistics is: $(\omega \in \Omega)$ (XB, σ^2I)
$ \begin{array}{c} \Lambda = \max_{\beta,\sigma \in \Omega} L(\beta,\sigma Y) / \max_{\beta,\sigma \in \omega} L(\beta,\sigma Y) \geq 1 \\ \hline A \text{ function of Y} \\ \hline The test should be rejected if the ratio is too large. Ho sample size \\ \end{array} $
> Because $L(\hat{\beta}, \hat{\sigma} Y) \propto \hat{\sigma}^{-n}$, (exercise) [Np.3-14]
$\widehat{\mathbf{B}}_{MLE} = OLS \text{ estimator} \qquad \qquad$
$(\underline{O}\omega/\underline{O}\Omega) = O_{\omega}/O_{\Omega} > \text{a constant}, $ which is equivalent to $(\underline{N} \text{ote, not } RSS_{\Omega}) = (\underline{N} \text{ote, not } RSS_{\Omega})$
which is <u>equivalent to</u>
$\begin{array}{c} \text{check } \underline{INp.4.7} \rightarrow & \widehat{\epsilon_{\alpha}} & \underline{RSS_{\omega}} / \underline{RSS_{\Omega}} \\ \text{or} & (RSS_{\omega} / RSS_{\Omega}) - 1 \\ \end{array} > & \text{the constant } -1, \end{array}$
which equals $(RSS_{\omega} - RSS_{\Omega}) / RSS_{\Omega} > a constant$
we get the <u>same test statistic</u> suggested by the <u>geometric view</u> .
$\searrow \underline{\mathbf{Q}}: \underline{\text{why not}} \text{ use } \underline{RSS}_{\underline{\omega}} / \underline{RSS}_{\underline{\Omega}} \text{ as the } \underline{\text{test statistic}}? (\underline{\text{Hint}}: \text{ can you identify the} \\ \underline{\text{null distribution of } RSS}_{\underline{\omega}} / \underline{RSS}_{\underline{\Omega}}? \text{ note that } \underline{\hat{\varepsilon}}_{\underline{\Omega}} \text{ is } \underline{\text{not orthogonal to } } \underline{\hat{\varepsilon}}_{\underline{\omega}} .)$
Q: how to discover the <u>distribution</u> of the <u>test statistic</u> under <u>null</u> hypothesis? and how to decide the constant? — <u>Critical value</u> <u>null distribution</u>
and <u>now</u> to decide the <u>constant</u> ? - <u>critical value</u> <u>null distribution</u>
Suppose dimension (# of parameters) of $\underline{\Omega}$ is \underline{p} and $\underline{\dim(\omega)}=q$. < P
Under the null $H_0: \underline{\omega}$, This holds only under $H_0(\underline{\omega})$ <i>asymptotic</i> (RSSA (DCC DCC)) $d = 2$ <i>(and t distribution</i>)
$(RSS_{\omega} - RSS_{\Omega})/\sigma^{2} \sim \chi^{2}_{p-q}, \leftarrow LNp. 4-7$
and they are independent. $RSS_{\Omega}/\sigma^2 \sim \chi^2_{n-p} \leftarrow LNp.4-4$ distribution $RSS_{\Omega}/\sigma^2 \sim \chi^2_{n-p} \leftarrow LNp.4-4$
and they are independent. $\leftarrow LN_{p.4-7}$ This holds under $H_{0} \& H_{A}(\Omega)$
$\propto [tan(\theta)]^2$ $(RSS_{\omega} - RSS_{\Omega})/(p-q) \nearrow$
So, we have $F = \frac{(RSS_{\omega} - RSS_{\Omega})/(p-q)}{\mathfrak{S}^2 = RSS_{\Omega}/(n-p)} \sim F_{\underline{p-q},\underline{n-p}} \leftarrow \text{null distribution}$ Therefore, reject if $E > E$ (a) (usually check if p -value $\leq \alpha$)
Therefore, reject if $\underline{F} > \underline{F}_{p-q,n-p}(\alpha)$ (usually check if <u>p-value</u> < α)
General form: because the degree of freedom of residuals in a model is the
<u>number of observations minus</u> the <u>number of parameters</u> (in β), this <u>test</u>
statistics can be written as: $(p-g) = [(n-g) - (n-p)]$
$(RSS_{o} - RSS_{o})/(df_{o} - df_{o})$
Ho: AB = C $F = \frac{(-i \sigma \cdot \sigma \cdot \omega)^2 - (-i \sigma \cdot \sigma \cdot \omega)^2}{(-i \sigma \cdot \omega)^2} \sim F_{df} - df_{c} df_{c}$
$\begin{array}{c c} \text{Ho:} & \text{AB} = \underline{c} & F = \frac{(-d_{\Omega}, \sigma_{\Omega}, \sigma_{\Omega})}{(\underline{c} = \underline{c} \text{ or } \underline{c} \neq \underline{c})} \sim F_{\underline{df_{\omega} - df_{\Omega}, df_{\Omega}}}, \\ \hline (\underline{c} = \underline{c} \text{ or } \underline{c} \neq \underline{c}) & \text{using offset} & RSS_{\Omega}/df_{\Omega}, \\ \hline \underline{n-p} & $
$\frac{\text{statistics can be written as:}}{(p-g) = [(n-g) - (n-p)]}$ $\frac{(an be applied to Ho: AB = c}{(Ho: AB = c)} F = \frac{(RSS_{\omega} - RSS_{\Omega})/(df_{\omega} - df_{\Omega})}{RSS_{\Omega}/df_{\Omega}} \sim F_{df_{\omega} - df_{\Omega}, df_{\Omega}},$ $\frac{(f_{\omega} = 0 \text{ or } g = 0)}{(g = 0 \text{ or } g = 0)} = \dim(\underline{\omega}^{\perp}) = n-q \text{ and } \underline{df_{\Omega}} = \dim(\underline{\Omega}^{\perp}) = n-p.$
where $\underline{df_{\omega}} = \dim(\underline{\omega}^{\perp}) = \underline{n-q}$ and $\underline{df_{\Omega}} = \dim(\underline{\Omega}^{\perp}) = \underline{n-p}$. > The test is <u>widely used</u> in <u>regression</u> and <u>ANOVA</u> . The <u>beauty</u> of this
where $\underline{df_{\omega}} = \dim(\underline{\omega^{\perp}}) = \underline{n-q}$ and $\underline{df_{\Omega}} = \dim(\underline{\Omega^{\perp}}) = \underline{n-p}$.
where $\underline{df_{\omega}} = \dim(\underline{\omega}^{\perp}) = \underline{n-q}$ and $\underline{df_{\Omega}} = \dim(\underline{\Omega}^{\perp}) = \underline{n-p}$. > The test is <u>widely used</u> in <u>regression</u> and <u>ANOVA</u> . The <u>beauty</u> of this

• Example 1: test of <u>all predictors</u> <u>Recall</u> . the <u>2 models</u> in the calculation of <u>R²</u> - ^{p. 4-11}
$\triangleright \mathbf{Q}$: are <u>any of the predictors</u> g_i 's <u>useful</u> in predicting the response?
• Ω : $y = \beta_0 + \beta_1 \underline{g_1} + \dots + \beta_{p-1} \underline{g_{p-1}} + \epsilon$, dim(Ω)= ρ , df_{Ω} = $n-\rho$
• ω : $\mathcal{Y} = \mathcal{B}_{o} + \mathcal{E}$, $\dim(\omega) = 1$, $df_{\omega} = n - 1$
• $H_0: \beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0$ $H_1: at least one of \beta_1, \cdots, \beta_{p-1}$ is not zero
$ RSS_{\Omega}: \widehat{c_{n}} \widehat{c_{n}} = \sum_{i=1}^{2} (4i - \widehat{4i}, n)^{2} RSS_{\omega}: (Y - \overline{Y} 1) (Y - \overline{Y} 1) = \sum_{i=1}^{2} (4i - \overline{4})^{2} $
• (the overall F) $F = \frac{(RSS_{\omega} - RSS_{\Omega})/(df_{\omega} - df_{\Omega})}{RSS_{\Omega}/df_{\Omega}} = \frac{[\Sigma(\mathcal{Y}: - \mathcal{Y})^2]/(P-1)}{\Sigma(\mathcal{Y}: - \mathcal{Y})^2/n-P}$
$ \begin{array}{c} R^{2} \uparrow \\ \Leftrightarrow \\ F \uparrow \end{array} \begin{array}{c} \text{they are} \\ \text{functionally} \\ \text{related} \end{array} \begin{array}{c} \Gamma \\ \text{cf.} \\ R^{2} = 1 - \frac{RSS_{n}}{RSS_{w}} = 1 - \frac{1}{(1 + \frac{P-1}{n-P}F)} \\ \text{functionally} \\ \text{then } \frac{R}{R} \\ \text{must be large} \end{array} $
$\triangleright \mathbf{Q}$: What's the "meaning" of H_0 ? Let's consider the following two questions:
• If H_0 is not rejected, what can you conclude? is it the end of the analysis?
Ans: No. Check assumptions, such as
implicit linearity, outlier, or if enough data
in $\Omega = H_0 U H_1$ too soon that no real relationship
are considered in the test exist between \underline{Y} and $\underline{X}_1, \dots, \underline{X}_p$.
• If \underline{H}_0 is rejected, does it mean the alternative model is the best choice? • $\mathbb{R}^2 \uparrow$
Ans: No. Check if some predictors can be
tropped, if other predictors might be added,
• Example 2: testing just <u>one predictor</u> $p. 4-12$ • Can one particular predictor say $a_1(x)$ be dropped from the model?
$\triangleright \mathbf{Q}$: Can <u>one particular</u> predictor, say $g_i(\underline{x})$, be <u>dropped</u> from the model?
$\succ \mathbf{Q}: \text{ Can one particular predictor} $ $\models \mathbf{Q}: \text{ Can one particular predictor, say } g_i(\underline{x}), \text{ be dropped from the model?} $ $= \mathbf{M}: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\Omega) = \mathbf{p} , df_{\Omega} = \mathbf{n} - \mathbf{p}$
$ \begin{array}{l} & \searrow \mathbf{Q}: \text{ Can one particular predictor} \\ & \searrow \mathbf{Q}: \text{ Can one particular predictor, say } g_i(\underline{x}), \text{ be dropped from the model?} \\ & & \text{Inder } \underline{H}_0 \cdot \omega \\ & & \square \Omega: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\Omega) = \mathbf{p} \\ & & \square \Omega: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\Omega) = \mathbf{p} \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\Omega) = \mathbf{p} \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\Omega) = \mathbf{p} \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\Omega) = \mathbf{p} \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\Omega) = \mathbf{p} \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i + \dots + \beta_i g_i + \dots + \beta_i g_i \\ & & \square U: y = \beta_0 + \dots + \beta_i g_i +$
$ \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\$
$ \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\$
$ \begin{array}{l} & \end{array} \end{array} \\ & & \end{array} \end{array} \\ & & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array}$
$ \begin{array}{l} & \end{array} \end{array} \\ & & \end{array} \end{array} \\ & & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array}$
$ \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\$
$ \begin{array}{l} & \text{Q: Can one particular predictor, say } g_i(\underline{x}), \text{ be dropped from the model?} \\ & \text{Inder } \underline{H}_0 \cdot \omega \cdot \underline{y} = \beta_0 + \cdots + \beta_i g_i + \cdots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\Omega) = p , df_\Omega = n-p \\ & \text{Biggeneral} \\ \hline & \text{E}(\hat{\beta}_i) = \underline{0} \omega: \ y = \beta_0 + \cdots + \beta_{p-1} g_i + \cdots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\omega) = p-1 , df_\omega = n-p+1 \\ & \text{Var}(\hat{\beta}_i) = \\ & \text{Var}(\hat{\beta}_i$
$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \text{Predictor} \\ \hline & \mathbf{Q}: \text{ Can one particular predictor, say } g_i(\underline{x}), \text{ be } \underline{dropped} \text{ from the model?} \\ \hline & \mathbf{Q}: \text{ Can one particular predictor, say } g_i(\underline{x}), \text{ be } \underline{dropped} \text{ from the model?} \\ \hline & \mathbf{M}der \underbrace{H_0} & \mathbf{\omega} : \underline{y} = \beta_0 + \cdots + \beta_i g_i + \cdots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\Omega) = \mathbf{p} , df_\Omega = \mathbf{n} - \mathbf{p} \\ \hline & \mathbf{\beta}_i \cdot aarnal \\ \hline & \mathbf{g}_i \cdot aarnal \\ \hline & \mathbf{g}_i = 0 \mathbf{\omega}: \ \underline{y} = \beta_0 + \cdots + \beta_i g_i + \cdots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\Omega) = \mathbf{p} , df_{\Theta} = \mathbf{n} - \mathbf{p} + \mathbf{p} \\ \hline & \mathbf{g}_i = 0 \mathbf{\omega}: \ \underline{y} = \beta_0 + \cdots + \beta_i g_i + \cdots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\Omega) = \mathbf{p} , df_{\Theta} = \mathbf{n} - \mathbf{p} + \mathbf{p} \\ \hline & \mathbf{g}_i = 0 \mathbf{\omega}: \ \underline{y} = \beta_0 + \cdots + \beta_i g_i + \cdots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\Omega) = \mathbf{p} , df_{\Theta} = \mathbf{n} - \mathbf{p} + \mathbf{p} \\ \hline & \mathbf{f}_i = 0 0: \ \underline{y} = \beta_0 + \cdots + \beta_i g_i + \cdots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\Omega) = \mathbf{p} , df_{\Theta} = \mathbf{n} - \mathbf{p} + \mathbf{p} \\ \hline & \mathbf{f}_i = 0 0: \ \underline{y} = \beta_0 + \cdots + \beta_i g_i + \cdots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\Omega) = \mathbf{p} , df_{\Theta} = \mathbf{n} - \mathbf{p} + \mathbf{p} \\ \hline & \mathbf{f}_i = 0 0: \ \mathbf{f}_i = 0 \mathbf{f}_i = 0 \mathbf{f}_i = 0: \ \mathbf{f}_i = 0:$
$ \begin{array}{l} & \text{Q: Can one particular predictor, say } g_i(\underline{x}), \text{ be dropped from the model?} \\ & \text{Inder } \underline{H}_0 \cdot \omega \cdot \underline{y} = \beta_0 + \cdots + \beta_i g_i + \cdots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\Omega) = p , df_\Omega = n-p \\ & \text{Biggeneral} \\ \hline & \text{E}(\hat{\beta}_i) = \underline{0} \omega: \ y = \beta_0 + \cdots + \beta_{p-1} g_i + \cdots + \beta_{p-1} g_{p-1} + \epsilon, \dim(\omega) = p-1 , df_\omega = n-p+1 \\ & \text{Var}(\hat{\beta}_i) = \\ & \text{Var}(\hat{\beta}_i$
Value 2. testing just <u>one predictor</u> >Q: Can <u>one particular</u> predictor, say $g_i(\underline{x})$, be <u>dropped</u> from the model? Under \underline{H}_0 . $\underline{0}$: $\underline{y} = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon$, $\dim(\Omega) = p$, $df_\Omega = \mathbf{n} - p$ $\widehat{e}[\widehat{g}_i - \alpha mail]$ $\widehat{e}[\widehat{g}_i] = \underline{0}$ $\underline{0}$: $\underline{y} = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon$, $\dim(\Omega) = p-1$, $df_\Omega = \mathbf{n} - p + \mathbf{i}$ $\widehat{e}[\widehat{g}_i] = \underline{0}$ $\underline{0}$: $\underline{y} = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon$, $\dim(\Omega) = p-1$, $df_{\Omega} = \mathbf{n} - p + \mathbf{i}$ $\widehat{e}[\widehat{g}_i] = \underline{0}$ $\underline{0}$: $\widehat{g}_i = 0$ $(\widehat{g}_i \in \mathbb{R}, \text{ for } j \neq \mathbf{i})$ H_1 : $\widehat{g}_i \neq 0$ $(\widehat{g}_i \in \mathbb{R}, \text{ for } j \neq \mathbf{i})$ $\widehat{e}[\widehat{g}_i] = \underline{0}$ $\widehat{e}[(RSS_{\omega} - RSS_{\Omega})/(df_{\omega} - df_{\Omega})]/(RSS_{\Omega}/df_{\Omega}) \approx F_{df_{\omega} - df_{\Omega}, df_{\Omega}}$ $\boxed{1}$ $= [(RSS_{\omega} - RSS_{\Omega})/(df_{\omega} - df_{\Omega})]/(RSS_{\Omega}/df_{\Omega}) \approx F_{df_{\omega} - df_{\Omega}, df_{\Omega}}$ $\boxed{1}$ $= [(\widehat{g}_i] - \widehat{g}_i] = \widehat{g}_i/(\widehat{g}_i) - \widehat{f}_i] = \widehat{f}_i/(\widehat{g}_i) - \widehat{f}_i$ $\widehat{f}_i = \widehat{f}_i$ \widehat{f}_i $\widehat{f}_i = \widehat{f}_i$ \widehat{f}_i $$
Value 2. testing just <u>one predictor</u> >Q: Can <u>one particular</u> predictor, say $g_i(\underline{x})$, be <u>dropped</u> from the model? Under \underline{H}_0 . $\underline{0}$: $\underline{y} = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon$, $\dim(\Omega) = p$, $df_\Omega = \mathbf{n} - p$ $\widehat{e}[\widehat{g}_i - \alpha mail]$ $\widehat{e}[\widehat{g}_i] = \underline{0}$ $\underline{0}$: $\underline{y} = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon$, $\dim(\Omega) = p-1$, $df_\Omega = \mathbf{n} - p + \mathbf{i}$ $\widehat{e}[\widehat{g}_i] = \underline{0}$ $\underline{0}$: $\underline{y} = \beta_0 + \dots + \beta_i g_i + \dots + \beta_{p-1} g_{p-1} + \epsilon$, $\dim(\Omega) = p-1$, $df_{\Omega} = \mathbf{n} - p + \mathbf{i}$ $\widehat{e}[\widehat{g}_i] = \underline{0}$ $\underline{0}$: $\widehat{g}_i = 0$ $(\widehat{g}_i \in \mathbb{R}, \text{ for } j \neq \mathbf{i})$ H_1 : $\widehat{g}_i \neq 0$ $(\widehat{g}_i \in \mathbb{R}, \text{ for } j \neq \mathbf{i})$ $\widehat{e}[\widehat{g}_i] = \underline{0}$ $\widehat{e}[(RSS_{\omega} - RSS_{\Omega})/(df_{\omega} - df_{\Omega})]/(RSS_{\Omega}/df_{\Omega}) \approx F_{df_{\omega} - df_{\Omega}, df_{\Omega}}$ $\boxed{1}$ $= [(RSS_{\omega} - RSS_{\Omega})/(df_{\omega} - df_{\Omega})]/(RSS_{\Omega}/df_{\Omega}) \approx F_{df_{\omega} - df_{\Omega}, df_{\Omega}}$ $\boxed{1}$ $= [(\widehat{g}_i] - \widehat{g}_i] = \widehat{g}_i/(\widehat{g}_i) - \widehat{f}_i] = \widehat{f}_i/(\widehat{g}_i) - \widehat{f}_i$ $\widehat{f}_i = \widehat{f}_i$ \widehat{f}_i $\widehat{f}_i = \widehat{f}_i$ \widehat{f}_i $$
$ \begin{array}{l} & \label{eq:products} \\ & \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ & \end{tabular} t$
$ \begin{array}{l} & \begin{tabular}{l l l l l l l l l l l l l l l l l l l $
$ \begin{array}{l} & \label{eq:products} \\ & \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ & \end{tabular} t$

made by S.-W. Cheng (NTHU, Taiwan)

made by S.-W. Cheng (NTHU, Taiwan)

made by S.-W. Cheng (NTHU, Taiwan)