NTHU STAT 5410, 2022 Lecture Notes

. : Gauss -Markov Thm does - 41
Normality assumption [ 557 2

* Note: up till now, haven’t assumed any distributional form for & If we want to
perform any hypothesis tests or make any confidence intervals, we will need to do
this. The usual assumption is: ‘f.e. E'sareiid.
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Q: what does the model describe? e. g JoE ()

Junctionalf-> yg—ﬁo""ﬁlx"" > & s~ 11.d. N(O, o)

Sorm = E(y,)=by+Bz E(4x) =0+ B B0 [Fow i
= y,’s are independent and y, ~ N(B+fz, ¢7) at a: =z;, i=1,...,n. W' ’

» Q: how should the data generated from the model look like? Recall. Rzm WNp.3-18]

= Q: when would it be appropriate to impose the inference based on this
regression model on the underlying true model? Can we use it when these
exist clear differences between the two models, e.g., what if y 1s a discrete

quantitative measurement?<- check LNp 2-3, Vi's “approximately” continuous.

Ans: yes when the pdf shape of the regression model can “well approximate”
the pdf/pmf/cdf shape of true model. (Key is how similar the 2 models)?

George Box: “all models are wrong, but some are useful "

€ » Q: why Normal? Ei= 81+ 02+ - +0i p. 42

3) CLT = when random error is a sum of many small random disturbance

bell shape curve is common Nobe M distribubions can be

from the viewpoint of approximation l’V Normal, 4.,
. . e Bm("l.P) S Normal, a0 m>00
good mathematical/statistical properties Rsson (V) Normal, as A\ >

» Q: how to examine whether Normality assumption is reasonable/suitable for
your data, in other words, how well the approximation is? 44 .

» when you have pure replicates ] ﬁ 4{ t g
|

Lo x
» when you have no/few pure replicates, you can st111 study residuals res1dual

However, the validity of the study is then based on several assumptionss

Under the circumstance, what rationale can support the use of Normality?

Check zgro-
» Q: under what conditions, the Normality assumption is inappropriate?|izflated dat

9 qualitative response Evre eg.,response 4i's have
GM o ¢S uppe/ lower bound
%) quantitative discrete response< Norral Lowed e

- _ upper
fft;ﬂéfbr- with only few possible outcomes .. Binlmp) —
maaon

=) skewed error — L..“"fﬂ)v

. Normal -» using (mn.ghhd
Eis ) t:‘ of i’
. -
= heavy tail error hﬂ‘,’,’;"ﬁ',s_j ey 7w avemging |(LOLS eskimator 15 sbill valid 4
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OSome properties of (multivariate) Normal distribution E"gAm)(AmT)‘ ]l e v 43
(N1). linear transformation of Normal is still Normal (= E*[(Azxaz)")=E (A27'A)

- " —¢ S v(z)) [Cov(z,
tecor| Z~N<¢Q&;‘ax = AZ+c DN(ch,AZZAj “V‘Z){m z"'féo:(;ﬂ

L————-.:l
(N2). When 1%t and 2" moments are given, the Normal distribution is specified
7, L i.e., mean vector & variance - covariance matrix

: Normal and uncorrelated (cov(Z,, £,)=0) = Z,, Z 1ndependen
w. Cov(Wi, Wa) = EX( Wi W' Geerat
8y (3)] borma [ ] [ ]Z () e hn =a, E*(ZZ’)Az-z N

(N4). Z~N(4, g& W,=A,Z, W,=A,Z = W,, W, are independent iff 4, 2A4,"=0
IBy(NB)&(AM-) canbegeumhzedto 1If S=6T, then AZAS: =0 & AAT=Q
Le(N5). Z~-N(i, 3), W= é_Z W,=A,Z,..., W,=A,Z, and cov(W,, W)=0 for i#]

2
= W TW,, W, W.,,..., W, TW. are mutually independent{useful Jor the indepen.
f;#% _lj_ ! _21’_ 2 kj_ k Recall TF Ais areygt_'gag@gpmabr ices. dence between SS%.

(N6). Z: an nx1 random vector and Z~N(y, 2), then Z%'(Z-H) ~N(2,1)
(z-g)‘r(:-y,) . (Z- 'u)f'fﬂ( Z-p~ x2 if X' is non—singulard-—{ mzaﬁon

» (Z-7 2 (Z-p) ~ XT if 2 is singular and has rank r (< n);
not wﬁgue where 3~ is a generahzed inverse of 2, (i.e., 22 2'=3)) —1

 Some properties of lmear models when &0N(Q, &2I) : The possible vedzrs of Z only
/ occupy a. Y- dim space o§
0/ distribution of Y [=X+ £] JN(XS, ¢2I) the n- dim, Spo.ce R"
() distribution of B [=(X7X) 'XTY] UN(B (X*X) '&? eg 7 .F N
< distribution of & [=(I-H)Y=(I-H)&| [/N(0, (I-H)?), which has a singular %4
8y [N covariance matrix J—H with rank n—]uNote: dim(£)=n—p) [Note. eigenvalues of
By (N6 n-p 1’
| distribution of RSS [=(n—p) 3> =£7 & =e(I-H)d D2y, L 1H< 5 o
By (1) (1-HP=1I-H =>(1-H) =I-H
distribution of Y [= é’— HY] DN(X B, Ho?), which has a singular covariance

,BV(N"’)! matrix with rank p (Note: dlm(Y)—p) Q‘ ;@ —~ Note, cigenvalues of

P 15
B is independent of J° (Note: cov(XTX)' XTY, (I ;)[‘0) <M %
[By (N4) r—‘- @"? pumal AZAl=(XX)'¥'6T (I-H)
Y isindependent of £ (Note: COV(H Y, (I-H)Y)= 0)\© =[xy XT(1:H)]
U0, gffereat Srom T7€=0 Wb 34)¢[MmAzg) AT Taz e B =2

> distribution of prediction for a new set of predictors, ,= (91 T1gse-sx

s -
E(gx, gp(xlo 0)) 2 at

ek ool model: y=>"_. 3;-gi(z,..., + € |data
X sarameter .G fittnd model. Zj_l ’ gg-rg.——ﬁb motrix

[madﬂil.e =| mean response v.s. future observation (Q: what different?) Zo: model matrix
Upom %'ﬁ+ € o Example: average yield when z= :130‘7 and tomorrow’s yield when x= :130‘7

2= y|o same predicted value z,, ﬁ but different distributions
Sohure /_ér distribution of prediction error for mean response at
ernor |[8,W)] &3 ~ 2B TN(O, (2, (X"X) " w)P) [esgtad whe when

somple size is argg
E(€)=0 gdlstrlbutlon of prediction error for future observations at z;, ©

, d s %000
VerE)2 0" a:oﬁ (:voTé’JrgS 77 N(O, (2, (XTX) 'z 1:130+1 ) ) ,.,,tmdmd\i, a

¢ Futher reading: Seber (1977), Linear Regression Analysis, chapter 2, 3.4, 5.2, 5.3 somple size is large

40
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made by S.-W. Cheng (NTHU, Taiwan)



NTHU STAT 5410, 2022 Lecture Notes

. . T o2 010 p- 4-5
» Example: bivariate normal ( s ) ~ JZ( <“< ' ) .< L £ ),) 0. cor (x:,%3)
(a) 6,=0,, ;=0 = independent and equal variance s What if data m normal ?|
joint pdf § =62[ :, ? contour lines of the pdf data generated from the pdf
. xs 6|=> 63‘ data
2 ellipse
6‘.— B —/_\ A ":0‘;%
N(Uz._G:) — L. 6l= N Z 133;@ :5; i .
| — <|7 oty Y What if 6P<al ) o2l
oc e‘P[' (x- E’T{'Q‘.' “9] ~N(u.6%) if 2
—_— L ] same | Q: how should the
: margina -
(b) g,=0,, p=0.75 = correlated and equal variance Jis{:riluﬁo ns contour lines look
'z[' e] like if 0,#0,?
=0 .
1 A 2| . ' . 66l P o
pL: () %ﬂf
N(u> 6;) 24 |l 2
R @ | oy |
%=
g N\ s ok parallel 4o 1=

&X|=-Xzany wmore

contour of Normal pdf is an ellipse because it can be expressed as (z—f)’ 2" l(x—;l):cT

BeR3, ) cRB bt dim(2)=3 hypothesis testings (for £3) p. 46
* Q: What questions is a hypothesis testing about £ trying to answer?

examples: “full model: y = By + B121 + facs + ¢ [Ff{ABa=gl,_ o Y-Xobn" €

QL B, = 07 (0.1,08=0 TQQ: Br = a7 16, Bi— B = 0t L @=sm(Xe)C span(Xn)s0
=y = fo+ Poxs + ¢ ==y = B+ Bi(x1 + x2) + €Y(o0,1,-1)8=0]

Ans: Are all predictors needed? Can a simpler model still “well describe” the data?'

. O- - : BeR3 but dim({8}) =2
Q: Why a simpler model is preferred? OCRE, bu.t‘l dim{w)= 2.

The principle of Occam’s Razor: “One should always choose the simplest
explanation of a phenomenon, the one that requires the fewest leaps of logic.”

 formulation of hypothesis testing from the view of comparing models (model spaces)

» amodel space = the space spanned by columns of some X (model matrix)
(* impose restrickions of- @ oa () —— -
» consider a large model space, Q, and a smaller model space, w, where w [ Q (i.e.,
w represents a subset/subspace of Q). Suppose dimension (# of parameters) of Q
is p and dim(w)=q, where p>q. —|conkains O @_:%or not|(Gammo) N: HoUH,
Examples: .. _3 - dim=2 dim = under the

Q2:

1 x12 ]
1 w2

1z w12
1 xo1 @22

1 2z +212

X = Xo = X = ! L21+TZQ

1 @p1 o2 1 Tn2 | 1 zp1 +Zpa |

» to answer “which of the model spaces is more adequate” in statistical
language = perform the test H;: W (AB=c) v.s. H;: Q\w” Rewall Bamplesn—

0 LNp-1=I1§
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* a geometric view of EQ: ’og V.S. El: Q\w (@ _____ p. 47

[subspace|” e S ; AT L g ((np)- dlm) '.‘%—&EI?_

| the space that
P () 0Q

2

A _EQ

2

2

=RSS, RSSq

é\co_éQ:I’}Q_I’}m O'H;OMI | ?7
= (HozH)Y | irix
* (Ho-H,)=H,-H,
2D s Under Hi, Y~N(XaBa,6°1) L w@im=9) i (Hy-H,)'=H,~H,
Y ~ N(XwBw,6L) * HoH =H,Hy=H,
By Under H, (null hypothesis 0): 1| (Ho—HyU- Hy)
L0 5,760 [= (Hoy—H, )Y ONQO, (Hy-H,) R = (I Ho)(HgH,) = 0
By (N&) not zero vector under Hi J = gq gy g =——
2> RSS, RSSa[=p,- 89)T 6o-80) 102, ||l cigenvalues of Ho—H,
(B, N5) me(m] chi-sguare under H, (Hn.- Hw) =Ha-Hep) are elt’her Oorl;
P RSS,"RSSq igindependent of RSSq # of 1’5 -P7q
[also hold under H, ( En[- (1-Ha)Y] n&p Sw En4 #0f 0’s = n—(p—q) 5

€ . How the geometric view related to test statistic of H: wvs. H;: Q\w? p- 48
2| > if RSS RSS is small, w 1s a more adequate model relatlve to Q 8%= ——ﬁ“

> suggest (RSS,~RS SQ)/RSSQ , where the denominator is used for j-gort-hugmhﬁ,
“scaling”—s- @: Why divided by RSSn? Why not divided by RSSw? Ansd ™ ader o

> Q: What’s the scale for (RSS,; RSSq)/RSS,? +use null d;sbnbutwn to decide .

1.e., how small is small? how large is large nx (~ FP g.0p under Ho)
g1

>oocanbe any of the form H,: AB= 0 (:> Ow) (wBXQ % whenB o)
Toxy

» generalization to W of the form H,;: A,B c . where c#£0, is achlevable
L(p -%)xl

subset

= however, 0Doo, and
tne

Vw Vw +9 " Y(DEI £y does not hold in

offset) &, (—g)dim) | [ ¥ (r-dim) F— A
_______________ ' EN
V*-Y-ﬁf YU (new Y) 2 2
T | “lea
AB=g o ewg) = ~R35,"RS5q
_______ ,JRSSw-RSS.n.
Yo
2 RSSw-RSSa
tan(0)| =
RSSa
% Reading: Faraway (2005, 1%t ed.), 3.1; +¢ Futher reading: D&S, 21.1, 21.2,21.3, 21.4
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