
p. 4-1

Normality assumption

• Note: up till now, haven’t assumed any distributional form for ε. If we want to 

perform any hypothesis tests or make any confidence intervals, we will need to do 

this. The usual assumption is:

ε ∼ N(0, σ2I) 
model: Y = Xβ + ε, ε ∼N(0, σ2I)

Y ∼ N(Xβ, σ2I) 
 Q: what does the model describe? e.g.,

yx=β0+β1x+εx, εx’s ~ i.i.d. N(0, σ2)
 E(yx)=β0+β1x

 yx’s are independent and yx ~ N(β0+β1x, σ2)  at x=xi, i=1,…,n.

 Q: how should the data generated from the model look like?

 Q: when would it be appropriate to impose the inference based on this 

regression model on the underlying true model? Can we use it when these 

exist clear differences between the two models, e.g., what if y is a discrete 

quantitative measurement? 

Ans: yes when the pdf shape of the regression model can “well approximate” 

the pdf/pmf/cdf shape of true model. (Key is how similar the 2 models)?

George Box: “all models are wrong, but some are useful”

p. 4-2
 Q: why Normal?

 CLT  when random error is a sum of many small random disturbances

 bell shape curve is common

 from the viewpoint of approximation

 good mathematical/statistical properties

 Q: how to examine whether Normality assumption is reasonable/suitable for 

your data, in other words, how well the approximation is?

 when you have pure replicates

 when you have no/few pure replicates, you can still study residuals. 

However, the validity of the study is then based on several assumptions. 

Under the circumstance, what rationale can support the use of Normality?

 Q: under what conditions, the Normality assumption is inappropriate?

 qualitative response

 quantitative discrete response 

with only few possible outcomes

 skewed error 

 heavy tail error
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p. 4-3∗ Some properties of (multivariate) Normal distribution

(N1). linear transformation of Normal is still Normal

Z ~ N(µ, )  AZ+c ∼ N(Aµ+c, AAT)

(N2). when 1st and 2nd moments are given, the Normal distribution is specified

(N3).                : Normal and uncorrelated (cov(Z1, Z2)=0)  Z1, Z2 independent

(N4). Z~N(µ, ), W1=A1Z, W2=A2Z W1, W2 are independent iff A1A2
T=0

(N5). Z~N(µ, ), W1=A1Z, W2=A2Z,…, Wk=AkZ, and cov(Wi, Wj)=0 for i≠j
 W1

TW1 , W2
TW2,…, Wk

TWk are mutually independent

(N6). Z: an n×1 random vector and Z~N(µ, ), then 
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• Some properties of linear models when ε∼N(0, σ2I) :
 distribution of Y [=Xβ + ε ] ∼ N(Xβ, σ2I)
 distribution of [=(XTX)- 1XT Y ] ∼ N(β, (XTX)- 1σ2)

 (Z−µ)T−1(Z−µ) ~ χn2 if  is non-singular

 (Z−µ)T−(Z−µ) ~ χr2 if  is singular and has rank r (< n), 

where − is a generalized inverse of , (i.e., − = )

p. 4-4

 mean response v.s. future observation (Q: what different?)

 Example: average yield when x=x0? and tomorrow’s yield when x=x0?

 same predicted value x0
T , but different distributions

 distribution of prediction error for mean response at x0

x0
T − x0

Tβ
 distribution of prediction error for future observations at x0

x0
T − ( x0

Tβ +ε )

2σ̂ εε ˆˆ T

β̂XŶ

 Futher reading: Seber (1977), Linear Regression Analysis, chapter 2, 3.4, 5.2, 5.3

 distribution of [=(I−H)Y=(I−H)ε] ∼ N(0, (I−H)σ2), which has a singular

covariance matrix I−H with rank n−p (Note: dim(   )=n−p)

 distribution of RSS [=(n−p) = =εT(I−H)ε] ∼ σ2χ2
n−p

 distribution of [= = HY ] ∼ N(Xβ,Hσ2), which has a singular covariance 

matrix with rank p (Note: dim(   )=p)

 is independent of (Note: cov((XTX)−1XTY, (I−H)Y )=0)

 is independent of (Note: cov(H Y, (I−H)Y)=0)

 distribution of prediction for a new set of predictors, x0 = (g1(x10,…,xm0), …, 

gp(x10,…,xm0))
T

ε̂
ε̂

Ŷ

β̂ 2σ̂

Ŷ ε̂

β̂

β̂

β̂

model:
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×

×
×
×

x0∼ N(0, (x0
T(XTX)−1x0 + 1 )σ2)

∼ N(0, (x0
T(XTX)−1x0)σ2)
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p. 4-5

(a) σ1=σ2, ρ=0  independent and equal variance

(b) σ1=σ2, ρ=0.75  correlated and equal variance

 Example: bivariate normal

joint pdf

contour of Normal pdf is an ellipse because it can be expressed as (x−µ)T−1(x−µ)=c

contour lines of the pdf

when σ1=σ2, ρ≠0, the major/minor axis of the ellipse is parallel to x1=x2 or x1=−x2

Q: how should the 

contour lines look 

like if σ1≠σ2?
ρ ↑ :

ρ ↓ :

data generated from the pdf

p. 4-6

 to answer “which of the model spaces is more adequate” in statistical 

language  perform the test H0: ω (Aβ=c)  v.s. H1: Ω\ω

hypothesis testings (for β )
• Q: What questions is a hypothesis testing about β trying to answer? 

examples:

Ans: Are all predictors needed? Can a simpler model still “well describe” the data?

• Q: Why a simpler model is preferred? 

The principle of Occam’s Razor: “One should always choose the simplest

explanation of a phenomenon, the one that requires the fewest leaps of logic.”

• formulation of hypothesis testing from the view of comparing models (model spaces)

 a model space ≡ the space spanned by columns of some X (model matrix)

 consider a large model space, Ω, and a smaller model space, ω, where ω ⊂ Ω (i.e., 

ω represents a subset/subspace of Ω). Suppose dimension (# of parameters) of Ω
is p and dim(ω)=q, where p>q.

Examples:
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p. 4-7• a geometric view of H0: ω v.s. H1: Ω\ω

2

ˆˆ Ωω εε −

• a

= (HΩ−Hω)Y

• (HΩ−Hω)2=HΩ−Hω

• (HΩ−Hω)T=HΩ−Hω

• HΩHω=HωHΩ=Hω

• (HΩ−Hω)(I- HΩ)

= (I- HΩ)(HΩ−Hω) = 0 



• eigenvalues of HΩ−Hω
are either 0 or 1; 

# of 1’s = p−q; 
# of 0’s = n−(p−q)

RSSRSS Ωω
− RSSΩis independent of 

εε ˆˆ Ωω
− [= (HΩ−Hω)Y ] ∼ N(0, (HΩ−Hω)σ2)

RSSRSS Ωω
− ∼ σ2χ2

p−q( ) ( )εεεε
T

ˆˆˆˆ ΩωΩω
−−[ = ]

22

ˆˆ Ωω εε −=

RSSRSS Ωω
−=

•

•

•

εεε ˆˆˆ ΩωΩ
−⊥

YY ˆˆˆˆ ωΩΩω
−=− εε

Under H0 (null hypothesis ω):

Ω (dim = p)

ε̂Ω ((n−p)-dim)

ω (dim = q)

((n−q)-dim)ε̂ω

((p−q)-dim)YY ˆˆˆˆ ωΩΩω
−=− εε

Y (n-dim)

Ŷ Ω (p-dim)

(q-dim)Ŷ ω

the space that

(1)  ⊂ Ω
(2) ⊥ ω

(dim = p−q)

0•

Ω⊥ (dim = n−p)

p. 4-8
• How the geometric view related to test statistic of H0: ω vs. H1: Ω\ω?

 if RSSω−RSSΩ is small, ω is a more adequate model relative to Ω
suggest (RSSω−RSSΩ)/RSSΩ , where the denominator is used for 

“scaling”

Q: What’s the scale for (RSSω- RSSΩ )/RSSΩ? 
i.e., how small is small? how large is large?

ω can be any of the formH0: Aβ = 0 ( 0∈ω) 

generalization to ω of the formH0: Aβ = c, where c≠0, is achievable; 

 however, 0∉ω, and 

 aaa does not hold in this case.

2

ˆˆ Ωω εε −
22

ˆˆ Ωω εε −=

RSSRSS Ωω
−=

 Reading: Faraway (2005, 1st ed.), 3.1;  Futher reading: D&S, 21.1, 21.2, 21.3, 21.4

ε̂ˆ ωω⊥Y

0

Y ∗ (new Y)

Ŷ ω

•
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