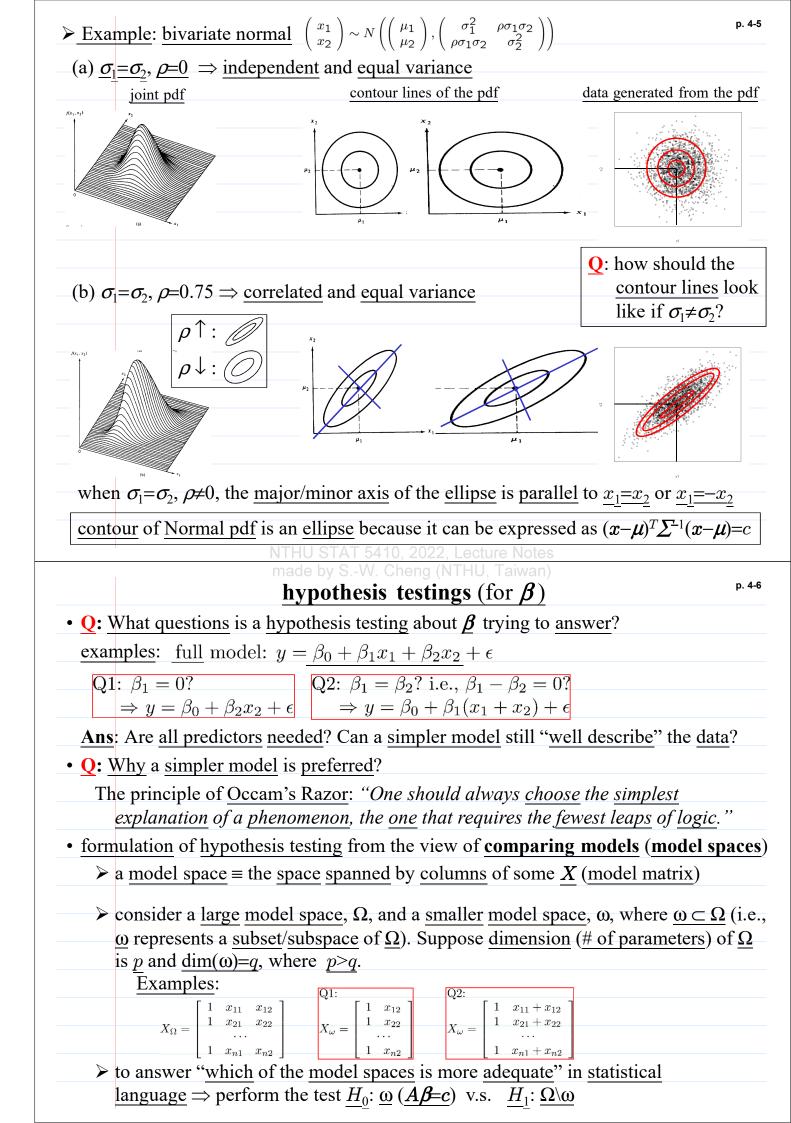
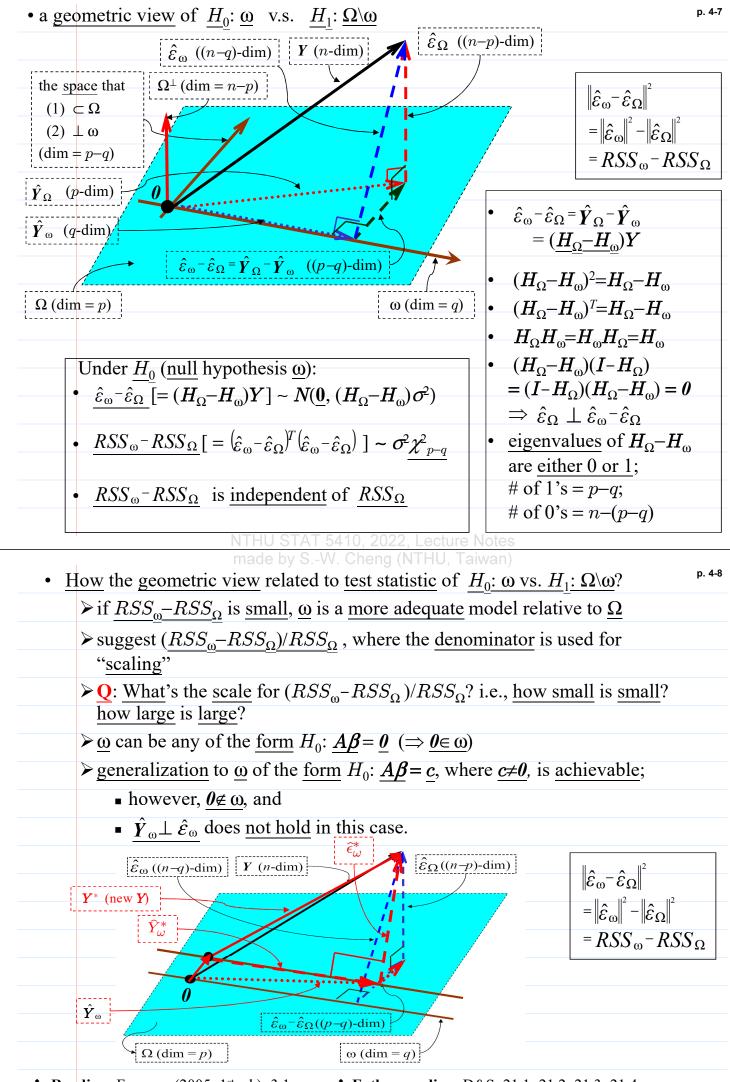


* Some properties of (multivariate) Normal distribution
(N1). linear transformation of Normal is still Normal

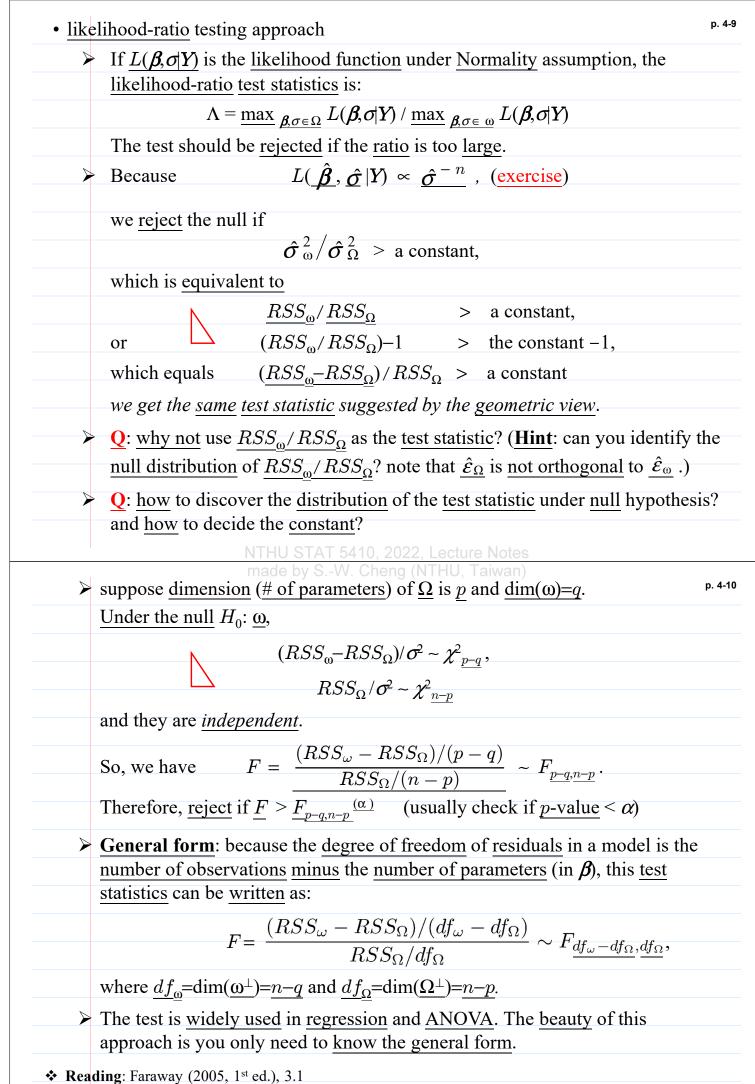
$$\frac{Z - N(\underline{\mu}, \underline{\Sigma}) \implies AZ + \underline{c} - N(\underline{A}\mu^{+}\underline{c}, \underline{A}\underline{\Sigma}A^{+})$$
(N2). when $\underline{1}^{u}$ and $\underline{2}^{ud}$ moments are given, the Normal distribution is specified
(N3). $Z = \begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix}$: Normal and uncorrelated $(cov(Z_1, Z_2) = \theta) \Rightarrow \underline{Z}_1, \underline{Z}_2$, independent
(N4). $Z - N(\underline{\mu}, \underline{\Sigma}), W_1 = \underline{A}_1 Z, W_2 = \underline{A}_2 Z \Rightarrow \underline{W}_1, \underline{W}_2$ are independent iff $\underline{A}_1 \underline{\Sigma} \underline{A}_2^{-T} = \theta$
(N5). $Z - N(\underline{\mu}, \underline{\Sigma}), W_1 = \underline{A}_1 Z, W_2 = \underline{A}_2 Z \Rightarrow \underline{W}_1, \underline{W}_2$ are independent iff $\underline{A}_1 \underline{\Sigma} \underline{A}_2^{-T} = \theta$
(N5). $Z - N(\underline{\mu}, \underline{\Sigma}), W_1 = \underline{A}_1 Z, W_2 = \underline{A}_2 Z, ..., W_n = \underline{A}_n Z, and cov(\underline{W}_1, \underline{W}_2) = \theta$ for $i \neq j$
 $\Rightarrow W_1^T W_1, W_2^T W_2 \dots, W_p^T W_p$, are mutually independent
(N6). \underline{Z} : an $n \times 1$ random vector and $\underline{Z} - N(\underline{\mu}, \underline{\Sigma})$, then
 $\cdot (Z - \mu)^T \underline{\Sigma}^- (Z - \mu) \sim \underline{X}_2^{-1}$ if $\underline{\Sigma}$ is non-singular
 $\cdot (Z - \mu)^T \underline{\Sigma}^- (Z - \mu) \sim \underline{X}_2^{-1}$ if $\underline{\Sigma}$ is non-singular
 $\cdot (Z - \mu)^T \underline{\Sigma}^- (Z - \mu) \sim \underline{X}_2^{-1}$ if $\underline{\Sigma}$ is non-singular
 $\cdot (Z - \mu)^T \underline{\Sigma}^- (Z - \mu) \sim \underline{X}_2^{-1}$ if $\underline{\Sigma}$ is non-singular
 $\cdot (Z - \mu)^T \underline{\Sigma}^- (Z - \mu) \sim \underline{X}_2^{-1}$ if $\underline{\Sigma}$ is non-singular
 $\cdot (Z - \mu)^T \underline{\Sigma}^- (Z - \mu) \sim \underline{X}_2^{-1}$ if $\underline{\Sigma}$ is non-singular
 $\cdot (Z - \mu)^T \underline{\Sigma}^- (Z - \mu) \sim \underline{X}_2^{-1}$ if $\underline{\Sigma}$ is non-singular
 $\cdot (Z - \mu)^T \underline{\Sigma}^- (Z - \mu) \sim \underline{X}_2^{-1}$ if $\underline{\Sigma}$ is non-singular
 $\cdot (Z - \mu)^T \underline{\Sigma}^- (Z - \mu) \sim \underline{X}_2^{-1}$ if $\underline{\Sigma}$ is non-singular
 $\cdot (Z - \mu)^T \underline{\Sigma}^- (Z - \mu) \sim \underline{X}_2^{-1}$ if $\underline{\Sigma}$ is non-singular
 $\cdot (Z - \mu)^T \underline{\Sigma}^- (Z - \mu) \sim \underline{X}_2^{-1}$ if $\underline{\Sigma}$ is non-singular
 $\cdot (Z - \mu)^T \underline{\Sigma}^- (Z - \mu) \sim \underline{X}_2^{-1} = \underline{\Sigma}^- (M - \mu) \underline{\Omega}^- \underline{\Omega}^- \underline{\Sigma}^- \underline{\Sigma}$

π ession Analy *vsis*, chapter 2, 3.4, 5.2, 5.3

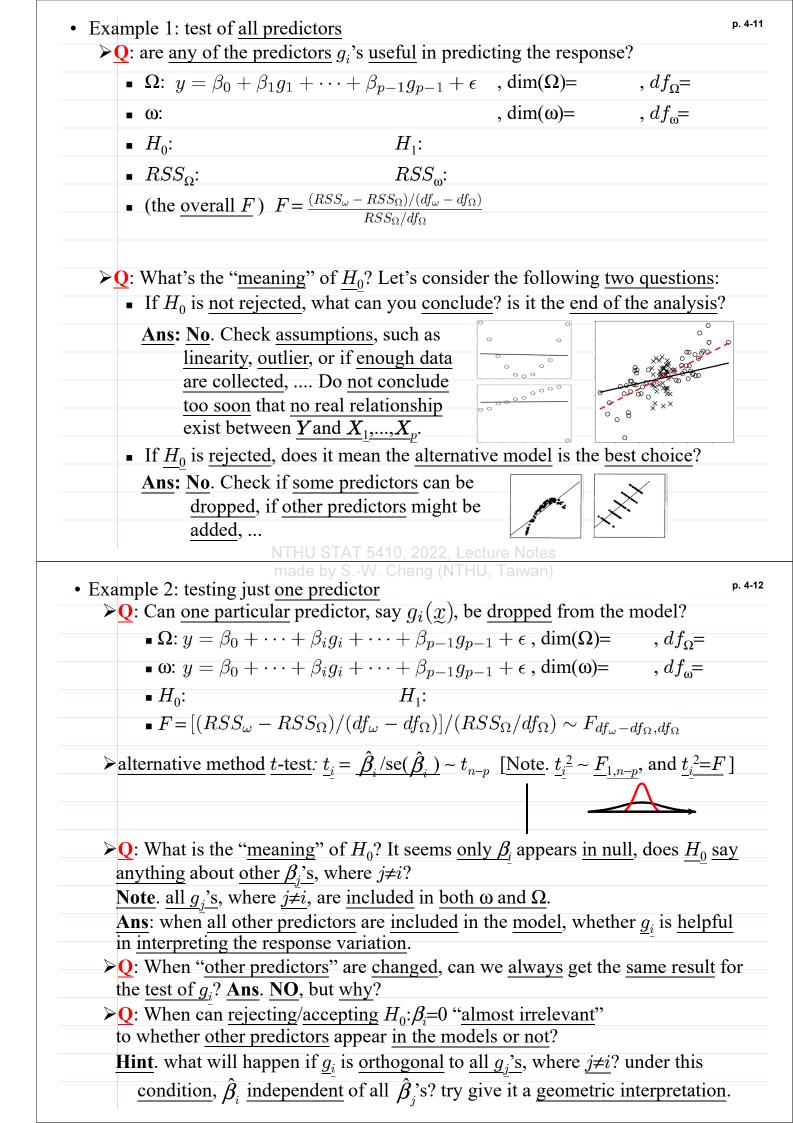




★ Reading: Faraway (2005, 1st ed.), 3.1;
 ★ Futher reading: D&S, 21.1, 21.2, 21.3, 21.4



^{*} Further reading: Seber (1977), Linear Regression Analysis, 4.1



• Example 3: testing a pair of predictors
> Q: Suppose the *t*-tests for
$$\beta_{j}$$
 and β_{j}
are both insignificant, can you remove
both g_{i} and g_{k} from the model? when
can and when cannot? and why? (Hint:
what's the null in the 2-t-tests?)
> Q: What combinations of acceptance/
rejection you will see in these tests?
> Q: Can two particular predictors, say g_{j} and g_{k} , be dropped from the model?
• $\Omega: y = \beta_{0} + \dots + \beta_{j}g_{j} + \dots + \beta_{k}g_{k} + \dots + \epsilon$, $\dim(\Omega) = \dots, df_{\alpha} =$
• $H_{0}: \qquad H_{1}:$
• $F = [(RSS_{\omega} - RSS_{\Omega})/(df_{\omega} - df_{\Omega})]/(RSS_{\Omega}/df_{\Omega}) \sim F_{df_{\omega} - df_{\Omega}, df_{\Omega} =$
• $\Omega: y = \beta_{0} + \dots + \beta_{j}g_{j} + \dots + \beta_{k}g_{k} + \dots + \epsilon$, $\dim(\Omega) = \dots, df_{\alpha} =$
• $H_{0}: \qquad H_{1}:$
• $F = [(RSS_{\omega} - RSS_{\Omega})/(df_{\omega} - df_{\Omega})]/(RSS_{\Omega}/df_{\Omega}) \sim F_{df_{\omega} - df_{\Omega}, df_{\Omega} =$
• $Mrt U STAT 5440. 2022. Lectore Notes$
midde by S.-W. Cheng (NHU Taivan)
• Example 4: testing a subspace/subset Ω
• $\Omega: y = \beta_{0} + \dots + \beta_{j}g_{j} + \dots + \beta_{k}g_{k} + \dots + \epsilon$, $\dim(\Omega) = \dots, df_{\alpha} =$
• $\Omega: y = \beta_{0} + \dots + \beta_{j}g_{j} + \dots + \beta_{k}g_{k} + \dots + \epsilon$, $\dim(\Omega) = \dots, df_{\alpha} =$
• $\Omega: y = \beta_{0} + \dots + \beta_{j}g_{j} + \dots + \beta_{k}g_{k} + \dots + \epsilon$, $\dim(\Omega) = \dots, df_{\alpha} =$
• $\Omega: y = \beta_{0} + \dots + \beta_{j}g_{j} + \dots + \beta_{k}g_{k} + \dots + \epsilon$, $\dim(\Omega) = \dots, df_{\alpha} =$
• $\Omega: y = \beta_{0} + \dots + \beta_{j}g_{j} + \dots + \beta_{k}g_{k} + \dots + \epsilon$, $\dim(\Omega) = \dots, df_{\alpha} =$
• $\Omega: y = \beta_{0} + \dots + \beta_{j}g_{j} + \dots + \beta_{k}g_{k} + \dots + \epsilon$, $\dim(\Omega) = \dots, df_{\alpha} =$
• $\Omega: y = \beta_{0} + \dots + \beta_{j}g_{j} + \dots + \beta_{k}g_{k} + \dots + \epsilon$, $\dim(\Omega) = \dots, df_{\alpha} =$
• $\Omega: y = \beta_{0} + \dots + \beta_{j}g_{j} + \dots + \beta_{k}g_{k} + \dots + \epsilon$, $\dim(\Omega) = \dots, df_{\alpha} =$
• $\Omega: y = \beta_{0} + \dots + \beta_{j}g_{j} + \dots + \beta_{k}g_{k} + \dots + \epsilon$, $\dim(\Omega) = \dots, df_{\Omega} =$
• $\Omega: y = \beta_{0} + \dots + \beta_{j}g_{j} + \dots + \beta_{k}g_{k} + \dots + \epsilon$, $\dim(\Omega) = \dots, df_{\Omega} =$
• $\Omega: y = \beta_{0} + \dots + \beta_{j}g_{j} + \dots + \beta_{k}g_{k} + \dots + \epsilon$, $\dim(\Omega) = \dots, df_{\Omega} =$
• $\Omega: y = \beta_{0} + \dots + \beta_{j}g_{j} + \dots + \beta_{k}g_{k} + \dots + \epsilon$, $\dim(\Omega) = \dots, df_{\Omega} =$

