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Normality assumption

• Note: up till now, haven’t assumed any distributional form for ε. If we want to 

perform any hypothesis tests or make any confidence intervals, we will need to do 

this. The usual assumption is:

ε ∼ N(0, σ2I) 
model: Y = Xβ + ε, ε ∼N(0, σ2I)

Y ∼ N(Xβ, σ2I) 
 Q: what does the model describe? e.g.,

yx=β0+β1x+εx, εx’s ~ i.i.d. N(0, σ2)
 E(yx)=β0+β1x

 yx’s are independent and yx ~ N(β0+β1x, σ2)  at x=xi, i=1,…,n.

 Q: how should the data generated from the model look like?

 Q: when would it be appropriate to impose the inference based on this 

regression model on the underlying true model? Can we use it when these 

exist clear differences between the two models, e.g., what if y is a discrete 

quantitative measurement? 

Ans: yes when the pdf shape of the regression model can “well approximate” 

the pdf/pmf/cdf shape of true model. (Key is how similar the 2 models)?

George Box: “all models are wrong, but some are useful”
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 Q: why Normal?

 CLT  when random error is a sum of many small random disturbances

 bell shape curve is common

 from the viewpoint of approximation

 good mathematical/statistical properties

 Q: how to examine whether Normality assumption is reasonable/suitable for 

your data, in other words, how well the approximation is?

 when you have pure replicates

 when you have no/few pure replicates, you can still study residuals. 

However, the validity of the study is then based on several assumptions. 

Under the circumstance, what rationale can support the use of Normality?

 Q: under what conditions, the Normality assumption is inappropriate?

 qualitative response

 quantitative discrete response 

with only few possible outcomes

 skewed error 

 heavy tail error



p. 4-3∗ Some properties of (multivariate) Normal distribution

(N1). linear transformation of Normal is still Normal

Z ~ N(µ, )  AZ+c ∼ N(Aµ+c, AAT)

(N2). when 1st and 2nd moments are given, the Normal distribution is specified

(N3).                : Normal and uncorrelated (cov(Z1, Z2)=0)  Z1, Z2 independent

(N4). Z~N(µ, ), W1=A1Z, W2=A2Z W1, W2 are independent iff A1A2
T=0

(N5). Z~N(µ, ), W1=A1Z, W2=A2Z,…, Wk=AkZ, and cov(Wi, Wj)=0 for i≠j
 W1

TW1 , W2
TW2,…, Wk

TWk are mutually independent

(N6). Z: an n×1 random vector and Z~N(µ, ), then 
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• Some properties of linear models when ε∼N(0, σ2I) :
 distribution of Y [=Xβ + ε ] ∼ N(Xβ, σ2I)
 distribution of [=(XTX)- 1XT Y ] ∼ N(β, (XTX)- 1σ2)

 (Z−µ)T−1(Z−µ) ~ χn2 if  is non-singular

 (Z−µ)T−(Z−µ) ~ χr2 if  is singular and has rank r (< n), 

where − is a generalized inverse of , (i.e., − = )
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 mean response v.s. future observation (Q: what different?)

 Example: average yield when x=x0? and tomorrow’s yield when x=x0?

 same predicted value x0
T , but different distributions

 distribution of prediction error for mean response at x0

x0
T − x0

Tβ
 distribution of prediction error for future observations at x0

x0
T − ( x0

Tβ +ε )

2σ̂ εε ˆˆ T

β̂XŶ

 Futher reading: Seber (1977), Linear Regression Analysis, chapter 2, 3.4, 5.2, 5.3

∼ N(0, (x0
T(XTX)−1x0)σ2)

∼ N(0, (x0
T(XTX)−1x0 + 1 )σ2)

 distribution of [=(I−H)Y=(I−H)ε] ∼ N(0, (I−H)σ2), which has a singular

covariance matrix I−H with rank n−p (Note: dim(   )=n−p)

 distribution of RSS [=(n−p) = =εT(I−H)ε] ∼ σ2χ2
n−p

 distribution of [= = HY ] ∼ N(Xβ,Hσ2), which has a singular covariance 

matrix with rank p (Note: dim(   )=p)

 is independent of (Note: cov((XTX)−1XTY, (I−H)Y )=0)

 is independent of (Note: cov(H Y, (I−H)Y)=0)

 distribution of prediction for a new set of predictors, x0 = (g1(x10,…,xm0), …, 

gp(x10,…,xm0))
T
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(a) σ1=σ2, ρ=0  independent and equal variance

(b) σ1=σ2, ρ=0.75  correlated and equal variance

 Example: bivariate normal

contour of Normal pdf is an ellipse because it can be expressed as (x−µ)T−1(x−µ)=c

when σ1=σ2, ρ≠0, the major/minor axis of the ellipse is parallel to x1=x2 or x1=−x2

Q: how should the 

contour lines look 

like if σ1≠σ2?
ρ ↑ :

ρ ↓ :

joint pdf contour lines of the pdf data generated from the pdf
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hypothesis testings (for β )
• Q: What questions is a hypothesis testing about β trying to answer? 

examples:

Ans: Are all predictors needed? Can a simpler model still “well describe” the data?

• Q: Why a simpler model is preferred? 

The principle of Occam’s Razor: “One should always choose the simplest

explanation of a phenomenon, the one that requires the fewest leaps of logic.”

• formulation of hypothesis testing from the view of comparing models (model spaces)

 a model space ≡ the space spanned by columns of some X (model matrix)

 consider a large model space, Ω, and a smaller model space, ω, where ω ⊂ Ω (i.e., 

ω represents a subset/subspace of Ω). Suppose dimension (# of parameters) of Ω
is p and dim(ω)=q, where p>q.

Examples:

 to answer “which of the model spaces is more adequate” in statistical 

language  perform the test H0: ω (Aβ=c)  v.s. H1: Ω\ω



p. 4-7• a geometric view of H0: ω v.s. H1: Ω\ω

2

ˆˆ Ωω εε −

• a

= (HΩ−Hω)Y

• (HΩ−Hω)2=HΩ−Hω

• (HΩ−Hω)T=HΩ−Hω

• HΩHω=HωHΩ=Hω

• (HΩ−Hω)(I- HΩ)

= (I- HΩ)(HΩ−Hω) = 0 



• eigenvalues of HΩ−Hω
are either 0 or 1; 

# of 1’s = p−q; 
# of 0’s = n−(p−q)

RSSRSS Ωω
− RSSΩis independent of 

εε ˆˆ Ωω
− [= (HΩ−Hω)Y ] ∼ N(0, (HΩ−Hω)σ2)

RSSRSS Ωω
− ∼ σ2χ2

p−q( ) ( )εεεε
T

ˆˆˆˆ ΩωΩω
−−[ = ]

22

ˆˆ Ωω εε −=

RSSRSS Ωω
−=

•

•

•

εεε ˆˆˆ ΩωΩ
−⊥

YY ˆˆˆˆ ωΩΩω
−=− εε

Under H0 (null hypothesis ω):

Ω (dim = p)

ε̂Ω ((n−p)-dim)

ω (dim = q)

((n−q)-dim)ε̂ω

((p−q)-dim)YY ˆˆˆˆ ωΩΩω
−=− εε

Y (n-dim)

Ŷ Ω (p-dim)

(q-dim)Ŷ ω

the space that

(1)  ⊂ Ω
(2) ⊥ ω

(dim = p−q)

0•

Ω⊥ (dim = n−p)
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• How the geometric view related to test statistic of H0: ω vs. H1: Ω\ω?

 if RSSω−RSSΩ is small, ω is a more adequate model relative to Ω
suggest (RSSω−RSSΩ)/RSSΩ , where the denominator is used for 

“scaling”

Q: What’s the scale for (RSSω- RSSΩ )/RSSΩ? i.e., how small is small? 
how large is large?

ω can be any of the formH0: Aβ = 0 ( 0∈ω) 

generalization to ω of the formH0: Aβ = c, where c≠0, is achievable; 

 however, 0∉ω, and 

 aaa does not hold in this case.

2

ˆˆ Ωω εε −
22

ˆˆ Ωω εε −=

RSSRSS Ωω
−=

 Reading: Faraway (2005, 1st ed.), 3.1;  Futher reading: D&S, 21.1, 21.2, 21.3, 21.4

0

ε̂ˆ ωω⊥Y

Y ∗ (new Y)

Ŷ ω

•



p. 4-9• likelihood-ratio testing approach

 If L(β,σ|Y) is the likelihood function under Normality assumption, the 

likelihood-ratio test statistics is:

Λ = max β,σ ∈Ω L(β,σ|Y) / max β,σ ∈ ω L(β,σ|Y) 

The test should be rejected if the ratio is too large. 

 Because L( , |Y) ∝ , (exercise)

we reject the null if 

>  a constant,

which is equivalent to

RSSω/ RSSΩ > a constant,

or                           (RSSω/ RSSΩ)−1 > the constant –1,

which equals         (RSSω−RSSΩ)/ RSSΩ > a constant 

we get the same test statistic suggested by the geometric view.

 Q: why not use RSSω/ RSSΩ as the test statistic? (Hint: can you identify the 

null distribution of RSSω/ RSSΩ? note that is not orthogonal to .)

 Q: how to discover the distribution of the test statistic under null hypothesis? 

and how to decide the constant?

β̂ σ̂ σ̂ n−

σσ ˆˆ 2
Ω

2
ω

ε̂ Ω ε̂ ω

p. 4-10 suppose dimension (# of parameters) of Ω is p and dim(ω)=q. 
Under the nullH0: ω,

(RSSω−RSSΩ)/σ2 ∼ χ2
p−q ,

RSSΩ /σ2 ∼ χ2
n−p

and they are independent. 

So, we have F = ∼ Fp−q,n−p .

Therefore, reject if F > Fp−q,n−p
(α ) (usually check if p-value < α)

 General form: because the degree of freedom of residuals in a model is the 

number of observations minus the number of parameters (in β), this test 

statistics can be written as:

F = ,

where dfω=dim(ω⊥)=n−q and dfΩ=dim(Ω⊥)=n−p.

 The test is widely used in regression and ANOVA. The beauty of this 

approach is you only need to know the general form.

 Reading: Faraway (2005, 1st ed.), 3.1
 Further reading: Seber (1977), Linear Regression Analysis, 4.1

(RSSω − RSSΩ)/(p− q)

RSSΩ/(n− p)



p. 4-11• Example 1: test of all predictors

Q: are any of the predictors gi’s useful in predicting the response?

 Ω: , dim(Ω)= , dfΩ=
 ω: , dim(ω)= , dfω=
 H0: H1: 

 RSSΩ: RSSω:

 (the overall F ) F =

Q: What’s the “meaning” of H0? Let’s consider the following two questions: 

 If H0 is not rejected, what can you conclude? is it the end of the analysis? 

 If H0 is rejected, does it mean the alternative model is the best choice? 

Ans: No. Check assumptions, such as 

linearity, outlier, or if enough data 

are collected, .... Do not conclude 

too soon that no real relationship

exist between Y and X1,...,Xp.

Ans: No. Check if some predictors can be 

dropped, if other predictors might be 

added, ...

p. 4-12• Example 2: testing just one predictor
Q: Can one particular predictor, say Xi , be dropped from the model?

 Ω: , dim(Ω)= , dfΩ=
 ω: , dim(ω)= , dfω=
 H0: H1: 

 F =

alternative method t-test: ti = /se(     ) ∼ tn−p [Note. ti
2 ∼ F1,n−p, and ti

2=F ]

Q: What is the “meaning” of H0? It seems only βi appears in null, does H0 say 

anything about other βj’s, where j≠i?
Note. all gj’s, where j≠i, are included in both ω and Ω. 

iβ̂

Hint. what will happen if gi is orthogonal to all gj’s, where j≠i? under this 

condition,      independent of all     ’s? try give it a geometric interpretation.

iβ̂

Q: When can rejecting/acceptingH0:βi=0 “almost irrelevant” 
to whether other predictors appear in the models or not?

Q: When “other predictors” are changed, can we always get the same result for 

the test of gi? Ans. NO, but why?

Ans: when all other predictors are included in the model, whether gi is helpful
in interpreting the response variation.

iβ̂ jβ̂



p. 4-13• Example 3: testing a pair of predictors
Y=β0+β1X1+β2X2+β3X3

Y=β0+β1X1+β3X3Y=β0+β1X1+β2X2

Y=β0+β1X1

Q: Suppose the t-tests for βj and βk
are both insignificant, can you remove

both gj and gk from the model? when 

can and when cannot? and why? (Hint: 

what’s the null in the 2 t-tests?) 

Q: Can two particular predictors, say gj and gk, be dropped from the model?

 Ω: , dim(Ω)= , dfΩ=
 ω: , dim(ω)= , dfω=
 H0: H1: 

 F =

Q: When the data accept H0,i:βj=0

and H0,k:βk=0, but rejectH0:βj=βk=0, 

how can you explain the contradictive 

results? how is it related to 

orthogonality and collinearity? 

 It can be generalized to more than
two predictors. How? (exercise)

Q: What combinations of acceptance/ 
rejection you will see in these tests?

p. 4-14• Example 4: testing a subspace/subset ω
Q: how to test H0: βj+βk = 1?

 Ω: , dim(Ω)= , dfΩ=
 ω: , dim(ω)= , dfω=

 F =

Q: how to test H0: βj=βk?
 Ω: , dim(Ω)= , dfΩ=
 ω: , dim(ω)= , dfω=

 F =
Q: how to test H0: βj=c, c: a known constant, say βj=10?

 Ω: , dim(Ω)= , dfΩ=
 ω: , dim(ω)= , dfω=

 F =

 alternative method t-test: tj = ( − c)/se(    ) ∼ tn−p

Q: Can we apply the method to test H0: βjβk = 1?

offset

jβ̂ jβ̂

 Ω:
 ω:
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 The previous testing method can be applied to H0: Aβ=c, where A is a know

(p−q)×p matrix of rank p−q, and c is a known (p−q)×1 vector.

examples:

Q: what are ω and Ω?

 Q: Suppose (1) the model is correct and (2) the estimators

of β are mutually independent. When H0:βi=0 is accepted, 

does it really mean that βi is exactly zero?

 When sample size, n, is much larger than the number 

of parameters, p, it's very possible that every tests are 

significant (even though R2 is very low).

• Some note & concerns about hypothesis testing

0 µ

Note: that’s why we usually don’t say 

“accept H0”, but say “sample size 

isn’t large enough to reject H0”.

H0 : µ = 0

e.g.:

p. 4-16
Statistical significance may not be equivalent to practical/physical significance. 

example:

 Q: why inequivalent? Hint: what are the numerator & denominator in the 

t-test? Does the denominator represents a scale of physical significance?) 

 for datasets with large n, it is easy to get statistically significant results on 

βi’s, but the magnitudes of some (all) βi’s may be quite small and therefore, 

not physically important.

The inference depends on the correctness of the model we use. 

The assumptions about the model can be checked, but there will be always some 

element of doubt. (Q: what you can do?)

 Reading: Faraway (2005, 1st ed.), 3.2
 Further reading: D&S, 9.1

The data may suggest more than one possible models

which may lead to contradictory results, e.g, when strong 

collinearity exists. (Q: what you can do?)

What is the true significant level of several tests, each

with significant level α? 


