

made by S.-W. Cheng (NTHU, Taiwan)

made by S.-W. Cheng (NTHU, Taiwan)

• Let $\mathbf{H}_2 = \mathbf{A}_2(\mathbf{A}_2, \mathbf{A}_2)$ \mathbf{A}_2 be the natimating of \mathbf{A}_2 .
- The matrix H_2 is the orthogonal projection matrix onto $\Omega_2 \equiv \operatorname{span}\{X_2\}$.
- The matrix $\overline{I - H_2}$ is the orthogonal projection matrix onto Ω_2^{\perp} .
• Then, we have $\widehat{\mathbf{X}}^{T} = (1 - \mathbf{H}_{A})^{T} = \mathbf{R}^{A} = \mathbf{\Omega}_{A} = \mathbf{\Omega}_{A}$
$\underline{(\Delta)} \Rightarrow \begin{bmatrix} \mathbf{X}_1^T (\mathbf{I} - \mathbf{H}_2) \mathbf{X}_1 \end{bmatrix} \hat{\boldsymbol{\beta}}_1 = \mathbf{X}_1^T [\mathbf{I} - \mathbf{H}_2] \mathbf{Y} = \frac{\mathbf{Span} \{\mathbf{X}_1, \mathbf{X}_2\}}{\mathbf{Span} \{\mathbf{X}_1, \mathbf{X}_2\}} \oplus \mathbf{Span} \{\mathbf{X}_1, \mathbf{X}_2\}^{\perp}$
$\Rightarrow \ \left[\underline{\boldsymbol{X}_{1}^{T}(\boldsymbol{I}-\boldsymbol{H}_{2})^{T}(\boldsymbol{I}-\boldsymbol{H}_{2})} \boldsymbol{X}_{1} \right] \hat{\boldsymbol{\beta}}_{1} = \underline{\boldsymbol{X}_{1}^{T}(\boldsymbol{I}-\boldsymbol{H}_{2})^{T}(\boldsymbol{I}-\boldsymbol{H}_{2})} \boldsymbol{Y}$
$ \underbrace{\widetilde{X}_{1}^{T}\widetilde{X}_{1}}_{\text{Ex1}(\mathcal{U}_{0},3-7)} (\widetilde{X}_{1}^{T}\widetilde{X}_{1})\hat{\beta}_{1} = \widetilde{X}_{1}^{T}\widetilde{Y} (\Leftarrow \text{ normal equation for } \underline{\beta}_{1}) \stackrel{\text{cf. normal equation for } \underline{\beta}_{1}) \stackrel{\text{cf. normal equation for } \underline{\beta}_{1}}_{\text{for } \mathbb{B}} (\mathcal{U}_{p},3-12) $
$\underbrace{\begin{array}{c} \text{cov}(\hat{B}_{i}) \text{where}}_{= \mathcal{O}^{2}(\hat{X}_{i}^{T}\hat{X}_{i})^{-}} & \underline{\tilde{Y}}_{=} = \underbrace{(I - H_{2})Y}_{= -} & $
• From the normal equation for β_1 , we get in <u>LNp.3-7</u> $\hat{\alpha} = (\widetilde{\gamma}T, \widetilde{\gamma}T,) -1 \widetilde{\gamma}T, \widetilde{\gamma}T = (\widetilde{\gamma}T, \widetilde{\gamma}T,) -1 \widetilde{\gamma}T, \widetilde{\gamma}T,]$
$\underline{\beta_1} = (X_1^T X_1)^{-1} X_1^T \underline{Y} = (X_1^T X_1)^{-1} X_1^T \underline{Y}, \qquad \underline{X_1 \beta_1}$
which is the OLS estimator of the linear model \sim
$\underline{Y} = \underline{X_1}\beta_1 + \underline{\epsilon}, \overline{X_2} \qquad \widehat{Y} \text{ or } \underline{Span[X_1]} \widehat{X_1}\hat{\beta_1} \qquad \overline{H_2X_1}$
where $\underline{\epsilon} = (I - H_2)\epsilon$. $X_2\hat{\beta}_2$ X_1 $X_1 = (I - H_2)X_1$ $X_1 = (I - H_2)X_1$
$\begin{array}{c c} X_1 X_2 \\ = X_1^{T}(I-H_2)X_2 \end{array} \qquad $
$= Q \leftarrow orthogonality \qquad \qquad X_1 \underline{\beta_1} \qquad \qquad X_1 \underline{\beta_1}$
• Q: Which part in data contains information about σ^2 ?
$\frac{\text{Estimating } \sigma^2}{\mathbf{Q}} \underbrace{Y = X\beta + \varepsilon}_{\text{S} + \varepsilon} \underbrace{S^2 \text{ Var}(\varepsilon)}_{\text{E} : \text{ surrogate } of \varepsilon}, \overset{\text{p. 3-14}}{\varepsilon} \\ \bullet \underbrace{Q}_{\text{C}} : \text{ Which part in data contains information about } \sigma^2 \\ \bullet \underbrace{Q}_{\text{C}} : \text{ What is a suitable function (statistics) of } \hat{\varepsilon} \text{ for } \overset{\text{p. 3-14}}{\varepsilon} \\ \bullet \underbrace{Q}_{\text{C}} : \text{ What is a suitable function (statistics) of } \hat{\varepsilon} \text{ for } \overset{\text{p. 3-14}}{\varepsilon} \\ \bullet \underbrace{Q}_{\text{C}} : \overset{\text{p. 3-14}}{\varepsilon} \\ \text{p$
Estimating σ^2 $Y = X\beta + \varepsilon = X\beta + \varepsilon$ $\sigma^2 = Var(\varepsilon)$, p. 3-14 • Q: Which part in data contains information about σ^2 ? • Q: What is a suitable function (statistics) of $\hat{\varepsilon}$ for $estimating \sigma^2$ $estimating \sigma^2$ $estim$
$\underbrace{\text{Estimating } \sigma^2}_{\textbf{S} = X, \textbf{S} + \textbf{E} = X, \textbf{S} + \textbf{E} = X, \textbf{G} + \textbf{E}}_{\textbf{S} = Tar(\textbf{E})}, p. 3-14$ $\bullet \textbf{Q}: \text{ Which part in data contains information about } \sigma^2? \bullet \textbf{E} : \text{ sumogate of } \textbf{E}$ $\bullet \textbf{Q}: \text{ What is a suitable function (statistics) of } \hat{\textbf{E}} \text{ for } \underbrace{\textbf{Ans}: residuals (\textbf{E})}_{\textbf{S} = \textbf{E}} = RSS = \underline{\hat{e}^T \hat{e}} \textbf{E} = (I-H)XB = \textbf{Q}$ $\bullet \textbf{G}: \text{ if the model} = [Y^T(I-H)^T][(I-H)Y] = \underline{Y^T(I-H)Y}_{\textbf{S} = \textbf{S}} \textbf{G}: \textbf{S} = \underline{Y^T(I-H)Y}_{\textbf{S} = \textbf{S}} = \underline{Y^T(I-H)Y}$
Estimating σ^2 $Y = XB + E = XB + \widehat{E}$ $S = Var(\widehat{E})$, p. 3-14 • Q: Which part in data contains information about σ^2 ? • Q: What is a suitable function (statistics) of \widehat{E} for • Q: What is a suitable function (statistics) of \widehat{E} for • estimating σ^2 ? • $\widehat{E}(\widehat{E}) = \widehat{E}[(I-H)Y]$ • $\widehat{E}($
Estimating σ^2 $Y = XB + \mathcal{E} = X\hat{\theta} + \hat{\mathcal{E}}$ $S = Tar(\mathcal{E})$, p. 3-14 • Q: Which part in data contains information about σ^2 ? • Q: What is a suitable function (statistics) of $\hat{\mathcal{E}}$ for • Q: What is a suitable function (statistics) of $\hat{\mathcal{E}}$ for • \mathbf{Ans} : residuals ($\hat{\mathcal{E}}$) • \mathbf{C} : $\hat{\mathcal{E}}(\hat{\mathcal{E}} - \hat{\mathcal{E}}) = \hat{\mathcal{E}}_{i}^{2} \hat{\mathcal{E}}_{i}^{2} = RSS = \hat{\mathcal{E}}^{T}\hat{\mathcal{E}}$ $\hat{\mathcal{E}}(\hat{\mathcal{E}}) = \mathbb{E}[(1-H)Y] = \hat{\mathcal{L}}(1-H)XB = Q$ • \mathcal{O} if the model $= [Y^{T}(I-H)^{T}][(I-H)Y] = Y^{T}(I-H)Y$ distribution • $\mathcal{E}(\hat{\mathcal{E}}^{T}\hat{\mathcal{E}}) = (\underline{n-p})\sigma^{2}$, where $\underline{n}=\#$ of observations, $\underline{p}=\#$ of parameters in β \mathcal{O} • $\mathcal{E}(\hat{\mathcal{E}}^{T}\hat{\mathcal{E}}) = (\underline{n-p})\sigma^{2}$, where $\underline{n}=\#$ of observations, $\underline{p}=\#$ of parameters in β \mathcal{O} . • $\mathcal{E}(\hat{\mathcal{E}}^{T}\hat{\mathcal{E}}) = (\underline{n-p})\sigma^{2}$, where $\underline{n}=\#$ of observations, $\underline{p}=\#$ of parameters in β \mathcal{O} .
Estimating σ^2 $Y = X\beta + \mathcal{E} = X\hat{\beta} + \hat{\mathcal{E}}$ $\sigma^2 = Tar(\mathcal{E})$, p. 3-14 • Q: Which part in data contains information about σ^2 ? • Q: What is a suitable function (statistics) of $\hat{\mathcal{E}}$ for estimating σ^2 ? • Q: What is a suitable function (statistics) of $\hat{\mathcal{E}}$ for • $distributes a suitable function (statistics) of \hat{\mathcal{E}} for• distributes a suitable function of \hat{\mathcal{E}} is distributes a suitable function for \hat{\mathcal{E}} is distributes a suitable function of \hat{\mathcal{E}} is distributes a suitable function of \hat{\mathcal{E}} is distributes a suitable function for \hat{\mathcal{E}} is distributes $
Estimating σ^2 $Y = XB + E = XB + \widehat{E}$ $S^2 = Var(\widehat{E})$, p. 3-14 • Q: Which part in data contains information about σ^2 ? • Q: What is a suitable function (statistics) of \widehat{E} for estimating σ^2 ? • \mathbb{E} : Surrogate of \widehat{E} • \mathbb{E} : Surrogate of \widehat{E} • \mathbb{E} : E
Estimating σ^2 $Y = XB + E = XB + E$ $G^2 = Tar(E)$, p. 3-14 • Q: Which part in data contains information about σ^2 ? • Q: What is a suitable function (statistics) of $\hat{\mathcal{E}}$ for • Q: What is a suitable function (statistics) of $\hat{\mathcal{E}}$ for • Q: What is a suitable function (statistics) of $\hat{\mathcal{E}}$ for • Q: What is a suitable function (statistics) of $\hat{\mathcal{E}}$ for • G^2 G
Estimating σ^2 $Y = XB + E = XB + \widehat{E}$ $\overline{C} = Tar(E)$, p. 3-14 • Q: Which part in data contains information about σ^2 ? • Q: What is a suitable function (statistics) of \widehat{E} for • Q: What is a suitable function (statistics) of \widehat{E} for • Q: What is a suitable function (statistics) of \widehat{E} for • Ans : residuals (\widehat{E}) • C : \widehat{E} :
Estimating σ^2 $Y = X\beta + \xi = X\beta + \hat{\xi}$ $\sigma^2 = War(\xi)$, p. 3.14 • Q: Which part in data contains information about σ^2 ? • Q: What is a suitable function (statistics) of $\hat{\varepsilon}$ for estimating σ^2 ? • Q: What is a suitable function (statistics) of $\hat{\varepsilon}$ for $Ans: residuals$ ($\hat{\varepsilon}$) • $\hat{\varepsilon}$: $\hat{\varepsilon} = \hat{\varepsilon}^2 = RSS = \hat{\varepsilon}^T \hat{\varepsilon}$ • $\hat{\varepsilon} = (\hat{\varepsilon} - \hat{\varepsilon})^2 = \hat{\varepsilon}_1^* \hat{\varepsilon}^2 = RSS = \hat{\varepsilon}^T \hat{\varepsilon}$ • $\hat{\varepsilon} = (\hat{\varepsilon} - \hat{\varepsilon})^2 = \hat{\varepsilon}_1^* \hat{\varepsilon}^2 = RSS = \hat{\varepsilon}^T \hat{\varepsilon}$ • $\hat{\varepsilon} = (\hat{\varepsilon} - \hat{\varepsilon})^2 = \hat{\varepsilon}_1^* \hat{\varepsilon}^2 = RSS = \hat{\varepsilon}^T \hat{\varepsilon}$ • $\hat{\varepsilon} = (\hat{\varepsilon} - \hat{\varepsilon})^2 = \hat{\varepsilon} = \hat{\varepsilon}^2 + \hat{\varepsilon}^2 = RSS = \hat{\varepsilon}^T \hat{\varepsilon}$ • $\hat{\varepsilon} = (n-p)\sigma^2$, where $n=\#$ of observations, $p=\#$ of parameters in β • $\hat{\varepsilon} = (\hat{\varepsilon} - \hat{\varepsilon})^2 = \hat{\rho} - \hat{\sigma}^2$, bether $\hat{\varepsilon} = \hat{\varepsilon} = \hat{\varepsilon} = (n-p)\sigma^2$, where $n=\#$ of observations, $p=\#$ of parameters in β • $\hat{\varepsilon} = \hat{\varepsilon} = \hat{\varepsilon} = (n-p)\sigma^2$, where $n=\#$ of observations, $p=\#$ of parameters in β • $\hat{\varepsilon} = \hat{\varepsilon} = (n-p)\sigma^2$, where $n=\#$ of $\hat{\varepsilon} = \hat{\varepsilon} = \hat{\sigma}^2$, bether $\hat{\varepsilon} = \hat{\varepsilon} = $
Estimating σ^2 $Y = X\beta + \varepsilon = X\beta + \varepsilon$ $\sigma^2 = T_{ar}(\varepsilon)$, p.3-14 • Q: Which part in data contains information about σ^2 ? • Q: What is a suitable function (statistics) of $\hat{\varepsilon}$ for • Q: What is a suitable function (statistics) of $\hat{\varepsilon}$ for • Q: What is a suitable function (statistics) of $\hat{\varepsilon}$ for • $(1 - H)X\beta = 2$ • $(\varepsilon) = (\varepsilon)^2 = \varepsilon^2 = RSS = \hat{\varepsilon}^T \hat{\varepsilon}$ • $(1 - H)X\beta = 2$ • $(1 - H)Y\beta^2$, where $n = \#$ of observations, $p = \#$ of parameters in β • $(1 - H)X\beta = 2$ • $(1 - H)X\beta = 2$ • $(1 - H)Y\beta^2$, where $n = \#$ of observations, $p = \#$ of parameters in β • $(1 - H)Y\beta^2$, where $n = \#$ of observations, $p = \#$ of parameters in β • $(1 - H)Y\beta^2$, where $n = \#$ of observations, $p = \#$ of parameters in β • $(1 - H)Y\beta^2$ bace $[A \cdot cov(Y)] + [E(Y)]A[E(Y)]$ • $(A = I - H)F(Y^TAY) = bace [A \cdot cov(Y)] + [E(Y)]A[E(Y)]$ • estimate σ^2 by $\hat{\sigma}^2 = \hat{c}^T \hat{c}/(n - p) = RSS/(n - p) \stackrel{\circ}{\to}$ an unbiased estimator • estimate σ^2 by $\hat{\sigma}^2 = \hat{c}^T \hat{c}/(n - p) = RSS/(n - p) \stackrel{\circ}{\to}$ an unbiased estimator • actually, $\hat{\sigma}^2$ has the minimum variance among all quadratic unbiased estimators of σ^2 • C^2 • C^2 • C^2 • C^2 • C^2
Estimating σ^2 $Y = X\beta + \varepsilon = x\beta + \varepsilon$ $\sigma^2 = Tar(\varepsilon)$, p.3-14 • Q: Which part in data contains information about σ^2 ? • Q: What is a suitable function (statistics) of $\hat{\varepsilon}$ for estimating σ^2 ? • Q: What is a suitable function (statistics) of $\hat{\varepsilon}$ for $Ans: residuals (\varepsilon)$ • $assumption about \sigma^2$? • $assumption about observations, p = \# of parameters in \beta• assumption about accumulate accumulate about \alpha^2.• assumption accumulate accumulate about \alpha^2.• assumption about \alpha^2.$
Estimating σ^2 $Y = XB + E = XB + E$ $Tar(E)$, p.3-14 • Q: Which part in data contains information about σ^2 ? • Q: What is a suitable function (statistics) of $\hat{\varepsilon}$ for estimating σ^2 (length ² of $\hat{\varepsilon}$) • Q: What is a suitable function (statistics) of $\hat{\varepsilon}$ for estimating σ^2 (length ² of $\hat{\varepsilon}$) • Φ^2 ($E(\hat{\varepsilon}, \hat{\varepsilon})^2$) $f(\hat{\varepsilon})^2$ (length ² of $\hat{\varepsilon}$) • Φ^2 ($E(\hat{\varepsilon}, \hat{\varepsilon})^2$) $f(\hat{\varepsilon})^2$ (length ² of $\hat{\varepsilon}$) • Φ^2 ($E(\hat{\varepsilon}, \hat{\varepsilon})^2$) $f(\hat{\varepsilon})^2$ ($E(\hat{\varepsilon})^2$) $f(\hat{\varepsilon})^2$ ($E(\hat{\varepsilon})^2$) $f(\hat{\varepsilon})^2$ • Φ^2 ($E(\hat{\varepsilon}, \hat{\varepsilon})^2$) $f(\hat{\varepsilon})^2$ ($E(\hat{\varepsilon})^2$) $f(\hat{\varepsilon})^2$) $f(\hat{\varepsilon})^2$ ($E(\hat{\varepsilon})^2$) $f(\hat{\varepsilon})^2$) • $E(\hat{\varepsilon}^2\hat{\varepsilon})$ ($n-p$) σ^2 (e^2) $f(\hat{\varepsilon})^2$ (e^2) $f(\hat{\varepsilon})^2$) $f(\hat{\varepsilon})^2$ (e^2) $f(\hat{\varepsilon})^2$) $f(\hat{\varepsilon})^2$ (e^2) $f(\hat{\varepsilon})^2$) (e^2) $f(\hat{\varepsilon})^2$) $f(\hat{\varepsilon})^2$ • estimate σ^2 by $\hat{\sigma}^2 = \hat{\varepsilon}^T\hat{\varepsilon}/(n-p) = RSS/(n-p)$ \hat{S} an unbiased estimator • actually, $\hat{\sigma}^2$ has the minimum variance among all quadratic unbiased estimators of σ^2 $f(\hat{\varepsilon})^2$ ($gauss$ $-Markov Thm$. • $\hat{\sigma} = \sqrt{RSS}/(n-p)$ \hat{S} $\varepsilon(\hat{\theta}_1) = (X^T \times)^T_{16}^T, \sqrt{RSS}^T, n-p$ ($LN_P 3-8$) ($nbiased^2$) • (FYI) if $\varepsilon - N(0, \sigma^2 I)$, the maximum likelihood estimator of σ^2 is $\hat{\varepsilon}^T\hat{\varepsilon}/n = RSS/n$.

made by S.-W. Cheng (NTHU, Taiwan)

