
p. 3-1

• some versions of linear model:

Estimating β

Y: random, XD: fixed; Y is a random vector with E(Y) = XM β, 

Var(Y) = σ2I

Y: random, XD: random; E(Y|XD) = XM β, Var(Y|XD) = σ2I

Y: random, XD: fixed; Y = XM β + ε, E(ε) = 0, Var(ε) = σ2I

Notes: 

deterministic component random component

observed data (yi, xi1, …, xim), i=1, …, n. Regard yi as a 

realization of a random variable Yi.

1. At this stage, no specific distribution assumption imposed on ε; 

only assume they (1) have zero mean,  (2) have constant variance, 

and (3) are mutually uncorrelated.

2. parameters in the model: β and σ2

p. 3-2• a geometric view – an example

model: yi=β0+β1xi+εi , i=1, 2, 3  Y = Xβ + ε

# of observations = 3,  # of parameters in β = 2  Y∈ℝ3, β∈ℝ2

estimation of β (i.e., finding     ) is 

equivalent to finding a vector (i.e.,         ) 

on the 2-dim model space Ω



Q: Y = Xβ + ε

what would best “separate” from ? 

(Q: What’s its meaning?)

 find β s.t. Xβ is “close” to Y

 Q: is it reasonable? 

 Q: what’s the measurement of closeness?

β̂ˆ XY = β̂ˆ -XY=ε
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p. 3-3

Use a simpler structure (p-dim) to 

describe the complex (n-dim) Y

• a geometric view – a general description

 n = # of observations; p= # of parameters in β
 Y ∈ ℝn, β ∈ ℝp
 assume p ≤ n
 assume X is of full rank, rank(X)=p (⇔ XTX is non-singular ⇔ the p columns

of X are linearly independent ⇔ the model space Ω spanned by the columns
of X is of dimension p)

Ω: (model) space spanned by the columns of X (dim = p)

Y (n-dim)

β̂X  (p-dim) ∈ Ω

ε̂ ((n−p)-dim) ∈ Ω⊥

β̂X

= Y = Xβ + ε =

data     =                      + 

n-dim = p-dim +   (n-p)-dim

systematic 
structure

random 
error 

 if successful (i.e, Y ≈ ), 

main structure of Y is p-dim

Ω⊥: residual space

(orthogonal complement of Ω, 

dim = n−p)

p. 3-4

ε̂

ε̂

ε̂
ε̂

β̂

β̂X

β̂X

β̂X

β̂Xβ̂X

 find β such that Xβ is as “close” as possible to Y, where closeness is measured by 

Euclidean distance (Q: when, i.e. under what assumption, is this a reasonable

measurement of closeness?)

 is the orthogonal projection of Y onto Ω, (the space spanned by the columns 

of X), i.e., 

= X(XTX)-1XTY, 

where X(XTX)-1XT is the orthogonal projection matrix of Ω (called hat matrix H).

 : residuals = difference between Y and        (i.e, Y − )

 ⊥ , ⊥ : geometrically orthogonal

(Note: actually, the two random vectors are uncorrelated  when normal 

distribution assumption is imposed on ε, they become independent)

 n−p: degree of freedom of        (Q: what is a geometric interpretation for the 

degree of freedom?)  (Q: what is the constraint on     ?)

 is the ordinary least square estimator

β̂ β̂X
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p. 3-5
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(Q: why?

 easy to calculate

 variation due to random error only 

appears on y-axis

 variation minimization

 same scale in yi’s)

∂

∂β
ǫTǫ =

• (ordinary) least square estimator

 assume ε are (i) uncorrelated (ii) equal variance (Var(ε) = σ2I)

 define the best as that minimizes sum of squared error: εTε =

 εTε = (Y − Xβ)T (Y − Xβ) = YTY − 2βTXTY + βTXTXβ (∗)

 a second-order polynomial of β
 One method of finding the minimizer is to differentiate

(∗) w.r.t. β and set the derivatives equal to zero

 −2XTY + 2XTXβ = 0

 By calculus,      is the solution of 

XTXβ = XTY ⇐ called normal equation

p. 3-6

 predicted values: = = HY
 residuals: = Y − = Y − = (I−H)Y

 residual sum of squares (RSS): =   [YT(I−H)T][(I−H)Y] = YT(I−H)Y

Ŷ

 Hn×n = X(XTX)-1XT is called hat matrix in 

statistics. It is the orthogonal projection matrix

onto Ω, the space spanned by the columns of X

 H2=H idempotent

 HT=H symmetric

 (I−H)2=(I−H) and (I−H)T=(I−H)

 H(I−H) = (I−H)H = 0

 the eigenvalues of H (or I−H) are either 0 or 1; 

# of 1’s = p (or n−p); # of 0’s = n−p (or p)

 assume XTX is non-singular (Q: when would it be singular?),

 Hx=x if and only if x lies in Ω
 Hx=0 if and only if x lies in Ω⊥, the orthogonal complement of Ω

Ŷ

geometric interpretation

= (XTX)-1XTY  = X(XTX)-1XTY ≡ HYβ̂

ε̂ β̂X
β̂X

εε ˆˆ T

β̂X
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p. 3-7

• examples of calculating ordinary least square estimator

 example 1 (one-sample problem). functional form: yi = µ + εi, i = 1, ..., n.

 example 2 (simple regression). functional form: yi = β0 + β1 xi + εi, i = 1, ..., n.

regres-

sion 

effect

β̂

p. 3-8• mean and covariance matrix of OLS estimator .

=  (XTX)−1XTY is a p×1 vector of random variables, so

mean: E(    ) = (XTX)−1XTE(Y) = (XTX)−1XTXβ = β (i.e., unbiased)

Cov(    ) = (XTX)−1XTσ2I X(XTX)−1 = (XTX)-1σ2 ( irrelevant to Y and β 

Note: if we can control X, can decide the var-cov matrix before observing Y )

Since      is a random vectors, (XTX)−1σ2 is a variance-covariance matrix. 

se(    ) =
how to calculate the correlation between       and       ? (Q: Is this correlation 

influenced by σ?) (Q: What’s the difference between this correlation and the 

correlation between predictors gi and gj? Ans: the former is calculated from 

(XTX)-1 while the latter from XTX )

 Further reading: D&S, 4.4, 5.1, 5.2, 20.1, 20.2
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 Reading: Faraway 

(2005, 1st ed.), 2.3, 2.4, 2.5
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