NTHU STAT 5410, 2022 Lecture Notes

Estimating "

e some versions of linear model:

» observed data (y,, ;, ..., Z;,), =1, ..., n. Regard y; as a
reahzatmn of a random Varlable Y. LuM:honal Sorm

mearv
variane Y ZBJ g5 ( Til, .- :czm)—kel, E(e;) =0, Var(e;) = o2, Cor(e;,,€i,) =0, for iy # iy
oot 114 L

?;‘irrtx determmlstlc compong‘rgltdaﬁ%?s‘;n uc)oEmponent - ,Mtﬁ,( \é:‘:v:gi:éfge
ndom X, Xpiifixed] Y=X,, B+ E(& =0, Var(&e) = 1
@ erent — (2B T T n{\'e Y-XuB(LM)  Cov(E)
Y: random, X ,:|fixed; Y'is a random vector with E(Y) = X EXY) =Xy B,

Var(Y) = I e— easier to be extended to GLM (e binomial ¥, Bisson )

Y: random, X : randoms»E(Y| X ) = X, B Var(Y| X)) = &#1

" (Xo,Y): Joint distribubon. Ylxo=XuB+E, E(€)=0 Var(€)=6>1
~» Y| Xp: conditional dist. < Linear model is built on this
Notes: 1. At this stage, no specific distribution assumption imposed on &

somgling mode | only assume they (1) have zero mean, (2) have constant variance,
(Sutuve lecture)
e and (3) are mutually uncorrelated. 72,625 con have gay disbihibions)
2. parameters in the model: B and & | Sorms (noa-pammetric approoach)

* a geometric view — an example 32

SUM of columms P |

dok model: y,=G,+pz,+¢& ,1=1,2,3 = Y= X[+ £(X mitipled by @ ’
mabr& Y model matrix X
(‘|205] Tl 3.27

5 €1 20.5 1 3.27 €1
“ ” 32.8 1 5.16 [ﬂo] € — 32.8 | = B + 61
1 1 =3°

1 5.16 | + | €
41.7 = €3

— —— _7( ~ i 0 ,'Rg'st
4 of observations = 3, # of tersin =2 = YOR? Rz‘e__

of observations = 3, # of parameters in =2 RS, A
A N ~ 20.5 =
Y =X~ |E=Y-Xp 325 1 estimation of B(i.e., finding B)is
N LN -0 | equivalent to finding a vector (i.e., X3)
7| on the 2-dim model space Q =span{x}

184 REi% T Y

Q: Y=X,3+Ys = XB,+.¢é

X7

41.7 1 6.32 €3 6.32

Y =

| the space spanned by | 1 o5 | |+ |= find gst. X3 is“close”toY Y=Y
] 1 3.27 i . as sinilar as

L e, {50 1|45 5.16} Bo. 1 GR}. | > Q: is it reasonable? \4 possible

| 1 6.32 | - -

s gimension =[2] But, 2CR2 | | > Q:what’s the measurement of closeness?
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* a geometric view — a general description ~ mwedel mb‘ixpy 1 — ‘H 0§33

| WAL
»n=*# of observations; p=# of parameters'in 3 me_[ ‘ l e ‘ ] Ed P
>»YlQ Rn BUR?E Note Data sets with Qo..gl,"-,gp-. | >3 S, - T
> assume p < n p>n do exist € R ‘ a ucm(ﬂ)

> assume X is of full rank, rank(X)=p (= X7X is non-singular <= the p columns
of X are linearly independent < the model space Q spanned by the columns

of X 1s of dimension p) X7X:Q pxp matrix
Y1 1 g11 91p-1 €1
- Y — — 1 g g2 p— €
AcR® |2 |=Y=XB+e=p5o| | |46 P |+ 4Bpa | 070 |4 2
N'eR® L 1 B0 L 91 F% Gl 9np €n
QU residual space i fz "f.‘_-"i:‘ﬁ))'e“";.;"& & (penz“ i
(orthogonal complement of Q, — ! "&B‘— Y@ ée {4
£ _ ‘g/stematlc random
—»data = Tgucture T error
n-dim = p-dim + (n- p)-dim
Y XB3 g7

Use a simpler structure (p-dim) to
describe the complex (n-dim) Y

= if successful (i.e, Y = Xp),
main structure of Yis p-dim E>

p- 3-4

@ ﬁnd such that X ﬁ is as “close” as possible to Y, where closeness is measured by
Euchdean distance (Q: when, i.e. under what assumption, is this a reasonable
measurement of closeness‘7) Lb‘U'a.-( £)=62 1 9

%ﬁiﬁ.ﬁ%‘;ﬂ‘- [4: - (xB) ] & 1z Sl e acomelatad
> X} is the orthogonal pI'O] jection of Yonto Q, (the space spanned by the coluﬁfns

of X), L., =Hy . IF Q.= spanixi} =span{Xa}=122.
Surrogate oS- n R B [an nxn T

xB ({QK? ) Xﬂ = X(XTX) XTY W‘X XI(XIX!) Xi= HI Hz-—Xz(XzX:)Xz

where X(XTX) ' XTis the orthogonal pm]ectzon matrix of Q (called hat matrix H).
> ¢ :residuals = difference between Yand X,B (ie, Y- Xﬂ) COV(X§, £)=0.n

fsurrogate of € (error) opm of nJ-_L.( I- H)Y- <
> Xﬂ 0 & , O: geometrically 0rth0g0nal=>(XB) £ =0a— ﬁf;:—?;s

T——T—q
(Note: actually, the two random vectors are uncorrelated = when normal
distribution assumption is imposed on &, they become independent)

» n—p: degree of freedom of & (Q: what is a geometric interpretation for the
? : ' i e 9
degree of freedom?) (Q: what is the constrainton ¢ ?) X‘l’é‘ = Opn) ,——}

N _ JE et cR2 ‘ —
IMEI=N pere—> dmcay=n-p] |IFlLeXorleN>NE=0
> ﬁ is the ordinary least square estimator T vector of L. T é‘;&;
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* (ordinary) least square estimator 'distril:ution form not iEecif;ed le “

» assume :&f are (i) uncorrelated (ii) equal variance (Var(&) = &21)

n
.. . ATA A . i
» define the best ,3 as that minimizes sum of squared error: 8 E= E 622

=1 31. (XB)I-
why?'S— _(Tamowde cberon - o[

p- 3-5

Whm easy to calculate <—E¢. oL
minimize | = variation due to random error only  “

n .
Z € appears on y-axis

ans Lo . . . . . . =~ DI
of uirMuze | w variation minimization =» Ycloso.i:oY o 1

20

veranl €02} o same scale in Y,;’s)

T,.{’_f ‘Tj 1
> ge=(Y-XPI(Y-XP=YY- Z_ﬂ_TXTY+ EXTX,B O
B... o

LIPS 2V S %P P
Y-8X — a second-order polynomial of 8

» One method of finding the minimizer is to differentiate
(D w.r.t. B and set the derivatives equal to zero

2Te=2XTY+2X"XpB =0
» By calculus, ,B is the solution of | X™: pxn maktrix (p<Iﬂ

XT?-» XTX ,B = XTY O called normal equation ,:{' ________ /
- =X Y¢ J‘ i L—-—-hgwﬁzﬁstpcs OfF © (under mnm]uty)

=

» assume X7X is non-singular (Q: when would it be singular?), ‘&oct?de‘tﬁ‘\fnl'g"_i?@ Zé-s

a linear A lunt@ma solusion of Sull yank
gnzhon B = (X' X)y' XY = Xﬂ X(X'X)y'X'y = HY
> H,,, = X(X"X) ' X"is called hat matrix in

statistics. It is the orthogonal projection matrix
onto Q, the space spanned by the columns of X

H2 = XY X ()XY X ]
= X (X"X)(xTX) (X)X

= X (Xx)'X" =H
» H?>=H => idempotent C"""d:“‘“’&h'ﬂ"ﬂ'P"’Pef"*"“’-S (0
mus baano_r_Hgg .. )
« H=H = symmetric projeckion makrix geometric interpretation
(e)lG\’C\SQ residual space

~» their columns Od:ho?nal =Y-HY

t—@(J-H)’=(I-H) and (I—H)T—(I—H)—T (I-H)Y || oo " T F i cn
« HI-H)=(I-H)H | =Y-XB=¢

the*eigenvalues of H (or I-H) are either O or 1; y_— 201
# of 1’s=p (or n—p); # of 0’s = n—p (or p) C/ eamen, fxtH

1§ QF (model) space spanned by the columns of X (dim = E)E

Hzx=zx if and only if z lies in Q

Hzx=0 if and only if z lies in QU, the orthogonal complement of Q
> predicted values: 'Y = X,[}Z HY —£ > xg Y=Xp+&
> residuals: E=Y-Xf= Y-Y= (I-H)Y <=5 £ ¢— —_8__’_‘_23‘@
> residual sum of squares (RSS): é’T = [YT(I—H)T][(I—H)H Y{(I-A)Y |
T =2tr= g of £ = €(1-H)e«

b—i
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 examples of calculating ordinary least square estimator ,é
» example 1 (one-sample problem). functional form: y,

Y=XB+¢€
Y1

Y = | ...
Yn

motrix form
1
1

XTx =1T1=n

p- 3-7
=u+e,i=1,..,n
3 = (XTX)_lXTY
= (1/n) 1Ty = Z‘(’1/71)2;;1% =7.
xX-% prom—. -]
z 11-7\’ NG S n=5ponid, 2}
_, A2 e D
x __________________

!f"!'i-"'i I

> example 2 (simple regression). functional form: y, = B, + B =)+ &,i=1, .., n

Y =X[3+ ce

matrix
formy

‘=> Yi =

(PotBrE)t By (wi—Z) +ei El%l-i-ﬁl (;—Z)+e;.

2 x

O3~ o3+

S (zi—7)? |

NE=

ny
[ 2z — 2)yil

regres-
sion
effect

2:[(331 z)yi) J A
So(x;—7)? el

= 15) =70
& Z(X-XNY-§)
{'(Xt"‘)‘)"

* mean and covariance matrix of OLS estimator ﬂ

B =

»mean: E(ﬂ) (XTX) ' XTEY) = (XTX) ' XTXB =

(XTX)'XTY is a px1 vector of random variables, so

p. 3-8

true under some

assumptions

nx1 random vector

e, we can
contro] the X

—b‘
in data, collection

Recall. LNp. 1-2, 5 steps
2nd step: data collection

» Cou [Z ) =

(XTX)" XTI X(XTX)"

s{nna(ard error:
e estimate Sstimate, o

Tb)

~

EXYY)=6T |

e

X'X) "o (= irrelevant to Yand = |

B (i.e., unbiase
- o

[ ()( X] u;_r' )La'
&I ot hold
o s (X X’ 3z ?n GI?M

-
(4

3

Note: if we can control X, can decide the[var—cov matrix before observing Y')
E(88)= Efxyx(xx']
[ a coveqient bt
notation (- Mean)
Flnce [3 1s a random vectors, (XTX) '@ is a variance-covariance matrix.

EYIITF € ~N(o. &°T), then this 1s
the inverse of Fisher information matrix

rse(B) = (g ) o <o Tar(B)= ()62 Lpmmene o

ibe

»how to calculate the correlation between ,8 and B ?(Q: Is this correlation

also
irrele-
vant

to B

(XX e8>

influenced by 0?) (Q: What’s the difference between this correlation and the
correlation between predictors g, and g;? Ans: the former is calculated from

(XT X) ! while the latter from X7X )

WA

* Reading: Faraway
(2005, 1sted.), 2.3, 2.

4,2.5 (Np3-145(=0

¢ Further reading: D&S, 4.4, 5.1, 5.2, 20.1, 20.2

2 eI

g1 tg;

tdl 93 %cor(&. E3)=0
In genera\ cases,

e[ ]

(X’ '[&] (x™x)z3=0
check LNp 3-7, ol
Ex3. # (XXgz=0
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