

• (ordinary) least square estimator
> assume
$$\varepsilon$$
 are (i) uncorrelated (ii) equal variance $(Var(\varepsilon) = \sigma^{\varepsilon}I)$
> define the best $\hat{\beta}$ as that minimizes sum of squared error: $\varepsilon^{\varepsilon}\varepsilon = \sum_{i=1}^{n} c_{i}^{2}$
(Q: why?
• easy to calculate
• variation due to random error only
appears on y -axis
• variation minimization
• same scale in y .'s)
> $\varepsilon^{T}\varepsilon = (Y - X\beta)^{T}(Y - X\beta) = Y^{T}Y - 2\beta^{T}X^{T}Y + \beta^{T}X^{T}X\beta$ (*)
 \Rightarrow a second-order polynomial of β
> One method of finding the minimizer is to differentiate
(e) w.r.t. β and set the derivatives equal to zero
 $\Rightarrow \frac{\partial}{\partial \beta}\varepsilon^{T}\epsilon = -2X^{T}Y + 2X^{T}X\beta = 0$
> By calculus, $\hat{\beta}$ is the solution of
 $X^{T}X\beta = X^{T}Y = \varepsilon$ called normal equation
 $X^{T}M\beta = X^{T}Y = \varepsilon$ called normal equation
 $X^{T}M\beta = X^{T}X^{T}Y \Rightarrow X\hat{\beta} = X(X^{T}X)^{-1}X^{T}Y = HY$
> assume $X^{T}X$ is non-singular (Q: when would it be singular?),
 $\hat{\beta} = (X^{T}X)^{-1}X^{T}Y \Rightarrow X\hat{\beta} = X(X^{T}X)^{-1}X^{T}Y = HY$
> $H_{rest} = \lambda \text{ symmetric}$
 $(I-H)^{2}=(I-H)H = 0$
 $H^{T}=H \Rightarrow \text{ symmetric}$
 $(I-H)^{2}=(I-H)H = 0$
 $H^{T}=H \Rightarrow \text{ symmetric}$
 $H^{T}=H \Rightarrow \text{ symmetric}$
 $H^{T}=H \Rightarrow \text{ if and only if x lies in Ω^{1} , the orthogonal complement of Ω
> predicted values: $\hat{Y} = X\hat{\beta} = HY$
> residual sum of squares (RSS): $\hat{\varepsilon}^{T}\hat{\varepsilon} = [Y^{T}(I-H)^{T}][(I-H)Y] = Y^{T}(I-H)Y$$

• examples of calculating ordinary least square estimator
$$\hat{\boldsymbol{\beta}}$$

• example (one-sample problem). functional form: $y_i = \mu + \varepsilon_i$, $i = 1, ..., n$.
 $Y = X\beta + \epsilon$
 $Y = \begin{bmatrix} y_1 \\ y_n \end{bmatrix}$, $X = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 1$, $\beta = [\mu]$.
 $X^T X = 1^T 1 = n$
• example 2 (simple regression). functional form: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, $i = 1, ..., n$.
 $Y = X\beta + \epsilon$
 $Y = \begin{bmatrix} y_1 \\ ... \\ y_m \end{bmatrix}$, $X = \begin{bmatrix} 1 & x_1 - \bar{x} \\ 1 & x_n - \bar{x} \end{bmatrix}$, $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$.
 $X^T X = \begin{bmatrix} 1 & x_1 - \bar{x} \\ 1 & x_n - \bar{x} \end{bmatrix}$, $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$.
 $X^T X = \begin{bmatrix} 1 & x_1 - \bar{x} \\ 1 & x_n - \bar{x} \end{bmatrix}$, $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$.
 $X^T X = \begin{bmatrix} 1 & x_1 - \bar{x} \\ 1 & x_n - \bar{x} \end{bmatrix}$, $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$.
 $X^T X = \begin{bmatrix} 1 & x_1 - \bar{x} \\ 1 & x_n - \bar{x} \end{bmatrix} \begin{bmatrix} 1 & x_1 - \bar{x} \\ y_n \end{bmatrix}$, $y_i = (\bar{y} - \rho \frac{\sigma_n}{\sigma_n} \bar{x}) + \rho \frac{\sigma_n}{\sigma_n} x_i + \epsilon_i$.
 $= \begin{bmatrix} \frac{1}{n} & 0 \\ 0 & \sum_{i=1}^{n} (x_i - \bar{x}) + 1 \end{bmatrix}$, $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$.
 $X^T X = \begin{bmatrix} x - 0 \\ 0 & \sum_{i=1}^{n} (x_i - \bar{x}) + \frac{\sigma_n}{\sigma_n} x_i + \epsilon_i$.
 $\frac{1}{\sigma} = 0$
 $\sum_{i=1}^{n} \frac{\sigma_n}{\sigma_n} \frac{\sigma_n}{\sigma_n} x_i + \varepsilon_n + \frac{\sigma_n}{\sigma_n} x_i + \varepsilon_n + \frac{\sigma_n}{\sigma_n} x_i + \epsilon_n + \frac{\sigma_n}{\sigma_n} x_i + \frac{\sigma_n}{\sigma_n} x_i$

	Gauss-Markov Theorem (Reading: F, 2.6)	μ.
Q : why i	$\hat{\boldsymbol{\beta}} (= (X^T X)^{-1} X^T Y, \text{OLS estimator}) \text{ a good estimator}?$	
≻ it	esults from orthogonal projection, makes sense geometrically	
≻ (<u>F</u>	YI) if $\boldsymbol{\varepsilon} \sim \underline{N}(0, \sigma^2 I)$, $\hat{\boldsymbol{\beta}}$ is the maximum likelihood estimator (exercise)	
≻ G	uss-Markov thm states $\hat{\beta}$ is BLUE ("Best" Linear Unbiased Estimator)	
• actima	r	
knowr	vector, is estimable if and only if there exists a linear combination of y_i	s,
i.e., <u>a</u> ⁷	Y, such that $\underline{E(a^TY)} = c^T \beta$, $\forall \beta$ $(\Rightarrow a^TY)$: an <u>unbiased</u> estimator of c^{-1}	þ
► <u>Ex</u>	imples of estimable function	
	two sample problem:	
	prediction:	
► If : Theore of the n	<i>X</i> is <u>of full rank</u> , all $c^T \boldsymbol{\beta}$'s, $\forall c \in \mathbb{R}^p$, are <u>estimable</u> . NTHU STAT 5410, 2022, Lecture Notes made by SW. Cheng (NTHU, Taiwan) n . For a linear model $\underline{Y}=X \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, suppose 1 $\underline{E}(\boldsymbol{\varepsilon})=0$ (i.e., the structural particular production of $\mathbf{E}(\mathbf{y})=\mathbf{x}\boldsymbol{\beta}$, is correct) and 2 $Var(\boldsymbol{\varepsilon})=\sigma^2 I(\sigma^2 < \infty)$. Let 3 $\boldsymbol{\psi}=c^T \boldsymbol{\beta}$ be	p. ar
Theore of the n estimate where	<i>X</i> is <u>of full rank</u> , all $c^T \boldsymbol{\beta}$'s, $\forall c \in \mathbb{R}^p$, are <u>estimable</u> . NTHU STAT 5410, 2022, Lecture Notes made by SW. Cheng (NTHU, Taiwan) n . For a linear model $\underline{Y = X \boldsymbol{\beta} + \boldsymbol{\epsilon}}$, suppose 1 $\underline{E(\boldsymbol{\epsilon}) = 0}$ (i.e., the <u>structural particular</u> odel, $\underline{E(Y) = X \boldsymbol{\beta}}$, is <u>correct</u>) and 2 $\underline{Var(\boldsymbol{\epsilon}) = \sigma^2 I}(\sigma^2 < \infty)$. Let 3 $\underline{\psi = c^T \boldsymbol{\beta}}$ be <u>e function</u> . Then, in the class of <u>all unbiased linear estimators</u> of $\underline{\psi}, \underline{\hat{\psi} = 0}$ is the <u>OLS</u> estimator, has the <u>minimum variance</u> and is <u>unique</u> .	$c^{p.}$
► If	<i>X</i> is <u>of full rank</u> , all $c^T \boldsymbol{\beta}$'s, $\forall c \in \mathbb{R}^p$, are <u>estimable</u> . <u>NTHU STAT 5410, 2022</u> , Lecture Notes made by SW. Cheng (NTHU, Taiwan) n . For a linear model $\underline{Y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}$, suppose 1 $\underline{E}(\boldsymbol{\epsilon})=0$ (i.e., the structural particular definition of $\underline{Y}=X \boldsymbol{\beta}$, is correct) and 2 $\underline{Var}(\boldsymbol{\epsilon})=\sigma^2 I$ ($\sigma^2 < \infty$). Let 3 $\underline{\psi}=c^T \boldsymbol{\beta}$ be <u>e function</u> . Then, in the class of <u>all unbiased linear estimators</u> of $\underline{\psi}, \hat{\underline{\psi}} = \underline{W}$ is the <u>OLS</u> estimator, has the <u>minimum variance</u> and is <u>unique</u> .	$c^{p.}$
► If . • Theore of the mestimate where proof:	<i>X</i> is <u>of full rank</u> , all $c^T \boldsymbol{\beta}$'s, $\forall c \in \mathbb{R}^p$, are <u>estimable</u> . <u>NTHU STAT 5410, 2022, Lecture Notes</u> made by SW. Cheng (NTHU, Taiwan) n . For a linear model $Y = X \boldsymbol{\beta} + \boldsymbol{\epsilon}$, suppose 1 $E(\boldsymbol{\epsilon}) = 0$ (i.e., the structural particular definition of $\mathbf{\xi}(\mathbf{x}) = \mathbf{x} \boldsymbol{\beta}$, is <u>correct</u>) and 2 $Var(\boldsymbol{\epsilon}) = \sigma^2 I (\sigma^2 < \infty)$. Let 3 $\psi = c^T \boldsymbol{\beta}$ be <u>e function</u> . Then, in the class of <u>all unbiased linear estimators</u> of $\psi, \hat{\psi} = \mathbf{x}$ is the <u>OLS</u> estimator, has the <u>minimum variance</u> and is <u>unique</u> .	$c^{p.}$
► If	<i>X</i> is <u>of full rank</u> , all $c^T \boldsymbol{\beta}$'s, $\forall c \in \mathbb{R}^p$, are <u>estimable</u> . NTHU STAT 5410, 2022, Lecture Notes made by SW. Cheng (NTHU, Taiwan) n . For a linear model $Y = X \boldsymbol{\beta} + \boldsymbol{\epsilon}$, suppose (1) $E(\boldsymbol{\epsilon}) = 0$ (i.e., the structural particular odd), $E(Y) = X \boldsymbol{\beta}$, is correct) and (2) $Var(\boldsymbol{\epsilon}) = \sigma^2 I (\sigma^2 < \infty)$. Let (3) $\psi = c^T \boldsymbol{\beta}$ be <u>e function</u> . Then, in the class of <u>all unbiased linear estimators</u> of $\psi, \psi = 1$ is the <u>OLS</u> estimator, has the <u>minimum variance</u> and is <u>unique</u> .	$c^{p.}$
► If i • Theore of the mean of	<i>X</i> is <u>of full rank</u> , all $c^T \beta$'s, $\forall c \in \mathbb{R}^p$, are <u>estimable</u> . <u>NTHU STAT 5410, 2022</u> , Lecture Notes made by SW. Cheng (NTHU, Taiwan) n . For a linear model $\underline{Y = X \beta + \epsilon}$, suppose $\bigcirc E(\epsilon) = 0$ (i.e., the structural paradel, $\underline{E(Y) = X \beta}$, is correct) and $\bigcirc Var(\epsilon) = \sigma^2 I (\sigma^2 < \infty)$. Let $\bigcirc \psi = c^T \beta$ be <u>e function</u> . Then, in the class of <u>all unbiased linear estimators</u> of $\psi, \hat{\psi} = \frac{1}{2}$ is the <u>OLS</u> estimator, has the <u>minimum variance</u> and is <u>unique</u> .	$c^{p.}$
► If . • Theore of the mestimate where proof:	<i>X</i> is <u>of full rank</u> , all $c^T \beta$'s, $\forall c \in \mathbb{R}^p$, are <u>estimable</u> . <u>NTHU STAT 5410, 2022</u> , Lecture Notes made by SW. Cheng (NTHU, Taiwan) n . For a linear model $Y = X\beta + \varepsilon$, suppose (1) $E(\varepsilon) = 0$ (i.e., the structural particular of $E(Y) = X\beta$, is correct) and (2) $Var(\varepsilon) = \sigma^2 I$ ($\sigma^2 < \infty$). Let (3) $\psi = c^T \beta$ be <u>e function</u> . Then, in the class of <u>all unbiased linear estimators</u> of ψ , $\hat{\psi} = 0$ is the <u>OLS</u> estimator, has the <u>minimum variance</u> and is <u>unique</u> .	$c^{p.}$
► If . • Theore of the mestimate where proof:	<i>X</i> is <u>of full rank</u> , all $c^T \boldsymbol{\beta}$'s, $\forall c \in \mathbb{R}^p$, are <u>estimable</u> . <u>NTHU STAT 5410, 2022, Lecture Notes</u> made by SW. Cheng (NTHU, Taiwan) n . For a linear model $\underline{Y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}$, suppose $\bigcirc E(\boldsymbol{\epsilon})=0$ (i.e., the structural product of $\underline{Y}=X \boldsymbol{\beta}$, is correct) and $\bigcirc Var(\boldsymbol{\epsilon})=\sigma^2 I$ ($\sigma^2 < \infty$). Let $\bigcirc \psi=c^T \boldsymbol{\beta}$ be <u>e function</u> . Then, in the class of <u>all unbiased linear estimators</u> of $\psi, \hat{\psi} = D$ is the <u>OLS</u> estimator, has the <u>minimum variance</u> and is <u>unique</u> .	$c^{p.}$
► If • Theore of the mestimal where proof:	<i>X</i> is <u>of full rank</u> , all $c^T \beta$'s, $\forall c \in \mathbb{R}^p$, are <u>estimable</u> . <u>NTHU STAT 5410, 2022</u> , Lecture Notes made by SW. Cheng (NTHU, Taiwan) n . For a linear model $\underline{Y}=X\beta+\varepsilon$, suppose 1 $\underline{E}(\varepsilon)=0$ (i.e., the structural particular odd) odel, $\underline{E}(Y)=X\beta$, is correct) and 2 $\underline{Var}(\varepsilon)=\sigma^2 I (\sigma^2 < \infty)$. Let 3 $\underline{\psi}=c^T \beta$ be <u>e function</u> . Then, in the class of <u>all unbiased linear estimators</u> of $\underline{\psi}, \hat{\psi} = \frac{1}{2}$ is the <u>OLS</u> estimator, has the <u>minimum variance</u> and is <u>unique</u> .	c^{p}
► If . • Theore of the mestimal where proof:	<i>X</i> is <u>of full rank</u> , all $c^T \beta$'s, $\forall c \in \mathbb{R}^p$, are <u>estimable</u> . <u>NTHU STAT 5410, 2022</u> , Lecture Notes made by SW. Cheng (NTHU, Taiwan) n . For a linear model $\underline{Y = X \beta + \varepsilon}$, suppose $(1 \ \underline{E}(\varepsilon) = 0)$ (i.e., the structural prodel, $\underline{E}(Y) = X \beta$, is correct) and $(2 \ Var(\varepsilon) = \sigma^2 I \ (\sigma^2 < \infty)$. Let $(3 \ \psi = c^T \beta)$ be <u>e function</u> . Then, in the class of all <u>unbiased linear estimators</u> of $\psi, \hat{\psi} = 0$ is the <u>OLS</u> estimator, has the <u>minimum variance</u> and is <u>unique</u> .	$c^{p.}$
► If . Theore of the mestimal where proof:	<i>X</i> is <u>of full rank</u> , all $c^T \beta$'s, $\forall c \in \mathbb{R}^p$, are <u>estimable</u> . <u>NTHU STAT 5410, 2022</u> , Lecture Notes made by SW. Cheng (NTHU, Taiwan) n . For a linear model $\underline{Y}=\underline{X}\beta+\underline{\varepsilon}$, suppose $\bigcirc \underline{E}(\underline{\varepsilon})=\underline{0}$ (i.e., the structural prodel, $\underline{E}(\underline{Y})=\underline{X}\beta$, is <u>correct</u>) and $\textcircled{O} Var(\underline{\varepsilon})=\sigma^2 I(\sigma^2<\infty)$. Let $\textcircled{O} \underline{\psi}=c^T \beta$ be <u>e function</u> . Then, in the class of <u>all unbiased linear estimators</u> of $\underline{\psi}, \underline{\psi} = \underline{W}$ is the <u>OLS</u> estimator, has the <u>minimum variance</u> and is <u>unique</u> .	p.
 Theore of the m estimate where proof: Implica 	<i>X</i> is <u>of full rank</u> , all $c^T \beta^*$ s, $\forall c \in \mathbb{R}^p$, are <u>estimable</u> . NTHU STAT 5410, 2022, Lecture Notes made by SW. Cheng (NTHU, Taiwan) n . For a linear model $\underline{Y=X\beta+\varepsilon}$, suppose $(1 \ \underline{E}(\varepsilon)=0)$ (i.e., the structural product $\underline{F}(Y)=X\beta$, is correct) and $(2 \ Var(\varepsilon)=\sigma^2 I \ (\sigma^2 < \infty)$. Let $(3 \ \underline{\psi=c^T\beta}$ be <u>e function</u> . Then, in the class of <u>all unbiased linear estimators</u> of $\underline{\psi}, \underline{\psi} = \underline{Y}$ <u>is the OLS</u> estimator, has the <u>minimum variance</u> and is <u>unique</u> . <u>ions</u> of the theorem:	p. ar
 Theore of the mestimal where proof: Implica the time 	<i>X</i> is <u>of full rank</u> , all $c^T \beta$'s, $\forall c \in \mathbb{R}^p$, are <u>estimable</u> . <u>NTHU STAT 5410, 2022</u> , <u>Lecture Notes</u> made by SW. Cheng (NTHU, Taiwan) n . For a linear model $\underline{Y = X \beta + \varepsilon}$, suppose $(1 \ \underline{E}(\varepsilon) = 0)$ (i.e., the <u>structural product of $\underline{F}(Y) = X \beta$</u> , is <u>correct</u>) and $(2 \ Var(\varepsilon) = \sigma^2 I \ (\sigma^2 < \infty)$. Let $(3 \ \underline{\psi = c^T \beta}$ be <u>e function</u> . Then, in the class of <u>all unbiased linear estimators</u> of $\underline{\psi}, \underline{\psi} = 1$ is the <u>OLS</u> estimator, has the <u>minimum variance</u> and is <u>unique</u> . <u>ions</u> of the theorem: eorem shows that the <u>OLS estimator</u> is a "good" choice	
 Theore of the mestimal where proof: Implica the time the time the second second	<i>X</i> is <u>of full rank</u> , all $c^T \beta$'s, $\forall c \in \mathbb{R}^p$, are <u>estimable</u> . NTHU STAT 5410, 2022, Lecture Notes made by SW. Cheng (NTHU, Taiwan) n . For a linear model $Y = X\beta + \varepsilon$, suppose $\bigcirc E(\varepsilon) = 0$ (i.e., the structural product, $E(Y) = X\beta$, is correct) and $\bigcirc Var(\varepsilon) = \sigma^2 I(\sigma^2 < \infty)$. Let $\bigcirc \psi = c^T \beta$ be <u>e function</u> . Then, in the class of <u>all unbiased linear estimators</u> of ψ , $\hat{\psi} = 0$ is the <u>OLS</u> estimator, has the <u>minimum variance</u> and is <u>unique</u> . <u>b</u> is the <u>OLS</u> estimator, has the <u>minimum variance</u> and is <u>unique</u> .	\mathbf{p} .
 If a standard of the mean of the	<i>X</i> is <u>of full rank</u> , all $c^T \beta^*$ s, $\forall c \in \mathbb{R}^p$, are <u>estimable</u> . <u>NTHU STAT 5410, 2022</u> , Lecture Notes made by SW. Cheng (NTHU, Taiwan) n . For a linear model $\underline{Y}=X\beta+\underline{e}$, suppose $\bigcirc \underline{E(e)}=0$ (i.e., the structural prodel, $\underline{E(Y)}=X\beta$, is correct) and $\bigcirc Var(\underline{e})=\sigma^2 I (\sigma^2 < \infty)$. Let $\bigcirc \underline{y}=c^T\beta$ be <u>e function</u> . Then, in the class of all <u>unbiased linear estimators</u> of $\underline{y}, \underline{y} = \overline{z}$ is the <u>OLS</u> estimator, has the <u>minimum variance</u> and is <u>unique</u> . <u>ions</u> of the theorem: eorem shows that the <u>OLS estimator</u> is a "good" choice the theorem does <u>not require normally distributed</u> \underline{e} may exist <u>non-linear/biased</u> estimators that are " <u>better</u> " (<u>MSE=Var+Bias</u>)	$\frac{p}{2}$

• Let
$$\underline{H}_{2} = X_{2}(X_{2}^{T}X_{2})^{-1}X_{2}^{T}$$
 be the hat matrix of X_{2} .
The matrix \underline{H}_{2} is the orthogonal projection matrix onto $\underline{\Omega}_{2} = \operatorname{span}\{X_{2}\}$.
The matrix $\underline{I} - \underline{H}_{2}$ is the orthogonal projection matrix onto $\underline{\Omega}_{2}^{\perp}$.
• Then, we have
 $(\Delta) \Rightarrow [X_{1}^{T}(\underline{I} - \underline{H}_{2})X_{1}]\hat{\beta}_{1} = X_{1}^{T}(\underline{I} - \underline{H}_{2})Y$
 $\Rightarrow [X_{1}^{T}(\underline{I} - \underline{H}_{2})X_{1}]\hat{\beta}_{1} = X_{1}^{T}(\underline{I} - \underline{H}_{2})Y$
 $\Rightarrow [X_{1}^{T}(\underline{I} - \underline{H}_{2})X_{1}]\hat{\beta}_{1} = X_{1}^{T}(\underline{I} - \underline{H}_{2})Y$
 $\Rightarrow [X_{1}^{T}(\underline{X} - \underline{H}_{2})X_{1}]\hat{\beta}_{1} = X_{1}^{T}(\underline{I} - \underline{H}_{2})Y$
 $\Rightarrow (X_{1}^{T}X_{1})\hat{\beta}_{1} = \widehat{X}_{1}^{T}\widehat{Y} (\leftarrow \text{normal equation for }\beta_{1})$
 $\text{where } -\begin{bmatrix} \overline{X}_{1} & = (\underline{I} - \underline{H}_{2})X_{1} & = X_{1} - \underline{H}_{2}X_{1} \\ \text{where } -\begin{bmatrix} \overline{X}_{1} & \overline{X}_{1} & \widehat{Y} & \widehat{Y} & [\overline{X}_{1}] \\ \widehat{Y} & = (\underline{I} - \underline{H}_{2})\mathbf{X} & [\overline{Y}, \mathbf{X}_{1}] \\ \hat{Y} = \widehat{X}_{1}\hat{\beta}_{1} + \widehat{X}_{1} \\ \widehat{Y} = \widehat{X}_{1}\hat{\beta}_{1} + \widehat{\xi}, \\ \hline{Y} = \widehat{X}_{1}\hat{\beta}_{1} + \widehat{\xi}, \\ \hline{Y} = \widehat{X}_{1}\hat{\beta}_{1} + \widehat{\xi}, \\ \hline{X}_{2}\hat{\beta}_{1} & [\overline{X}_{1}] + \widehat{X}_{1}^{T}Y \\ \hline{Y} = [X_{1}(\underline{X}_{1})^{-1}X_{1}^{T}\widehat{Y} = (X_{1}^{T}\widehat{X}_{1})^{-1}X_{1}^{T}Y, \\ \hline{Y} = [X_{1}(\underline{X}_{1})^{-1}X_{1}^{T}] \\ \hline{Y} = X_{1}\hat{\beta}_{1} + \widehat{\xi}, \\ \hline{X}_{2}\hat{\beta}_{1} & [\overline{X}_{1}](\underline{X}_{1})^{-1}X_{1}^{T}Y \\ \hline{Y} = X_{1}\hat{\beta}_{1} + \widehat{\xi}, \\ \hline{X}_{2}\hat{\beta}_{1} & [\overline{X}_{1}] + \widehat{X}_{1}(\underline{X}_{1})^{-1}X_{1}^{T}Y \\ \hline{Y} = [X_{1}(\underline{X}_{1})^{-1}X_{1}^{T}Y] \\ \hlineY = [X_{1}(\underline{X}_{1})^{-1}X_{1}^{T}Y] \\$

