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• some versions of linear model:

Estimating β

Y: random, XD: fixed; Y is a random vector with E(Y) = XM β, 

Var(Y) = σ2I

Y: random, XD: random; E(Y|XD) = XM β, Var(Y|XD) = σ2I

Y: random, XD: fixed; Y = XM β + ε, E(ε) = 0, Var(ε) = σ2I

Notes: 

deterministic component random component

observed data (yi, xi1, …, xim), i=1, …, n. Regard yi as a 

realization of a random variable Yi.

1. At this stage, no specific distribution assumption imposed on ε; 

only assume they (1) have zero mean,  (2) have constant variance, 

and (3) are mutually uncorrelated.

2. parameters in the model: β and σ2

p. 3-2• a geometric view – an example

model: yi=β0+β1xi+εi , i=1, 2, 3  Y = Xβ + ε

# of observations = 3,  # of parameters in β = 2  Y∈ℝ3, β∈ℝ2

estimation of β (i.e., finding     ) is 

equivalent to finding a vector (i.e.,         ) 

on the 2-dim model space Ω



Q: Y = Xβ + ε

what would best “separate” from ? 

(Q: What’s its meaning?)

 find β s.t. Xβ is “close” to Y

 Q: is it reasonable? 

 Q: what’s the measurement of closeness?

β̂ˆ XY = β̂ˆ -XY=ε
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Use a simpler structure (p-dim) to 

describe the complex (n-dim) Y

• a geometric view – a general description

 n = # of observations; p= # of parameters in β
 Y ∈ ℝn, β ∈ ℝp
 assume p ≤ n
 assume X is of full rank, rank(X)=p (⇔ XTX is non-singular ⇔ the p columns

of X are linearly independent ⇔ the model space Ω spanned by the columns
of X is of dimension p)

Ω: (model) space spanned by the columns of X (dim = p)

Y (n-dim)

β̂X  (p-dim) ∈ Ω

ε̂ ((n−p)-dim) ∈ Ω⊥

β̂X

= Y = Xβ + ε =

data     =                      + 

n-dim = p-dim +   (n-p)-dim

systematic 
structure

random 
error 

 if successful (i.e, Y ≈ ), 

main structure of Y is p-dim

Ω⊥: residual space

(orthogonal complement of Ω, 

dim = n−p)

p. 3-4

 find β such that Xβ is as “close” as possible to Y, where closeness is measured by 

Euclidean distance (Q: when, i.e. under what assumption, is this a reasonable

measurement of closeness?)

 is the orthogonal projection of Y onto Ω, (the space spanned by the columns 

of X), i.e., 

= X(XTX)-1XTY, 

where X(XTX)-1XT is the orthogonal projection matrix of Ω (called hat matrix H).

 : residuals = difference between Y and        (i.e, Y − )

 ⊥ , ⊥ : geometrically orthogonal

(Note: actually, the two random vectors are uncorrelated  when normal 

distribution assumption is imposed on ε, they become independent)

 n−p: degree of freedom of        (Q: what is a geometric interpretation for the 

degree of freedom?)  (Q: what is the constraint on     ?)

 is the ordinary least square estimator
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(Q: why?

 easy to calculate

 variation due to random error only 

appears on y-axis

 variation minimization

 same scale in yi’s)

∂

∂β
ǫTǫ =

• (ordinary) least square estimator

 assume ε are (i) uncorrelated (ii) equal variance (Var(ε) = σ2I)

 define the best as that minimizes sum of squared error: εTε =

 εTε = (Y − Xβ)T (Y − Xβ) = YTY − 2βTXTY + βTXTXβ (∗)

 a second-order polynomial of β
 One method of finding the minimizer is to differentiate

(∗) w.r.t. β and set the derivatives equal to zero

 −2XTY + 2XTXβ = 0

 By calculus,      is the solution of 

XTXβ = XTY ⇐ called normal equation

p. 3-6

 predicted values: = = HY
 residuals: = Y − = Y − = (I−H)Y

 residual sum of squares (RSS): =   [YT(I−H)T][(I−H)Y] = YT(I−H)Y

Ŷ

ε̂ β̂X

εε ˆˆ T

 Hn×n = X(XTX)-1XT is called hat matrix in 

statistics. It is the orthogonal projection matrix

onto Ω, the space spanned by the columns of X

 H2=H idempotent

 HT=H symmetric

 (I−H)2=(I−H) and (I−H)T=(I−H)

 H(I−H) = (I−H)H = 0

 the eigenvalues of H (or I−H) are either 0 or 1; 

# of 1’s = p (or n−p); # of 0’s = n−p (or p)

 assume XTX is non-singular (Q: when would it be singular?),

β̂X

 Hx=x if and only if x lies in Ω
 Hx=0 if and only if x lies in Ω⊥, the orthogonal complement of Ω

Ŷ

geometric interpretation

β̂ β̂X= (XTX)-1XTY  = X(XTX)-1XTY ≡ HY



p. 3-7

• examples of calculating ordinary least square estimator

 example 1 (one-sample problem). functional form: yi = µ + εi, i = 1, ..., n.

 example 2 (simple regression). functional form: yi = β0 + β1 xi + εi, i = 1, ..., n.

regres-

sion 

effect

β̂

p. 3-8• mean and covariance matrix of OLS estimator .

=  (XTX)−1XTY is a p×1 vector of random variables, so

mean: E(    ) = (XTX)−1XTE(Y) = (XTX)−1XTXβ = β (i.e., unbiased)

Cov(    ) = (XTX)−1XTσ2I X(XTX)−1 = (XTX)-1σ2 ( irrelevant to Y and β 

Note: if we can control X, can decide the var-cov matrix before observing Y )

Since      is a random vectors, (XTX)−1σ2 is a variance-covariance matrix. 

se(    ) =
how to calculate the correlation between       and       ? (Q: Is this correlation 

influenced by σ?) (Q: What’s the difference between this correlation and the 

correlation between predictors gi and gj? Ans: the former is calculated from 

(XTX)-1 while the latter from XTX )

 Further reading: D&S, 4.4, 5.1, 5.2, 20.1, 20.2
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 Reading: Faraway 

(2005, 1st ed.), 2.3, 2.4, 2.5
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Q: why is      (=(XTX)−1XTY , OLS estimator) a good estimator?

 it results from orthogonal projection, makes sense geometrically

 (FYI) if ε∼N(0, σ2I),       is the maximum likelihood estimator (exercise)

 Gauss-Markov thm states      is BLUE (“Best” Linear Unbiased Estimator) 

• estimable function: a linear combination of the parameters ψ=cTβ , where c is a 

known vector, is estimable if and only if there exists a linear combination of yi’s, 

i.e., aTY, such that E(aTY)=cTβ , ∀ β ( aTY : an unbiased estimator of cTβ )

Examples of estimable function

 two sample problem:

 prediction:

If X is of full rank, all cTβ’s, ∀ c∈ℝp, are estimable.

Gauss-Markov Theorem (Reading: F, 2.6)

β̂

β̂
β̂

p. 3-10

proof:

• Theorem. For a linear model Y=Xβ+ε, suppose ① E(ε)=0 (i.e., the structural part

of the model, E(Y)=Xβ, is correct) and ② Var(ε)=σ2I (σ2<∞). Let ③ ψ=cTβ be an 

estimable function. Then, in the class of all unbiased linear estimators of ψ,              , 

where      is the OLS estimator, has the minimum variance and is unique.

• Implications of the theorem:

 the theorem shows that the OLS estimator is a “good” choice

 Note: the theorem does not require normally distributed ε
 there may exist non-linear/biased estimators that are “better” (MSE=Var+Bias2)

 if some assumptions are not true, there will be better estimators

β̂ˆ T
c=ψ

β̂
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• Situations where estimators other than the OLS estimator should be considered

 when ε are correlated or have unequal variance, (Var(ε)=σ2I is violated. 

Q: what will be seen in data analysis? how to check?) 

 use generalized least square estimator

 when error distribution is long-tailed (e.g., there exists outliers or σ2=∞. 

Q: what will be seen in data analysis? how to check?) 

 use robust estimators, typically not linear in Y

 when the predictors are highly correlated, i.e., collinear (non-singular XTX

is “partially” violated. Q: what will be seen in data analysis? how to check?) 

 use biased estimators such as ridge regression

 when some important predictors are not included in fitted model ( E(ε)=0

is violated, e.g., true model (MT): E(Y)=X1β1+X2β2, and fitted model (MF): 

E(Y)=X1β1. Q: what will be seen in data analysis? how to check?) 

(Note: From the viewpoint of data analysis, it implies you should examine

whether these situations exist in your data when performing regression analysis. 

It’s interesting that the theorem not only shows us how good OLS is, but also

indicates what conditions should be concerned and checked in data analysis.)

 OLS estimator may 

not be unbiased

p. 3-12

Estimation of a subset of parameters

substituting
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p. 3-14

ε̂

Estimating σ2

• Q: Which part in data contains information about σ2?

• Q: What is a suitable function (statistics) of      for 

estimating σ2?

• E(       ) = (n−p)σ2, where n=# of observations, p=# of parameters in β

(Note:     is located in the (n−p)-dim residual space Ω⊥)

• actually,       has the minimum variance among all quadratic unbiased estimators

of σ2

)/(ˆ pnRSS −=σ•

• (FYI) if ε∼N(0, σ2I), the maximum likelihood estimator of σ2 is /n = RSS/n 

(exercise)

 Reading: Faraway (2005, 1st ed.), 2.4

• estimate σ2 by /(n−p) = RSS/(n−p)  an unbiased estimator

εε ˆˆTRSS =
= [YT(I−H)T][(I−H)Y] = YT(I−H)Y

εε ˆˆT

ε̂

εε ˆˆˆ 2 T=σ

εε ˆˆT

2σ̂



p. 3-15

• R2, coefficient of determination or percentage of variance explained

Goodness-of-Fit: how well does the model fit the data?

Interpretation of R2: “proportion of total variation in Y that can be explained by the 

effects gi’s.” ( → concept: source of variation in Y)

RSSΩ is the RSS calculated from model 1 (Ω, with all effects gi’s), 

TSSω is the RSS calculated from model 2 (ω, without any effects gi’s).

• Q: What’s “goodness”-of-fit? Why we need it? What can it imply and what cannot? 

 R=correlation between and Y ; for simple regression (i.e., Ω only has one 

effect g1), R=correlation between g1 and Y (from the geometry viewpoint, ...)

Ŷ

p. 3-16

 0 ≤ R2 ≤ 1, a value closer to 1 indicates a better fit. (what if n≈p?)

 Q: What is a good value of R2? Ans: It depends.

 Note. R2 does not indicate whether the model 

E(Y)=Xβ is correct , i.e., 

high R2   fitted model is correct

low R2  fitted model is incorrect

 Warning. R2 as defined here does not make any sense 

if an intercept is not in model. Consider simple 

regression:

(i) y=β0+β1x+ε (ii) y=β1x+ε
y=β0+ε y=ε
(when β1=0) (when β1=0)

 Beware of high R2 reported from models without an intercept.

 Formulate exists for no-interceptR2 (e.g, compare the RSSs of the 
models Ω:y=β1x+ε and ω:y=β0+ε), but same graphical intuition is not 
available.

 Resist throwing out intercept term in model (Note: when intercept is not 
in model (or 1∉Ω), sum of residuals might not be zero)

(e.g., a model with n≈p will have an R2 ≈ 1; however, 

such high R2 might only indicate over-fitting)
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Cases for which R2 seems appropriate under the model: y=β0+β1x+ε
(Q: Which R2 is higher?)

Cases for which R2 is inappropriate under the model: y=β0+β1x+ε

 When (Y, X) follows a multivariate Normal distribution, R2 has a 

connection with population parameters (more details will be given in 

sampling model, future lecture). 

 However, if (simple) random sampling is not used in data collection

stage, the R2 no longer estimates a population value (examples?)

p. 3-18

 R2 value can be manipulated merely by 

changing the data collection plan

(Q: What is the data collection plan that can 

generate maximum R2?)

• Alternative measure for goodness of fit: 

 It is related to standard error of estimates of β and 

prediction

 It is measured in the unit of the response (cf: R2 is 

free of unit)

σ̂

R2 = 0.24

R2 = 0.37

R2 = 0.027

 Reading: Faraway (2005, 1st ed.), 2.7

 Further reading: D&S, 5.2, 11.2, 21.5


