

Cathy O'Nell (2016), Weapons of Math Destruction (中譯: 大數據的傲慢與偏見).

and $\underline{E(\mathcal{E})} = \theta$ and $\underline{var}(\mathcal{E}) = \sigma^2 I$ (Note: the assumption that errors are normally distributed is not required at the estimation stage)

$y_{i} \text{ s are } \underline{I.i.d.} \text{ with } \underline{Ineal} \ \mu \text{ and } \underline{variance} \ o, \ i=1,,n$ $Y = \begin{bmatrix} y_{1} \\ y_{2} \\ \dots \\ y_{n} \end{bmatrix}, \ X = \begin{bmatrix} 1 \\ 1 \\ \dots \\ 1 \end{bmatrix}, \ \beta = \begin{bmatrix} \mu \end{bmatrix}, \ \varepsilon = \begin{bmatrix} \epsilon_{1} \\ \epsilon_{2} \\ \dots \\ \epsilon_{n} \end{bmatrix}.$ • Example 2 (the model in two sample problem): $z_{i} \text{'s are } \underline{i.i.d.} \text{ with } \underline{\text{mean }} \mu_{1} \text{ and } \underline{variance} \ \sigma^{2}, \ i=1,,\underline{m} \qquad \boxed{Y \ X \ g_{1}(X) \ g_{2}(Z)} \\ w_{j} \text{'s are } \underline{i.i.d.} \text{ with } \underline{\text{mean }} \mu_{2} \text{ and } \underline{variance} \ \sigma^{2}, \ j=1,,\underline{m} \qquad \boxed{Y \ X \ g_{1}(X) \ g_{2}(Z)} \\ w_{j} \text{'s are } \underline{i.i.d.} \text{ with } \underline{\text{mean }} \mu_{2} \text{ and } \underline{variance} \ \sigma^{2}, \ j=1,,\underline{m} \qquad \boxed{Y \ X \ g_{1}(X) \ g_{2}(Z)} \\ z_{1} \ 1 \ 1 \ 0 \\ \dots \ \dots \ \dots \\ z_{m} \ w_{1} \\ w_{1} \\ w_{1} \\ w_{n} \end{bmatrix}, \ X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \dots & \dots \\ 0 & 1 \end{bmatrix}, \ \beta = \begin{bmatrix} \mu_{1} \\ \mu_{2} \\ \mu_{2} \end{bmatrix}, \ \varepsilon = \begin{bmatrix} \epsilon_{1} \\ \cdots \\ \epsilon_{m} \\ \delta_{1} \\ \dots \\ \delta_{m} \end{bmatrix}, \qquad \underbrace{w_{n} \ 2 \ 0 \ 1} \\ w_{n} \ 2 \ 0 \ 1 \end{bmatrix}$		u 's are i i d with mean u and variance $\sigma^2 i=1$				
$Y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}, X = \begin{bmatrix} 1 \\ 1 \\ \dots \\ 1 \end{bmatrix}, \beta = \begin{bmatrix} \mu \end{bmatrix}, \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_n \end{bmatrix}.$ • Example 2 (the model in two sample problem): z_i 's are i.i.d. with mean μ_1 and variance σ^2 , $i=1,\dots,\underline{m}$ w_j 's are i.i.d. with mean μ_2 and variance σ^2 , $j=1,\dots,\underline{m}$ $Y = \begin{bmatrix} z_1 \\ \dots \\ z_m \\ w_1 \\ \dots \\ w_n \end{bmatrix}, X = \begin{bmatrix} 1 & 0 \\ \dots & \dots \\ 1 & 0 \\ 0 & 1 \\ \dots & \dots \\ 0 & 1 \end{bmatrix}, \beta = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_m \\ \delta_1 \\ \dots \\ \delta_n \end{bmatrix}.$		g_i s are <u>1.1.d.</u> with <u>incar</u> μ and <u>variance</u> O , $i=1,,n$				
$Y = \begin{bmatrix} y_2 \\ \vdots \\ y_n \end{bmatrix}, X = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}, \beta = \begin{bmatrix} \mu \end{bmatrix}, \varepsilon = \begin{bmatrix} \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}.$ • Example 2 (the model in two sample problem): z_i 's are i.i.d. with mean μ_1 and variance σ^2 , $i=1,,\underline{m}$ w_j 's are i.i.d. with mean μ_2 and variance σ^2 , $j=1,,\underline{m}$ $Y = \begin{bmatrix} x_1 \\ \vdots \\ w_1 \\ \vdots \\ w_n \end{bmatrix}, X = \begin{bmatrix} 1 & 0 \\ \vdots & \vdots \\ 0 & 1 \\ \vdots \\ w_n \end{bmatrix}, \beta = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_2 \end{bmatrix}, \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_m \\ \delta_1 \\ \vdots \\ \delta_n \end{bmatrix}, \dots, \dots, w_{n-2} = 0$		$\begin{bmatrix} y_1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ϵ_1				
• Example 2 (the model in two sample problem): $z_i's \text{ are } \underline{i.i.d.} \text{ with } \underline{\text{mean }} \mu_1 \text{ and } \underline{\text{variance }} \sigma^2, i=1,,\underline{m} \qquad \boxed{Y X g_1(X) g_2(X)} \\ w_j's \text{ are } \underline{i.i.d.} \text{ with } \underline{\text{mean }} \mu_2 \text{ and } \underline{\text{variance }} \sigma^2, j=1,,\underline{m} \qquad \boxed{X X g_1(X) g_2(X)} \\ w_j's \text{ are } \underline{i.i.d.} \text{ with } \underline{\text{mean }} \mu_2 \text{ and } \underline{\text{variance }} \sigma^2, j=1,,\underline{m} \qquad \boxed{X X g_1(X) g_2(X)} \\ w_j's \text{ are } \underline{i.i.d.} \text{ with } \underline{\text{mean }} \mu_2 \text{ and } \underline{\text{variance }} \sigma^2, j=1,,\underline{m} \qquad \boxed{X x \dots \dots \dots} \\ \frac{z_1 1 1 0}{\dots \dots \dots \dots \dots} \\ \frac{z_m 1 1 0}{\dots \dots \dots \dots \dots} \\ 1 0 0 1 \dots \dots \dots \dots \dots \\ \delta_m \dots \dots \dots \dots \dots \dots \\ w_n 2 0 1 \dots \dots \dots \\ w_n 2 0 1 \dots \dots \dots \\ w_n 2 0 1 \dots \dots \dots \dots \\ w_n 2 0 1 \dots \dots \dots \dots \dots \dots \\ w_n 2 0 1 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	Y=	$\boldsymbol{\beta} = \begin{bmatrix} y_2 \\ y_2 \end{bmatrix}, \boldsymbol{X} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \boldsymbol{\beta} = \begin{bmatrix} \mu \end{bmatrix}, \boldsymbol{\varepsilon} = \begin{bmatrix} \epsilon_2 \\ \epsilon_2 \end{bmatrix}.$				
• Example 2 (the model in two sample problem): z_{i} 's are <u>i.i.d.</u> with <u>mean</u> μ_{1} and <u>variance</u> σ^{2} , $i=1,,\underline{m}$ w_{j} 's are <u>i.i.d.</u> with <u>mean</u> μ_{2} and <u>variance</u> σ^{2} , $j=1,,\underline{m}$ $Y = \begin{bmatrix} x_{1} \\ \cdots \\ z_{m} \\ w_{1} \\ \cdots \\ w_{n} \end{bmatrix}$, $X = \begin{bmatrix} 1 & 0 \\ \cdots & \cdots \\ 1 & 0 \\ 0 & 1 \\ \cdots & \cdots \\ 0 & 1 \end{bmatrix}$, $\beta = \begin{bmatrix} \mu_{1} \\ \mu_{2} \\ \vdots \end{bmatrix}$, $\varepsilon = \begin{bmatrix} \varepsilon_{1} \\ \cdots \\ \varepsilon_{m} \\ \delta_{1} \\ \cdots \\ \delta_{m} \end{bmatrix}$, $w_{1} = \begin{bmatrix} 1 & 0 \\ \cdots & \cdots \\ u_{n} & 2 & 0 & 1 \\ \cdots & \cdots \\ w_{n} & 2 & 0 & 1 \end{bmatrix}$		u_n 1 ϵ_n				
• Example 2 (the model in two sample problem): $z_i \text{'s are } \underline{i.i.d.} \text{ with } \underline{\text{mean }} \mu_1 \text{ and } \underline{\text{variance }} \sigma^2, i=1,,\underline{m} \qquad \boxed{Y X g_1(X) g_2(X)} \\ w_j \text{'s are } \underline{i.i.d.} \text{ with } \underline{\text{mean }} \mu_2 \text{ and } \underline{\text{variance }} \sigma^2, j=1,,\underline{m} \qquad \boxed{X X g_1(X) g_2(X)} \\ w_j \text{'s are } \underline{i.i.d.} \text{ with } \underline{\text{mean }} \mu_2 \text{ and } \underline{\text{variance }} \sigma^2, j=1,,\underline{m} \qquad \boxed{X X g_1(X) g_2(X)} \\ w_j \text{'s are } \underline{i.i.d.} \text{ with } \underline{\text{mean }} \mu_2 \text{ and } \underline{\text{variance }} \sigma^2, j=1,,\underline{m} \qquad \boxed{X X g_1(X) g_2(X)} \\ w_1 1 0 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	Б					
$\boldsymbol{Y} = \begin{bmatrix} z_{1} \\ \cdots \\ w_{1} \\ \cdots \\ w_{n} \end{bmatrix}, \boldsymbol{X} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \cdots \\ w_{n} \end{bmatrix}, \boldsymbol{\beta} = \begin{bmatrix} \mu_{1} \\ \mu_{2} \end{bmatrix}, \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{1} \\ \cdots \\ \varepsilon_{m} \\ \delta_{1} \\ \cdots \\ \delta_{m} \end{bmatrix}, \boldsymbol{w} = \begin{bmatrix} 1 & 0 \\ \cdots \\ w_{n} & 2 \\ \cdots \\ w_{n} & 2 \end{bmatrix}, \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{1} \\ \cdots \\ \varepsilon_{m} \\ \delta_{1} \\ \cdots \\ \delta_{m} \\ \delta_{m} \end{bmatrix}, \boldsymbol{w} = \begin{bmatrix} \varepsilon_{1} \\ 0 \\ \cdots \\ w_{n} & 2 \\ \cdots \\ w_{n} & 2 \\ \cdots \\ \varepsilon_{m} \\ \cdots \\ \cdots \\ w_{n} & 2 \\ \cdots \\ \varepsilon_{m} \\ \delta_{1} \\ \cdots \\ \varepsilon_{m} \\ \delta_{m} \\ \varepsilon_{m} \\ \delta_{m} \\ \varepsilon_{m} \\ \varepsilon_{$	• <u>Exa</u>	mple 2 (the model in two sample problem):				
$Y = \begin{bmatrix} z_1 \\ w_1 \\ w_2 \\ w_n \end{bmatrix}, X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \cdots \\ w_n \end{bmatrix}, \beta = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_2 \end{bmatrix}, \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \cdots \\ \varepsilon_m \\ \delta_1 \\ \cdots \\ \delta_n \end{bmatrix}, \varepsilon = \begin{bmatrix} r & X & g_1(X) & g_2(X) \\ z_1 & 1 & 1 & 0 \\ \cdots & \cdots \\ z_m & 1 & 1 & 0 \\ w_1 & 2 & 0 & 1 \\ \cdots & \cdots \\ w_n & 2 & 0 & 1 \end{bmatrix}$			V	V	(\mathbf{V})	. (1
$\boldsymbol{Y} = \begin{bmatrix} \boldsymbol{z}_1 \\ \cdots \\ \boldsymbol{z}_m \\ \boldsymbol{w}_1 \\ \cdots \\ \boldsymbol{w}_n \end{bmatrix}, \boldsymbol{X} = \begin{bmatrix} 1 & 0 \\ \cdots & \cdots \\ 1 & 0 \\ 0 & 1 \\ \cdots & \cdots \\ 0 & 1 \end{bmatrix}, \boldsymbol{\beta} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \boldsymbol{w}_1 \\ \boldsymbol{w}_2 \end{bmatrix}, \boldsymbol{\varepsilon} = \begin{bmatrix} \epsilon_1 \\ \cdots \\ \epsilon_m \\ \delta_1 \\ \cdots \\ \delta_n \end{bmatrix}, \boldsymbol{w}_1 = \begin{bmatrix} 1 & 0 \\ \cdots & \cdots \\ \boldsymbol{w}_n & \boldsymbol{w}_n \\ \boldsymbol{w}_n$		z_i 's are <u>1.1.d.</u> with <u>mean</u> μ_1 and <u>variance</u> σ^2 , $i=1,,\underline{m}$	I	<u>Λ</u>	$g_1(\Lambda)$	$g_2(x)$
$Y = \begin{bmatrix} z_1 \\ \cdots \\ z_m \\ w_1 \\ \cdots \\ w_n \end{bmatrix}, X = \begin{bmatrix} 1 & 0 \\ \cdots & \cdots \\ 1 & 0 \\ 0 & 1 \\ \cdots & \cdots \\ 0 & 1 \end{bmatrix}, \beta = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_2 \end{bmatrix}, \varepsilon = \begin{bmatrix} \epsilon_1 \\ \cdots \\ \epsilon_m \\ \delta_1 \\ \cdots \\ \delta_n \end{bmatrix}.$		w_j 's are <u>i.i.d.</u> with <u>mean</u> μ_2 and <u>variance</u> σ^2 , $j=1,,\underline{n}$	z_1	1	1	0
$Y = \begin{bmatrix} x_1 \\ \cdots \\ z_m \\ w_1 \\ \cdots \\ w_n \end{bmatrix}, X = \begin{bmatrix} 1 & 0 \\ \cdots & \cdots \\ 1 & 0 \\ 0 & 1 \\ \cdots & \cdots \\ 0 & 1 \end{bmatrix}, \beta = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \epsilon = \begin{bmatrix} c_1 \\ \cdots \\ \epsilon_m \\ \delta_1 \\ \cdots \\ \delta_n \end{bmatrix}, \begin{bmatrix} z_m & 1 & 1 & 0 \\ w_1 & 2 & 0 & 1 \\ \cdots \\ w_n & 2 & 0 & 1 \end{bmatrix}$		$\begin{bmatrix} z_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \epsilon_1 \end{bmatrix}$				•••
			z_m	1	1	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		z_m 1 0 μ_1 ϵ_m	w_1	2	0	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Y=	$\boldsymbol{\varepsilon} = \begin{bmatrix} w_1 \\ y_2 \end{bmatrix}, \boldsymbol{X} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \boldsymbol{\beta} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \boldsymbol{\varepsilon} = \begin{bmatrix} \delta_1 \\ \delta_1 \end{bmatrix}.$				•••
$ \psi_n = 0 1 $			w	2	0	1
		$\begin{bmatrix} w_n \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}$	n	_	Ŭ	-

made by S.-W. Cheng (NTHU, Taiwan)