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When to use regression analysis (linear model)?

• Regression: a statistical tool for investigating the “linearity 

relationship” between x and y.

causal relationship: examine the effects of x on y, i.e. how the 

changes in x result in the change in y (note that the statement 

implicitly assumes causal relationship), often seen in 

 DOE data (example?)

 physical/chemical/engineering data (example?)
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• Q: Why develop the fitted line (fitted model)? Why it is useful?

numerical description of relationship

prediction

 coefficients may be meaningful

variation study

…

Even where no sensible causal relationship exists between x

and y, we may wish to relate them by some sore of 

mathematical equation (rationale: sample from a 

multivariate normal population), often seen in

 social data (example?)

 economical data (example?)

 medical data (example?)
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• data type in regression analysis and some terminologies

A {response, output, dependent} variable Y is modeled or 

explained by p effects/functions of m {predictor, input, 

independent, regressor} variables X1,...,Xm

 Y :  “approximately” continuous

 X1,...,Xm : continuous and discrete (quantitative), 

categorical (qualitative)  (Q: example?)

 p=1, simple regression; p>1, multiple regression

 X1,...,Xm

all quantitative  multiple regression

quantitative+qualitative  analysis of covariance 

all qualitative  analysis of variance (ANOVA) 

 more than one Y, multivariate regression
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• linear model: 

 X1,...,Xm are regarded as deterministic, i.e., no random phenomenon (when 

they are random variables, regard the linear model as conditional on X1,...,Xm)

 g0(X1,...,Xm), ..., gp(X1,...,Xm): known functions of X1,...,Xm, called effects

 (unknown) parameters β0, …, βp enter linearly

 variation due to random error only appears on y-axis

• Rationale: a general model for the relationship between Y and X1,..., Xm, is:

Y = f(X1,...,Xm) + ε,  where f is unknown and arbitrary

Note: # of parameters in f is infinite, usually do not have enough data to estimate 

f directly (globally), we have to assume that it has some more restricted form

 local approximation of f may be achievable by a linear model

• Note: Because the predictors can be transformed and combined in any way, linear 

models are actually very flexible.
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• Example:

Y : fuel consumption of a particular model of car

X1 : weight of the car (continuous? discrete? categorical?), 

X2 : horse power (continuous? discrete? categorical?), 

X3 : number of cylinders (continuous? discrete? categorical?)

 a general model: Y = f(X1,X2,X3) + ε,  where f is unknown & arbitrary

 possible statistical models (“local approximation” of f):

Y = β0 1 + β1 X1 + β2X2 + β3X3 + ε

Y = β0 + β1X1

2
+ β2 log(X2) + β3 X1X3 + ε

Y = β0 + β1 X1
β2 + ε

Y = β1 X1
β2 ε 

 Reading: Faraway (2005, 1st ed.), 1.3, 2.1

 further reading: D&S, 1.2 (meaning of linear model)

 a linear model

 a linear model

 not a linear model

 not a linear model, but can be a linear 

model after taking log
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• some possible objectives of regression analysis

1. prediction of future observations

2. assessment of the effect of, or relationship between, explanatory variables
on the response

3. a general description of data structure

4. ...

• procedure of data analysis in regression

• extensions exist to handle (1) multivariate responses, (2) binary responses 

(logistic regression), (3) count responses (Poisson regression), (4) …

data linear model

inference

prediction

cause

information
check assumptions

final 

fitted 

model
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• Adrien Marie Legendre (1805), developed the method of least square

• Carl Friedrich Gauss (1809), claimed to have developed the method a few 

years earlier, and showed later least square is the best when the errors are 

normally distributed. 

• Sir Francis Galton (1875), coined the term “regression to mediocrity”

 Family heights data

• Tobias Mayer (1750), made numerous observations

to the libration of the moon with the purpose of 

determining the characteristics of the moon’s orbit, 

and proposed the method of averages

History of regression
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 This so called regression effect is not a natural 

law. It is actually a mathematical result.

 Reading: Faraway (2005, 1st ed.), 1.4 

 Further reading: D&S, 1.8; 

Cathy O’Nell (2016), Weapons of Math Destruction (中譯: 大數據的傲慢與偏見).

 Warm and Cold

 Family height data

 Josef Stalin: “A single death is a tragedy; a million deaths is a statistic!” 

(一個人的死是一場悲劇，百萬個人的死只是一個統計數據！)

 Misinterpretation (Note. Regression effect does not imply causality.)

 IQ of a couple (husband, wife)

 Ineffective treatment, measurements before and after treatment

 Punishment works and reward does not.
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Matrix representation
• Given the data matrix, 

• We may write a linear model as follows (functional form): for i = 1, 2, ..., n, 

yi = β0 + β1 g1(xi1,...,xim) + β2 g2
(xi1,...,xim) + ... + βp−1 gp−1(xi1,...,xim) + εi, 

where gij = gj(xi1,...,xim)

 the expression is (i) ugly notation (ii) conceptually awkward

 matrix/vector notation is more elegant

Y X1 X2 ... Xm

y1 x11 x12 ... x1m

y2 x21 x22 ... x2m

... ...

yn xn1 xn2 ... xnm

a row: one group of observations

a column: one variable

(response or predictor)

a row: one group of observations

a column: response or effect

Y 1 g1 g2 ... gp−1

y1 1 g11 g12 ... g1p−1

y2 1 g21 g22 ... g2p−1

... ...

yn 1 gn1 gn2 ... gnp−1
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• Matrix form of the linear model: 

Y = X β + ε,

where

Y =            ,X =                                          , β =                  , ε =              .

and E(ε) = 0 and var(ε) = σ2 I (Note: the assumption that errors are normally 

distributed is not required at the estimation stage)

a row: one group of 

observations

a column: response or 

effect

Y 1 g1 g2 ... gp−1

y1 1 g11 g12 ... g1p−1

y2 1 g21 g22 ... g2p−1

... ...

yn 1 gn1 gn2 ... gnp−1

= + + + + + ε

= + + + + + ε1

= + + + + + ε2

= + ...

= + + + + + εn
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• Example 1 (no predictor model, seen in one sample problem):

yi’s are i.i.d. with mean µ and variance σ2, i=1,...,n

Y =            , X =            , β =         , ε =           .

• Example 2 (the model in two sample problem):

zi’s are i.i.d. with mean µ1 and variance σ2, i=1,...,m

wj’s are i.i.d. with mean µ2 and variance σ2, j=1,...,n

Y =            , X =                  , β =          , ε =           .

 Further reading: D&S, 4.1

Y X g1(X) g2(X)

z1 1 1 0

... ... ... ...

zm 1 1 0

w1 2 0 1

... ... ... ...

wn 2 0 1

 Reading: Faraway 

(2005, 1st ed.), 2.2 


