
NTHU STAT 5410 Final Exam Solution Jan 12, 2023

(1) (1pt) The variables tv and doctor are skewed, but life is not.

(2) (1pt) Not necessary. A point can be an outlier without being influential if its leverage is low.

(3) (1pt) There seems to be a marked mean curvature in the residual plot, suggesting that the
relationship between the response and the predictors might be non-linear (note that Model 1
has the predictors in the model in a linear way). Therefore, we may want to consider a different
model, i.e., one that allows for curvature.
Note that it is not possible to determine constancy of the variance because of the bunching
of the fitted values at one end (see the residual plot). Even if you could, it would be less
important.

(4) (1pt) σ: square root of the error variance.

(5) (1pt) The findings given in the answer to problem (1). Notice that when a predictor is seriously
skewed and there exists a strong linear relationship between the predictor and the response,
the response must be skewed as well. But this is not the case here (life is not skewed). We
therefore expect that a transformed predictor with skewness removed (i.e., more symmetric)
can do a better job in explaining this response. Log transformation is a common tool to “cure”
skewness.

(6) (1pt) Yes, because (i) with the same number of parameters, the R2 is higher and the residual
standard error is lower (a valid comparison since the responses in the two models are the
same), (ii) the two effects are much significant, and (iii) the residual plot in Figure 3 represents
a satisfactory pattern.

(7) (1 pt) Yes - the residual plot is satisfactory. When the mean structure of the underlying system
is non-linear and complex, a linear approximation like Model 1 over a relatively wide range of
predictors may be inadequate. We sometimes can find suitable transformations of data that
permit a non-linear model to be better approximated (after transformation) by a linear one
like Model 2.

(8) (1pt) Because log(population/number-of-TVs) = − log(number-of-TVs/population), i.e., the
new TV is a location-and-scale change of the old TV by multiplying −1, the coefficient would
be +2.9156.

(9) (1pt) log(population/(2× number-of-TVs)) = log(population/number-of-TVs)− log(2) so differ-
ence is − log(2)×−2.9156 = 2.0209 more years of life in A than B.

(10) (1pt) MCAR or MAR.

(11) (1pt) More negative. Errors in predictors tend to bias the size of the effect toward zero, so
removing the errors would increase it.

To better explain problems (12)-(15), let yij, where j = 1, . . . , ni, i = 1, . . . , 12, be the crawling age
of the jth baby in the ith birth month. Let ȳi, i = 1, . . . , 12, be the average crawling age of the
babies born in the ith month. Let N = n1 + · · · + n12. Note that ȳi’s are the response data used in
the analysis, rather than the yij’s.
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(12) (2pts) As we assume that yi1, yi2, . . . , yini
are independent and have same variance σ2

i (notice
that the SD varies from case to case), the variance of the response ȳi is σ

2
i /ni. Weights should

be proportional to n/(SD2).

(13) (2pts) The problem states that for each i, the yi1, yi2, . . . , yini
are from a skewed distribution.

The response ȳi is the average of yi1, yi2, . . . , yini
, where ni is at least 21, so that by central limit

theorem, the effect of skewness in ȳi is reduced and ȳi is more “normal”.

Simply saying the sample size is large means non-normality can be ignored (it is true that when
sample size is large β̂ would tend to normality even if the response is not normal) is wrong
because the sample size for the regression itself is only 12.

Saying the non-normality can be ignored because the number of babies included in the study
(i.e., N=431=215+216) is large is not precise enough. For example, if n1 = 409, and n2 =
· · · = n12 = 2, we still have a large N = 431. But, ȳ2, . . . , ȳ12 would be skewed and would not
be like normal.

(14) (2pts) The question asks whether ȳi’s would be correlated due to the correlation between yij’s.
For yij’s, it is reasonable to expect that the crawling ages of babies from the same family are
correlated, and measurements on babies from different families are not. Suppose that a family
had several babies involved in the study and these babies were born in different months. It
would cause ȳi’s to be correlated.

Twins are correlated. But twins are born in the same month so they do not cause correlation
between ȳi’s.

Notice that we cannot determine whether ȳi’s are correlated by using SD. The SD are values that
appear in the diagonal part of the covariance matrix of ȳi’s, but information about correlation
is in the off-diagonal part of the covariance matrix.

Although data are collected over time, there is no good reason to expect correlation between
measurements from different families who come in succession. Time serial correlation is only
plausible when the same process is being measured over time.

(15) (2pts) According to the statement of the problem, the gender of babies is an important predictor.
On the other hand, no association between gender and birth month indicates that the (sample)
correlation between gender and temperature is very low. When an important predictor is not
included in the model, its effect, denoted by β2, is divided into two parts, i.e., (XT

1 X1)
−1XT

1 X2β2

and I−(XT
1 X1)

−1XT
1 X2β2 as shown in LNp.7-2 (for the current case, X1 is the model matrix of

the model CrawlingAge ∼ temperature). For gender, the first part is very small (close to zero),
but the second part would result in a larger estimate of σ2. When gender is included in the
model, the standard error for the temperature effect would tend to be reduced because of a
smaller σ̂2 obtained in the new model. Because of the lack of association between gender and
temperature, we would not expect any significant change in the size of the temperature effect
estimate. The t-test for temperature would become more significant.

(16) (2pts) Yes. Figure 4 suggests that the response might have a heavy right tail (although Figure 4
only presents the shape of the marginal distribution of the response, rather than the conditional
distribution of the response given the predictors). This is further confirmed in Figure 5 because
the residuals are heavily skewed to the right. When the (conditional) distribution of response
has a heavy tail, ordinary least square estimator would often be significantly biased by outliers.
But a robust estimator, which is designed to resist the influence of outliers, can substantially
reduce the bias.

2



(17) (2pts) (i) In the histogram (Figure 4), the response are “bunched” near zero, but, in markedly
decreasing numbers, large responses do occur. (ii) The residual plot (Figure 5) shows a pattern
of σ̂ ∝ ŷ2, especially on those positive residuals. Both suggest an inverse transformation.
FYI. The logarithm of incomes in general are roughly normal distributed. But the Box-Cox
method did not identify logarithm as an adequate transformation for this data. The data came
from billionaires so they represent the extreme right tail of the usual income distribution. The
tail of a normal (say, the distribution of Y |Y > 2 where Y ∼ N(0, 1)) is skewed, which explains
why we need a stronger transform than the log transformation for income. Log is not a good
transformation for this data judging also by the pattern in the residual plot not being σ̂ ∝ ŷ.
Therefore, the result here (i.e., inverse transformation) is consistent with incomes in general
being lognormal.

(18) (1pt) Yes. For example, if R2 = 0, the adjusted R2 will be negative. If R2 is close to zero and
the number of parameters in β is large, the adjusted R2 would very likely be negative.

(19) (1pt) wealth−1 = 1.0453−0.0077×age, where 1.0453 = 0.4105+0.6348 and −0.0077 = 0.0015−
0.0092.

(20) (1pt) There is no reason to expect Cook’s distances to follow a half-normal distribution (they
can follow an F -distribution when some assumptions hold) so we do not care that the points
follow a curve.
Some might say there might be some influential points - maybe so, although probably not, but
that was not the question asked.

(21) (2pts) Let ω and Ω represent Model 5 and Model 4 respectively. Then, RSSω = 14.3391,
RSSΩ = 0.25682 × 215 = 14.1784, dfω = 221, dfΩ = 215. So the F -statistic is

F =
(RSSω −RSSΩ)/(dfω − dfΩ)

RSSΩ/dfΩ
=

(14.3391− 14.1784)/6

14.1784/215
= 0.4061.

(22) (1pt) They use different null and alternative models in testing βregionM = 0.

For the test with p-value=0.94065, the null model is

ω : wealth−1 ∼ age,

and the alternative model is

Ω : wealth−1 ∼ age+ regionM.

For the test with p-value=0.01337, the null model is

ω : wealth−1 ∼ age+ age:regionM,

and the alternative model is

Ω : wealth−1 ∼ age+ regionM+ age:regionM.

(23) (2pts) Containing regionM or not is the only distinction between the two simplified models.
In other words, we need to decide whether regionM should be included into model when
age:regionM is already in model. We should choose wealth−1 ∼ regionM+age:regionM, the one
based on regression output, for at least two reasons. First, regression output tested regionM
when age:regionM is already in model as shown in the answer to problem (22) but ANOVA
did not. On the other hand, the insignificance of regionM in ANOVA is not reliable because
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it is probably due to the bias in the coefficient estimate of regionM, which occurs when some
important effects (i.e., age:regionM in the case) are not included in the model (i.e., the Ω:
wealth−1 ∼ age+ regionM in the answer to problem(22)).
Notice that if we change the order of effects entering ANOVA model to be

anova(wealth−1 ∼ age+ age:regionM+ regionM) ,

where regionM is placed as the last one, then the test for regionM in this ANOVA is exactly
the one in the regression output. Usually, we would expect an effect to become less significant
when its order in ANOVA is moved backward. But this did not happen on regionM in this case.
The reason is as stated above.

(24) (1pt) The average response (i.e., wealth−1) of non-Middle-East billionaires.

(25) (1pt) (5.18e− 04)/
√
7.1348 = 0.0001939273.

(26) (1pt) All the predictors were measured in the same unit: mg/liter (in contrast to the Longley
dataset demonstrated in the Lab, where the variables were had different units and so rescaling
would be more suitable). Here, it is most reasonable to consider principal components on the
unscaled data to maintain the comparable units.

(27) (2pts) Because of using covariance matrix in constructing PCs, the sum of the sample variances
is the sum of eigenvalues:

(5.04e+ 06) + (6.51e+ 05) + (1.79e+ 04) + (2.17e+ 03) + (1.84e+ 01) = 5711088.

The predictor with the smallest sample variance is x4 because (i) x4 ≈ PC5 (which can be found
from the coefficients of the eigenvector corresponding to PC5) and (ii) PC5 has the smallest
eigenvalue.

(28) (1pt) Because the model spaces (i.e., the space spanned by the columns of model matrix) of
Model 6 and Model 7 are identical, we can use the information offered in “Sum Sq” column of
the ANOVA table under Model 7 to calculate the R2 of Model 6. The answer is

0.02 + 0.07 + 0.03 + 0.00 + 3.98

0.02 + 0.07 + 0.03 + 0.00 + 3.98 + 0.96
= 0.8102767 ≈ 0.811.

(29) (2pts) The best sub-model is y ∼ PC1 + PC4. When considering only those sub-models with
two (or an equal number of) PCs, we know that maximizing adjusted-R2 is equivalent to
maximizing R2. Because of the orthogonality existing between PCs, the R2 of a two-PCs sub-
model would be proportional to the sum of the two values corresponding to the two PCs in the
“Sum Sq” column of ANOVA. Because 3.98 and 0.07 are the first two largest values (or using
their corresponding F-values or p-values to choose) in the column, we get the answer.
Note that if the predictors are not orthogonal, the above method won’t work any more for the
job of identifying the sub-model that maximizes R2.

(30) (1pt) The model y∼z would have a good fit because (i) z is almost a linear transformation of
PC1 (check the coefficients of the eigenvector corresponding to PC1) and (ii) PC1 explains a
much larger variation of y than the other PCs as shown in the ANOVA table.
Actually, we can roughly obtain the R2 of the model y∼z by:

3.98/(0.02 + 0.07 + 0.03 + 0.00 + 3.98 + 0.96) = 0.7865613,

which is very close to 0.8111. It is therefore a simple and easy-to-interpret model with a good
fit.
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