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(1, 1pt) The number of total degree of freedom is 1+4+1+4+90=100. There are 100/(5×
2) = 10 replicates for each level combinations.

(2, 2pts) The p-value stays the same because all level combinations have an equal number
of replicates. Under the circumstance, using Helmert codings would bring orthog-
onality between the spaces spanned by the codings of Age, Breed, and Breed:Age.
The change of order would not influence the p-values when orthogonality exists.
Furthermore, the ANOVA table is irrelevant to the choice of codings. So, no matter
what codings we use, the order of testing makes no difference on the p-values.

(3, 2pts) The residuals vs. fitted-value plot can be used to check for (i) non-constant
variance, and (ii) curvature in the mean of residuals. For this case, the is no need
to worry about (ii) because the averages of the residuals in each of 10 groups are
zero (check the answer to problem 4). For (i), Figure 1 reveals that the variance
increases with the mean response. (That the response is later transformed is also a
hint that such a feature might be present).

(4, 1pt) The averages of the residuals in each groups are exact zero because the fitted
model is saturated (the data has 10 distinct level combinations and the model has
10 parameters in β). The ŷ-values are the averages of y’s in each groups of distinct
level combinations under a saturated model.

(5, 2pts) The lack-of-fit test is an F-test that compares a simpler model (called null
model ω) to the saturated model (called alternative model Ω). In this case, the
saturated model is the model used to produce the ANOVA output (check the answer
to problem 4). So, ω: Butterfat ∼ Breed and Ω: Butterfat ∼ Breed + Age +
Breed:Age. Because this ANOVA is sequential, the F-statistic of the lack-of-fit test
is

(RSSω −RSSΩ)/(dfω − dfΩ)

RSSΩ/dfΩ
=

(0.0000274 + 0.0000514)/(1 + 4)

0.0015580/90
= 0.9103979.

(6, 2pts) −1/2, −1, and −2 are inside the 95% confidence interval for lambda. For the
variable Butterfat, 1/Butterfat (the amount of milk containing 1 unit of butter fat)
is more interpretable than 1/Butterfat1/2 or 1/Butterfat2, so I choose the reciprocal
transformation.

Because 1 does not fall in the confidence interval, a transformation of the response
is necessary.

(7, 1pt) Because R2
a (= 1 − (RSS/(n − p))/(TSS/(n − 1))) is a function of R2 (=1 −

RSS/TSS) and R2 is a function of the overall F-statistic (=((TSS − RSS)/(p −
1))/(RSS/(n− p))), we can obtain R2

a from the overall F as follows:

R2
a = 1−

[(
F × p− 1

n− p
+ 1

)
× n− p

n− 1

]−1

= 1−
[(

61.85× 4

95
+ 1

)
× 95

99

]−1

= 0.7108645
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(8, 1pt) In the regression output, the codings for Breed is the treatment codings, and
the level Ayrshire is treated as the reference level. So, −2.0592 estimates the mean
difference between Canadian and Ayrshire cows.

(9, 1pt) Because I used reciprocal transformation for Butterfat, the estimated mean but-
terfat content (note: not the mean response of the regression fit for 1/Butterfat) for
Jersey cows is

1

24.7298− 5.6092
= 5.229961%.

(10, 2pts) A formal method to perform this t-test is as follows. Denote the estimates of
BreedCanadian and BreedGuernsey in the regression output by β̂1 and β̂2 respec-
tively. Then, the standard error of β̂1 − β̂2 is

se(β̂1 − β̂2) =
√

ˆvar(β̂1 − β̂2) =
√

ˆvar(β̂1) + ˆvar(β̂2)− 2× ˆcov(β̂1, β̂2)

and the test statistic is |β̂1− β̂2|/se(β̂1− β̂2). Unfortunately, although we can obtain
the values of β̂1 − β̂2, ˆvar(β̂1) (= 0.59632) and ˆvar(β̂2) from the regression output,
we do not have ˆcov(β̂1, β̂2) in the output.

A trick to resolve this problem is to change the reference level of treatment coding
from Ayrshire to Canadian. After doing so, the coefficient of the term BreedGuernsey
would be the difference of mean response between Canadian and Guernsey cows.
The estimate of this coefficient is (−4.3417)− (−2.0592) = −2.2825 with a std. Er-
ror being 0.5963. The std. Error does not change because each level combinations
were performed an equal number of times so that no matter what level is treated as
the reference level, it has no impact on the value of the std. Error. The t-value is
−2.2825/0.5963 = −3.827771, which clearly indicates a significant difference.

(11, 2pts) The standard error is inversely proportional to the sqrt(sample size) so go-
ing from 10 to 4 observations would increase the standard error by a factor of
sqrt(10/4)=1.581139. The new standard error for the effect would be around 0.5963×
1.581139 = 0.9428331 and the corresponding t-statistic would be−4.3417/0.9428331 =
−4.604951 which is still clearly significant. So reducing the sample size to 4 repli-
cates would still allow enough power to detect an effect of the current amount.

(12, 1pt) Five observations were collected repeatedly on each cow. They are repeated
measures (check lecture note p.6-1 for its definition). We might suspect the obser-
vations from same cow are correlated.

(13, 1.5pts) Robust estimators are only worth considering when the errors are not normal.
Without normality (check the statistical modeling in LNp.10-1), the F-statistic can
be calculated but not easily evaluated for significance because its null distribution
is not an F-distribution any more.

Furthermore, the geometric property under OLS that ŷ is orthogonal to ϵ̂ does not
hold for the robust estimator β̂ because ŷ = Xβ̂ is not the orthogonal projection of
y onto the space spanned by the columns of X. Notice that this property is required
in the calculation of R2 and in proving that the null distribution of an F-test is an
F-distribution.
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FYI, the t-values in the output do not follow a t-distribution under the null because
of the lack of normality. However, their asymptotic distributions still follow a t-
distribution.

(14, 1pt) No correlation assumption because the data were observed over time. We might
suspect that their errors have temporal correlation.

(15, 1pt) It means gas usage changes with temperature at a different rate before and after
the installation of insulation (the slopes of the two groups are different).

(16, 1pt) At a temperature of zero degrees, the gas usage was 2.2632 units higher before
compared to after the installation of insulation. Note that we do need to say zero de-
grees because the difference between the two groups varies according to temperature
because of the significant interaction Insulate:Temp.

(17, 1pt) Suppose that the fitted lines are a0+a1×Temp and b0+b1×Temp for Before and
After groups respectively. The saved gas consumption is (a0−a1)+(b0−b1)×Temp.
So, the gas consumption is 2.26321 + (−0.14361)× 4 = 1.68877 units higher usage
before compared to after.

(18, 2pts) The Cook statistics are used to detect influential points so we would look for
values far greater than the rest. If such a point or points are identified, we should
exclude them and see the effect on the fit.

No practical consequence. We do not need the Cook statistics to follow a half-normal
distribution (i.e., do not care whether the points follow a straight line) - we only
care about the (few) points that are unusually large based on the trend observed in
the bulk of all the points.

(19, 2pts) Under-estimate for this case. It is because the mean outside temperature were
generally higher in the before group than the after group (i.e., there exists a negative
collinearity between Temp and Insulate). So, the unadjusted mean usage difference
between the two groups underestimates the true difference because gas usage is
less if the outdoor temperature is higher (i.e., the estimated coefficient of Temp is
negative). Thus, including temperature removes a bias - it may also increase the
precision of the comparison but the question is about the underestimation.

(20, 1pt) Examining whether Insulate is significant in the models, “|Residuals| ∼ Insu-
late” or “|Residuals| ∼ Insulate + Temp + Insulate:Temp”, where |·| stands for
taking absolute value, would do it. Bartlett’s test or Levene’s test is on the right
track but you can only apply it on the model “Residuals ∼ Insulate”, not “Residu-
als ∼ Insulate + Temp + Insulate:Temp” because the former has replicates but the
latter does not (or too few replicates, check Figure 3). Actually, none of these tests
are significant (might be due to insufficient sample size) although Figure 5 shows a
pattern of non-constant variance. Notice that applying Bartlett’s test or Levene’s
test on the model “Gas ∼ Insulate” is not suitable for examing whether the error
variances in Figure 5 are identical. Can you see why?

(21, 1pt) The following are acceptable answers:
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• MAR, assuming that missing probabilities are identical within each group, so
that although the missing probabilities vary with the variable Insulate, it is
still an informative missing when Insulate is included in the model.

• MNAR, assuming that the missing probabilities for the cases in a group (Before
or After) vary and depend on some variable(s) that were not observed.

(22, 1pt) The predictors are likely to be collinear.

(23, 1pt) No. Every values in Distance is an average of 10 records, which makes the weight
matrix in WLS proportional to the identity matrix. So, WLS and OLS generate
same estimates in this case.

(24, 2pts) Yes, at least it can be used to determine a model with similar performance as
the final fitted model of backward selection (BS). Normally, just the ANOVA table
would be insufficient. But, it so happens that the predictors have been ordered so
that the p-values increase down the table. This means that the nested series of
models represented in the table probably correspond exactly to those chosen in the
backward elimination process. This claim is based on the following property: if we
use the reverse order of removal in a BS to perform a sequential ANOVA analysis
(first removing in BS, last adding in ANOVA), then (i) the resulting ANOVA table
would generally have such an increasing pattern on p-values, and (ii) the null (ω) and
alternative (Ω) models of the test for a predictor in the ANOVA are identical to the
ones of the test in BS that determines the removal of this predictor. Furthermore,
the differences between any pairs of adjacent p-values are quite large. Therefore, we
are confident (but, of course, not 100% sure) that the final fitted model is “Distance
∼ RStr + OStr”.

(25, 1pt) An average index of (standardized) leg strength and flexibility because all five
coefficients for PC1 are about the same size.

(26, 1.5pts) Because the XTX matrix of the standardized predictors is proportional to
the correlation matrix of these predictors, the two matrices have the same condition
number. The trace of the correlation matrix, which is also the sum of its eigenvalues,
is the number of predictors, 5. So, the largest eigenvalue is 5− (0.7599 + 0.5217 +
0.1183+0.0797) = 3.5204 and the condition number is sqrt(3.5204/0.0797) = 6.6461.

(27, 1.5pts) The confidence region is an ellipse with the major and minor axes parallel
to the vertical and horizontal axes. The axis corresponding to PC1 is the minor
axis and the one corresponding to PC2 is the major one because PC1 explains more
variation in X than PC2.

(28, 1.5pts) LFlex. The property that λ=0 corresponds to ordinary least squares (OLS)
makes it possible to identify this predictor. Although the predictors in the ridge
regression had been standardized (i.e., different from what used in the regression and
ANOVA outputs), note that standardizing a predictor would not change the signs
of its OLS estimates. In Figure 6, the bottom line converges to zero the fastest and
its OLS estimate (at λ=0) is negative. The only negative estimate in the regression
output is LFlex.
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(29, 1pt) The ridge estimators typically have lower variances (i.e., an advantage) than the
OLS estimators, but the former have more bias (a disadvantage) than the latter.
When the predictors have strong collinearity as in this case, the mean square error
(=variance + bias2) is typically lower for ridge estimators.
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