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Hypothesis Tests

 null model and saturated model
»null model: the smallest model we will entertain
= Model for no relation between predictors and response
= Usually, it means we fit a common mean(//ffor all y, < 4y~ 1

irrelevant to X ) .
») For some contingency table models, there will be additional

grk s rameters that represent row or column totals or other such
°‘%:;m nstraints = null model has more than one parameter
""’%> aturated (full) model: the most complex model
)casz{“"’“’(

» Model in which data is explained exactly
» Typically, k parameters for k data points< distinct X:'s
= It can be achieved by fitting a sufficiently high-order

polynomial or treating quantitative predictors as qualitative
predictors or adding enough interactions

» The model tells us no more than the data itself and is usually
uninformative
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» A statistical model .S describes how we part the data into
systematic structure and random variation X
+ (S‘—mndom-

= Null model represents one extreme where he d3

represented entirely as random variation 4—]
4 stematic

» Saturated model represents the data as being entlrely -
systematic

= Model we want usually lie between these two extremes
* Deviance

> Q: how to measure discrepancy between observed,and fitted y?

>Saturated model gives us a measure of how well any model
could possibly fit = can consider the difference between the
log-likelihood for the saturated and a model S of interest:

200Y, ;YY) — L(ja, ¢; > HoS
LNp/<L, J ¢; Y 2m ) o S | o sebike
(which has a rationale from likelihood-ratio test) -l(og/&

n [(Y, ¢;Y) : the log-likelihood for the saturated model

= [(f1, »;Y) : the log-likelihood for the model S
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»Provided that the observations are independent and for an
exponential family distribution with a,(@ = @w,,«LNpT-|

2(1(Y, ¢; V) — l(ju, ;Y @” ENp.7-6

3 2w, [yi(ﬁxi—Qxi) b(0y Q/¢ D}E@/a

where 9 : the estimates of 8, under the saturated model

MLE
: the estimates of &, under S

» D(Y, [J,)IS called the deviance and D(Y, 1)/ is called the
scaled deviance [or binomial & Brewn &LrMs, deviance=scaled

> Deviance for the common GLM devian(z,
Wp72. | Family deviance
Qxclogf/&b Gaussian Zi(yi — ﬂxi)z—% 555
%aj“;tw‘ (Poisson) 2 5y Log(yi /i) — (i — i)
étg: o8 Binomial 2> [yilog(yi/ fix,) + (n — i) log((n — ys)/(n — fix,))]
:/1 Gamma 2 Z@[_ IOg(yi/,&xz') + (yz - ﬂxz)/,&xz]
Inverse Gaussian | 2_;(yi — fix;)?/ (Miiyi)
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I .
»Pearson’s X7 statistic > sguane o

variance function (LNp 7-5) Scaled vesid ual
it 1s an alternative measure of dlscrepancy that is sometimes

used in replace of the deviance
* Goodness-of-fit test: whether the current model S fit the data

» Given the model S is correct,

R A —> '<']
" D(Y H'S)/¢ de ‘ c,|054
. X2 a Sek- (ﬂfg‘;ﬁ e,v\ovz

~ des
»For Gaussian GLM, cannot use the test because do not know the

value of the dispersion parameteO / [, =sotnrated. modd

(Q: why not replace @by an estimate ) for sMeA%\moﬁé

»For the binomial and the Poisson, ¢:1 so the test is practlcal

» Difference-in-‘deviance test: compare two nested models SD%
not

saturated

» Given the model S is correct,

(D(Y7 /:\"S) - D(Y7 //:"L))/¢ ~ X?lfs—df[,
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» For the Gaussian model and other models where the dispersion
@1s not known, this chi-square test cannot be directly used

= We can insert an estimate of @and

¢ s o pmandter  p(y jg) - DY, 1)
3 ~ Fafs—afy, dfr.
L

where )= Xp/dffpyand X7 is the Pearson’s X? statistic
under the model L P 5.

= For the Gaussian model, (% I :Q%SS 1 /dfr)and the resulting
F-statistic has an exact F'distribution under the model S
» Goodness-of-fit test: L=saturated model
* Notes:
» The null distribution in the goodness-of-fit and difference-in-
deviance test is only asymptotically correct
» The approximation is better when comparing models than for
the goodness of fit statistic binomicd

wuv&t’s\zaz\;;wm
» Wald test for individual ;: / Rissen
" Bi/se(B;) & N(O, 1) (9 51'/,,(86{52'%) ~ tay,
« variable selection p. 715
: Cf. t-teel inLM . =
»stepwise methods Ci . %

» Can sequentially (forward or\backward or a mix of both)
apply difference-in-deviance test to compare nested models
(in much the same manner as in standard regression models)

» The usual concerns about the validity of multiple testing and
missing good model carry over (%Fj

» criterion-based methods

E\‘i\j'f& —|AICg= Devianceg+2p (cb.mn LM, AlffS +2p)
method. BIC, = Devianceg + p log@“’” [ﬁv\;:;igd dsto,

where p is the number of parameters in the model S and & is
the number of covariate classes

» Choose the model with the smallest AIC or BIC

» AIC will tend to pick a larger model than the BIC

» AIC and BIC can be used to compare non-nested model
x
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