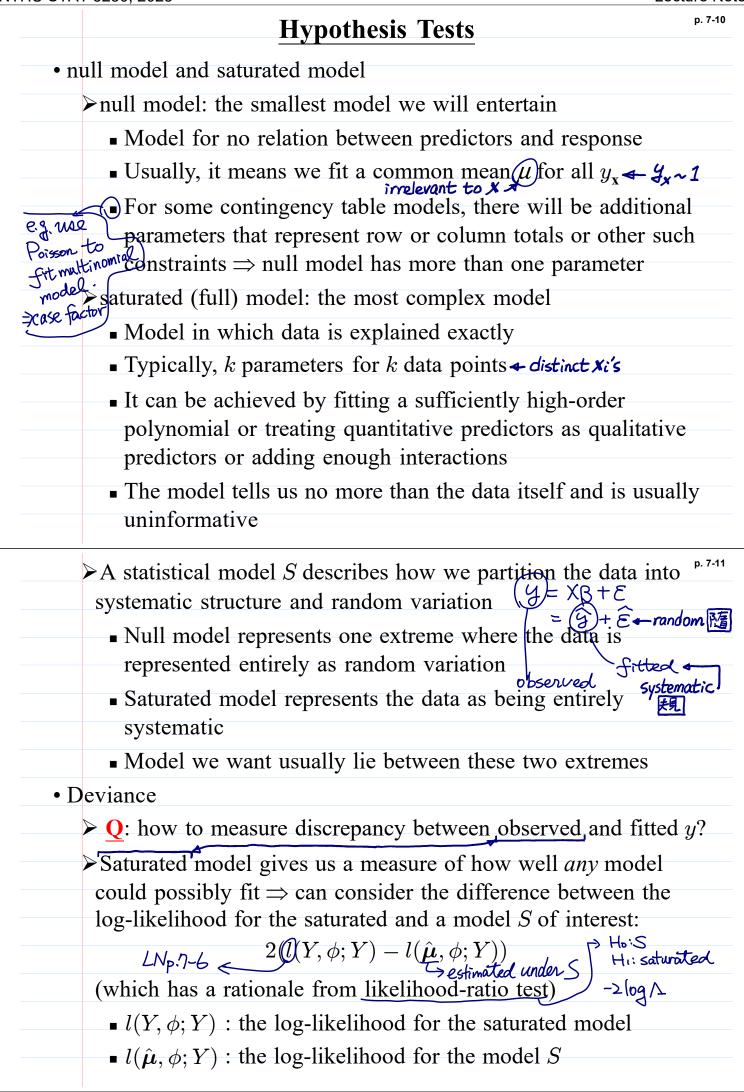
NTHU STAT 5230, 2025



	0200, 2020		
Provided that the observations are independent and for an exponential family distribution with $a_i(\phi) = \phi/w_i$, -LNp.7-1			
$2(l(Y,\phi;Y) - l(\hat{\boldsymbol{\mu}},\phi;Y)) = \underline{-LNp.7-6}$			
$\sum_{i} 2w_{i} \left[y_{i} \left(\tilde{\theta}_{\mathbf{x}_{i}} - \hat{\theta}_{\mathbf{x}_{i}} \right) - b(\tilde{\theta}_{\mathbf{x}_{i}}) + b(\hat{\theta}_{\mathbf{x}_{i}}) \right] / \phi \equiv D(Y, \hat{\boldsymbol{\mu}}) / \phi$			
where $\tilde{\theta}_{\mathbf{x}}$: the estimates of $\theta_{\mathbf{x}}$ under the saturated model $\hat{\theta}_{\mathbf{x}}$: the estimates of $\theta_{\mathbf{x}}$ under S			
$\triangleright D(Y, \hat{\mu})$ is called the <i>deviance</i> and $D(Y, \hat{\mu})/\hat{\phi}$ is called the			
scaled deviance For binomial & Poisson GLMs, deviance=scaled Deviance for the common GLM			
Deviance for the common GLM			
LNp.7-2.	Family	deviance	
$\theta_x = \log(M_x)$ Saturated $\hat{M} = 3$ $D(\theta) = e^{\Theta}$	Gaussian	$\sum_{i} (y_i - \hat{\mu}_{\mathbf{x}_i})^2 \longrightarrow \mathcal{RSS}_{S}$	
	Poisson	$2\sum_i [y_i \log(y_i/\hat{\mu}_{\mathbf{x}_i}) - (y_i - \hat{\mu}_{\mathbf{x}_i})]$	
	Binomial	$2\sum_i [y_i \log(y_i/\hat{\mu}_{\mathbf{x}_i}) + (n-y_i) \log((n-y_i)/(n-y_i))]$	$(n - \hat{\mu}_{\mathbf{x}_i}))]$
=K	Gamma	$2\sum_i [-\log(y_i/\hat{\mu}_{\mathbf{x}_i}) + (y_i - \hat{\mu}_{\mathbf{x}_i})/\hat{\mu}_{\mathbf{x}_i}]$	
	Inverse Gaussian	$\sum_i (y_i - \hat{\mu}_{\mathbf{x}_i})^2 / (\mu_{\mathbf{x}_i}^2 y_i)$	
Pearson's X^2 statistic $X^2 = \sum_{i} \underbrace{(y_i - \hat{\mu}_{\mathbf{x}_i})^2}_{V(\hat{\mu}_{\mathbf{x}_i})} \xrightarrow{\text{square of }}_{\text{scaled residual}}$ it is an alternative measure of discrepancy that is sometimes			
used in replace of the deviance			
• Goodness-of-fit test: whether the current model S fit the data			
Solven the model S is correct \checkmark			
• $D(Y, \hat{\mu}_S) / \phi \stackrel{a}{\sim} \chi^2_{df_S}$ \mathcal{K} -(# of parameters enough? • $X^2 \stackrel{a}{\sim} \chi^2_{df_S}$ in S)			
For Gaussian GLM, cannot use the test because do not know the			
value of the dispersion parameter $\phi \rightarrow \sigma^2$ (Q: why not replace ϕ by an estimate ϕ ?) for saturated model g = G = M			
(Q: why not replace ϕ by an estimate ϕ ?) for saturated model y = y = u			
For the binomial and the Poisson, $\phi=1$, so the test is practical $\leq caled$ • Difference-in-deviance test: compare two nested models $S \subset L$			
saturated			
$(D(Y, \hat{\boldsymbol{\mu}}_S) - D(Y, \hat{\boldsymbol{\mu}}_L))/\phi \stackrel{a}{\sim} \chi^2_{df_S - df_L}$			

made by S.-W. Cheng (NTHU, Taiwan)

