NTHU STAT 5230, 2025 Lecture Notes

GLM Definition "
3 components of a GLM
» A random component for the response: Y, ~ f(y|6,, @ where
= Canonical parameter 8,: represent theZocation
= Dispersion parameter @ represent the@
» A systematic (linear) component for the predictors:

Nx = B0+ h1(x)B1 + -+ hp_1(x)Bp—1 = X

> A link function g"'such that 77, = g~ 6,) J
* Random component O — b(0x)
»Exponential family f(y|0y, ) = exp [y = = + c(y, ¢)]
a(9),

[

»Some distributions in exponential family
» Normal density N(u,, &?)

_ 2 — 2 2
f(y‘0X7 ¢) = \/21_7TO' _%] = exp [yux O_2ILLX/2 o % (% + 10g(27T02>>]

= Oy = f1x[d = 0 a(¢) = 6, b(0x) = 62/2,

c(y,¢) = —(y* /¢ + log(2m¢)) /2

exp

= Poisson density P(LL)

e
™ f(ylox, ¢) = * = exp | — px — log y!]
¢ —eTar(') Y

— log ,Ux, a’(¢) — 1? b(ex) — eXp(QX)a
c(y, @) = —logy! "> 9L allow ¢ o vany, T becomes
« Binomial density B(n,, K, ) cAtspension ponamdtes, ,4———

— (Recall overdispersion)
ylox,d) = (” )Mii(l — )Y

Y _

\‘ X
AV o ey IR )
A (+e9x 1 — px y /)

u}e’&:&“ﬂ n
,\;0‘\% . log(—L) @ =1, c(y, ) = log(yx)
OSS”%\ x) — —Nx log(l - ILLX) — Nx 1Og(1 + exp((9 ))

@« The Gamma and inverse Gaussian are other (lesser-used)
members of the exponential family

» Some other densities such as the negative binomial and
Weibull are not members of exponential family, but are
sufficiently close so that GLM can be fit with some simple
modifications
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= @is free in normal while fixed at 1 in Poisson and binomial *™

» Some authors reserve the term exponential family distribution
for cases where @is not used (such as Poisson and binomial)
while using the term exponential dispersion family for cases

where it is (such as normal) Use £(°%e)=0 &
»Some properties of exponential family E(*%4)+ [E(*%0)]) =0
. — — L to find E(Y)&Tar(Y).
LMean: E(Yy) =t = b’ () I 20 : log-likelihood ;l?:nch'am

2.Variance: Var(Y,)=b’"(6,) ((Q rndependoit % %
» E(Y)) does not depend on ¢ G d_QPerw( on X
= Var(Y,)is a product of functions of &, and @
n b’ " (6) is called the variance function and describes how the
variance related to the mean
o In the normal density case, b’ * (8,) =1 = variance
independent of the mean
o For other distributions such as Poisson and binomial,
b’ ' (6,) is not a constant function = variance depends on
the mean __no papameien., _—scale

= We can introduce weights by settin 5@ @w,, where w, 1s a
known weight that varies between observations

* Link function 77, = gH 6,)
» We now re-write the link function to describe how the mean

response, E(Y,) = 44, 18 linked to 77, 1.e., 7y = g(l) 4 = (6, -
»In principle, g can be any monotone, continuous, and o functron ol

differentiable function Oy .
» There are some convenient and common choice of ¢ 9 R b 9
. . . b% g.' ﬂx 6b/.? IX
= Normal (Gaussian) density: v XB+€ .
. L w
. —@ Standard choice: 77, = 1, 17 %) gw
) o Other choice of g would give ...

< K .
\in gewrlizlion. 7F lmux/\,mod%: (XP+ e M= g‘(’ZQ

weth non-lingan. waan
Notice that this does not corespond diretly to a

tranfrmation on the response as, for example,_‘in Box-Cox
type transformation, i.e. Y=8(Xp+E)
V=g(Y)=XB+e  #FpI+e"
» Poisson density:  Tos frke normal affer bansformation
. g0 oldentity link(r7,j= 4 would possibly cause negative /4

{o)Standard choice: 77, = log(44,) = = exp(17,) >0 .

A0
v
B R10)
207 L

(%’(%dd o Log link means that additive effect of x lead to Ux=¢
multiplicative effect on £/, Te=Bot BRi0at —+§,, 8o
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= Binomial density (treat Y,/n, as the response):

o Standard choice: logit, probit, complementary log-log
» Canonical link: choose g such that

— g( /ux) — Hx > 3* s (derd:a'fy functionv
which means g must satisfy g(b’ (6,)) = 6. > 3=(t )"

p.7-5

= EX les: cc'monicaﬂ Vanl4 (¢
b(6) = Iog(l+69) Family Link <SVariance function
MeBey= @69 Gaussian \ n,= U, @92{4\4&) s welvadt &
(+€ ; =g
N Poisson n, =log(L,) M, IR gﬁaﬂn o ritind
b \og\k(mg(—ﬁ Binomial(prorrtn) Y7, = log(14/(1=4)) +44(1=44) | | vantsp
_ Y car dp
| Og’té.\.ee) t¢% Gamma n,= ! Uz i of-fik
i = 12 3 tedl
:(o%(€93 é;(n@ﬂ ) Invers? Gau'ss1an' n,= U, é{x \
-9 =Ifacanonical link is used 5/ ko= e k—/eﬁ
21+ ¢

o X'Yis sufficient for 8

b't) =

_09(1429) o4

o Mathematically and computationally convenient|=-p (L
o Often physically justified

o However, it is not required to always use the canonical
link and sometimes context may compel another choice

Fitting a GLM < estimating g

* The log-likelihood for a single observation (x;, y;) 1s:

+ C(yi7 ¢)

where a,(® = ¢gw, and w; 1s a known Welght that varies between

logL( X , @ yz) =

observations

check LNp.7-1

hkehhood 1S:

ZlOgL X 7¢’yz) _Z z [yle

k

=1

We not coal:am,
any paametns.

»For independent observations (x,, v,), =1, 2, ...,

a(qﬁ )

3 [yﬁxz—b(@ )]

p. 7-6

k, the joint log-

g‘Y’Zx) =9 -I(Xg)

] +Z (i 8) = 12, 6:Y)

>L1kehhood approach: the parameters £, Wthh appear in the link
function XB= 1, = g 6,) of a GLM, can be estimated using
maximum likelihood --- maximize the joint log-likelihood as a
function of 8

»« We can maximize the joint log-likelihood analytically and
find an exact solution for the MLE of --- Gaussian GLM is
the only common case where this 1s possible%BMLesleastsgaare estbr

» Typically, we must use numerical optimization - IRWLS
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p. 7-7

« Tteratively Re-Weighted Least Squares (IRWLS) (2 A, Rt

» Consider the Gaussian linear model Y=X+ & /
= Suppose Var(y,)=Var(g) O f(l]x; where 7, =% 3
®__—Q@ssyme known . if unknown , use

use the WLS to estimate 3 residuals to estimate
weights

vesiduols <

use the variance structure to estimate f(/],)

= Can use weights w; where w, 1= f(7).)
= Since the weights are a function of 3, an iterative fitting
procedure would be needed
o set the weights all equal to one = estimate 3=> use 3 to
re-compute the weights = re-estimate 3 = repeat until
converge FU)= U =XB
»similar idea can be applied to fit a GLM é’x
= Roughly speaking, want to regress g(y,) on X with weights
inversely proportional to Var(g(y,))
« However, g(y,) might not make sense in some cases, €.g.,

binomial GLM = linearize ¢(y,) as follows: 2
9(yx) = glttx) + (e = 1) (1) = M (3 = 1) i = 2

p. 7-8

— — ’Zx=3(ux) - vaaian
Cpussian, 7 Bla) = me = XB 2 Tink ;1 2 L ﬁn&u’ocf
L rnzan o VCL?“(Z ): (d&) Vaﬂ“(y )OC (d&) V(,LL )
MO‘ Q X d/JJx X , d,U'x o ) (LMP7-3)
m [Np.7-") —— 2 Idepenoé AUx (mea
“Ne T e Tar(z) = (ﬁﬁf) V(px) == of 4, Gt

Mx =[x A on QX
rocedure /[ eq. Mo=)

eerm/‘onlJ Set initial estimates 7)x,0 j(g][ﬂx,o)and fix.0 = 9 *(Nx.0)
.Form the “adjusted dependent variable”

Z0 = ﬁx,O + (yx — :ax,O) le%‘ R
Wy =

T1x,0
) Wiio)
ﬁx,O

3.Form the weights 1 dne |2
(dux)
4.Use WLS to re-estimate 3, then get 7)x 1 and jix 1

5.Iterate steps 2-3-4 until convergence
p 5 been used, m th&

how much, moymabion abou the distribulion of &
Q = Note: the ﬁttingnprocedure use only 77, Qfg(/fx) and V(p,) TRWLS?

= It requires no further knowledge of the distribution of ¥,
= Quasi-likelihood approach
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p. 79

» Estimates of variance: WLS eﬁ(\éﬁ = (Xwx)y' &2
» Comparable to the form used in weighted least squares

60 = The weights are now a function of the respons% for a GLM
. ussian A T /—?5 '{;\2_ o
. Bmarrz/‘aﬁ wrth Vda’égg\%:/@ X ) __.q:b [ 0 Ql
orn paa. ¢
arspe 157\;:(,/1“1};:&: /(k — p) and X? is the|Pearson’s X? statistic

%g;g(ﬁfgégﬁlg“ binomial response (treat the przﬁéﬁféﬁ?;foiﬁm%gﬁ)
the response, not the count) [ ( d%u)zv(ﬂ)]"
n 7)x = log (152){)(‘9@-‘—3{,«,) m Wx — nx,ux(]- — ,ux)
y jﬂi ~ ux(ll—ux) y @(/@ = (XTWX)_l
= V(ux) == 1; B

» Some notes about IRWLS:
» In most cases, the convergence is usually fast

= [f there 1s a failure to converge, this 1s often a sign of some
problem with the model specification or unusual feature of
the data (e.g., data 1s linearly separable)
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