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• 3 components of a GLM

A random component for the response: Yx ~ f(y|θx, φ) where

 Canonical parameter θx: represent the location

 Dispersion parameter φ: represent the scale

A systematic (linear) component for the predictors:

A link function g∗ such that ηx = g∗(θx)

GLM Definition

ηx = β0 + h1(x)β1 + · · ·+ hp−1(x)βp−1 ≡ Xβ

• Random component

Exponential family

Some distributions in exponential family

 Normal (Gaussian) density N(µx, σ2)

 θx = µx, φ = σ
2, a(φ) = φ, b(θx) = θ

2
x
/2,

c(y, φ) = −(y2/φ+ log(2πφ))/2
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 Poisson density P(µx)

f(y|θx , φ) =
e−µxµy

x

y!
= exp [y logµx − µx − log y!]

 θx = log µx, φ = 1, a(φ) = 1, b(θx) = exp(θx),
c(y, φ) = − log y!

 Binomial density B(nx, µx)

 θx = log
µx

1−µx
, φ = 1, a(φ) = 1, c(y, φ) = log nx

y

b(θx) = −nx log(1− µx) = nx log(1 + exp(θx))

 The Gamma and inverse Gaussian are other (lesser-used) 
members of the exponential family

 Some other densities such as the negative binomial and 
Weibull are not members of exponential family, but are 
sufficiently close so that GLM can be fit with some simple 
modifications



p. 7-3

1.Mean: E(Yx) = µx = b’(θx) 

2.Variance: Var(Yx) = b’’(θx) a(φ)

 E(Yx) does not depend on φ
 Var(Yx)is a product of functions of θx and φ
 b’’(θx) is called the variance function and describes how the 

variance related to the mean

 In the normal density case, b’’(θx) =1  variance 

independent of the mean

 For other distributions such as Poisson and binomial, 
b’’(θx) is not a constant function  variance dependents 

on the mean

 We can introduce weights by setting a(φ)=φ/wx, where wx is a 

known weight that varies between observations

Some properties of exponential family

 φ is free in normal while fixed at 1 in Poisson and binomial

 Some authors reserve the term exponential family distribution 
for cases where φ is not used (such as Poisson and binomial) 
while using the term exponential dispersion family for cases 
where it is (such as normal)
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We now re-write the link function to describe how the mean 
response, E(Yx) = µx, is linked to ηx, i.e., ηx = g(µx)

In principle, g can be any monotone, continuous, and 

differentiable function

There are some convenient and common choice of g

 Normal (Gaussian) density:

 Standard choice: ηx = µx

 Other choice of g would give

Y = g−1(Xβ) + ε
Notice that this does not corespond diretly to a 
tranfrmation on the response as, for example, in Box-Cox 
type transformation, i.e.

g−1(Y )= Xβ + ε
 Poisson density:

 Identity link ηx = µx would possibly cause negative µx

 Standard choice: ηx = log(µx) ⇔ µx= exp(ηx) > 0

 Log link means that additive effect of x lead to 
multiplicative effect on µx
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Canonical link: choose g such that 

ηx = g(µx) = θx

which means g must satisfy g(b’(θx)) = θx

 Examples:

 If a canonical link is used 

 XTY is sufficient for β
 Mathematically and computationally convenient

 Often physically justified

 However, it is not required to always use the canonical 
link and sometimes context may compel another choice

Family Link Variance function

Gaussian ηx = µx 1

Poisson ηx = log(µx) µx

Binomial ηx = log(µx/(1−µx)) µx(1−µx)

Gamma ηx = µx
−1 µx

2

Inverse Gaussian ηx = µx
−2 µx

3

 Binomial density (treat Yx/nx as the response):

 Standard choice: logit, probit, complementary log-log
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Fitting a GLM
• The log-likelihood for a single observation (xi, yi) is:

where ai(φ) = φ/wi and wi is a known weight that varies between 

observations

For independent observations (xi, yi), i=1, 2, …, k, the joint log-

likelihood is:

Likelihood approach: the parameters β, which appear in the link 

function Xβ = ηx = g∗(θx) of a GLM, can be estimated using 

maximum likelihood --- maximize the joint log-likelihood as a 

function of β
 We can maximize the joint log-likelihood analytically and 

find an exact solution for the MLE of β --- Gaussian GLM is 

the only common case where this is possible

 Typically, we must use numerical optimization - IRWLS
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• Iteratively Re-Weighted Least Squares (IRWLS)

Consider the Gaussian linear model Y=Xβ + ε
 Suppose Var(yx)=Var(ε) ∝ f(ηx)  where 

 Can use weights wi where wi
−1=f(     )

 Since the weights are a function of    , an iterative fitting 
procedure would be needed

 set the weights all equal to one  estimate  use     to 
re-compute the weights  re-estimate  repeat until 
converge

similar idea can be applied to fit a GLM

 Roughly speaking, want to regress g(yx) on X with weights 
inversely proportional to Var(g(yx))

 However, g(yx) might not make sense in some cases, e.g., 
binomial GLM  linearize g(yx) as follows:

use the WLS to estimate β

use the variance structure to estimate f(ηx)
weights

η̂xi = x
∗

i
T
β̂

η̂xi

g(yx) ≈ g(µx) + (yx − µx)g
′(µx) = ηx + (yx − µx)

dηx
dµx

≡ zx

β̂

β̂ β̂

β̂
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�V ar(zx) =
�
dηx
dµx

�2
V (µx)

����
µx=µ̂x

≡ 1
wx

IRWLS Procedure

1.Set initial estimates                          and 

2.Form the “adjusted dependent variable”

3.Form the weights

4.Use WLS to re-estimate β, then get         and 

5. Iterate steps 2-3-4 until convergence

η̂x,0 = g(µ̂x,0) µ̂x,0 = g
−1(η̂x,0)

z0 = η̂x,0 + (yx − µ̂x,0)
dηx
dµx η̂x,0

w−10 =
�
dηx
dµx

�2����
η̂x,0

V (µ̂x,0)

η̂x,1

 Note: the fitting procedure use only ηx = g(µx) and V(µx)

 It requires no further knowledge of the distribution of yx

 Quasi-likelihood approach

E(zx) = ηx ≡ Xβ





µ̂x,1
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Example: binomial response (treat the proportion (=count/nx) as 

the response, not the count)

ηx = log
�

µx
1−µx

�

dηx
dµx

= 1
µx(1−µx)

V (µx) =
µx(1−µx)

nx

wx = nxµx(1− µx)

Some notes about IRWLS:

 In most cases, the convergence is usually fast

 If there is a failure to converge, this is often a sign of some 

problem with the model specification or unusual feature of 

the data (e.g., data is linearly separable)

Estimates of variance:

 Comparable to the form used in weighted least squares

 The weights are now a function of the response for a GLM

where                             and X2 is the Pearson’s X2 statistic

V ar(β) = XTWX
−1
φ̂

φ̂ = X2/(k − p)









�V ar(β) =
�
XTWX

�−1


p. 7-10

Hypothesis Tests

• null model and saturated model

null model: the smallest model we will entertain

 Model for no relation between predictors and response

 Usually, it means we fit a common mean µ for all yx

 For some contingency table models, there will be additional 

parameters that represent row or column totals or other such 

constraints  null model has more than one parameter

saturated (full) model: the most complex model 

 Model in which data is explained exactly

 Typically, k parameters for k data points

 It can be achieved by fitting a sufficiently high-order 

polynomial or treating quantitative predictors as qualitative 

predictors or adding enough interactions

 The model tells us no more than the data itself and is usually 

uninformative
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A statistical model S describes how we partition the data into 

systematic structure and random variation

 Null model represents one extreme where the data is 

represented entirely as random variation

 Saturated model represents the data as being entirely 

systematic

 Model we want usually lie between these two extremes

• Deviance

 Q: how to measure discrepancy between observed and fitted y? 

Saturated model gives us a measure of how well any model 

could possibly fit  can consider the difference between the 

log-likelihood for the saturated and a model S of interest:

(which has a rationale from likelihood-ratio test)

 : the log-likelihood for the saturated model 

 : the log-likelihood for the model S

2(l(Y, φ; Y ) − l(µ̂, φ; Y ))

l(Y, φ; Y )

l(µ̂, φ; Y )
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Provided that the observations are independent and for an 

exponential family distribution with ai(φ) = φ/wi, 

where       : the estimates of θx under the saturated model

: the estimates of θx under S

2(l(Y, φ; Y )− l(µ̂, φ; Y )) =�
i 2wi

�
yi

�
θ̃xi − θ̂xi

�
− b(θ̃xi) + b(θ̂xi)

	

φ ≡ D(Y, µ̂)/φ

θ̃x
θ̂x

 is called the deviance and                     is called the 

scaled deviance

Deviance for the common GLM

D(Y, µ̂) D(Y, µ̂)/φ

Family deviance

Gaussian

Poisson

Binomial

Gamma

Inverse Gaussian

�
i(yi − µ̂xi)

2

2
�

i[yi log(yi/µ̂xi) − (yi − µ̂xi)]

2
�
i[yi log(yi/µ̂xi) + (n− yi) log((n− yi)/(n− µ̂xi))]

2
�

i[− log(yi/µ̂xi) + (yi − µ̂xi)/µ̂xi ]�
i(yi − µ̂xi)

2/(µ2
xi
yi)
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Pearson’s X2 statistic

it is an alternative measure of discrepancy that is sometimes 

used in replace of the deviance 

• Goodness-of-fit test: whether the current model S fit the data

Given the model S is correct, 

For Gaussian GLM, cannot use the test because do not know the 

value of the dispersion parameter φ
(Q: why not replace φ by an estimate     ?)

For the binomial and the Poisson, φ=1, so the test is practical

X2 =
i

(yi − µ̂xi)
2

V (µ̂xi)

D(Y, µ̂S)/φ
a
∼ χ2dfS

X2 a
∼ χ2dfS





• Difference-in-deviance test: compare two nested models S⊂L
Given the model S is correct,

(D(Y, µ̂S)− D(Y, µ̂L))/φ
a
∼ χ2dfS−dfL

φ̂
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For the Gaussian model and other models where the dispersion 

φ is not known, this chi-square test cannot be directly used 

 We can insert an estimate of φ and

where                        and        is the Pearson’s X2 statistic 

under the model L

 For the Gaussian model,                             and the resulting 

F-statistic has an exact F distribution under the model S

Goodness-of-fit test: L=saturated model

• Notes:

The null distribution in the goodness-of-fit and difference-in-
deviance test is only asymptotically correct 

The approximation is better when comparing models than for 
the goodness of fit statistic

• Wald test for individual βj:

D(Y, µ̂S)− D(Y, µ̂L)

φ̂L

a
∼ FdfS−dfL,dfL

φ̂L = RSSL/dfL

β̂j/se(β̂j)
a
∼ N(0, 1) β̂j/(se(β̂j)φ̂)

a
∼ tdfL

φ̂L = X
2
L/dfL X2

L
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• variable selection

stepwise methods

 Can sequentially (forward or backward or a mix of both) 

apply difference-in-deviance test to compare nested models 

(in much the same manner as in standard regression models)

 The usual concerns about the validity of multiple testing and 

missing good model carry over 

criterion-based methods

AICS = DevianceS + 2p

BICS = DevianceS + p log k

where p is the number of parameters in the model S and k is 

the number of covariate classes

 Choose the model with the smallest AIC or BIC

 AIC will tend to pick a larger model than the BIC

 AIC and BIC can be used to compare non-nested model


