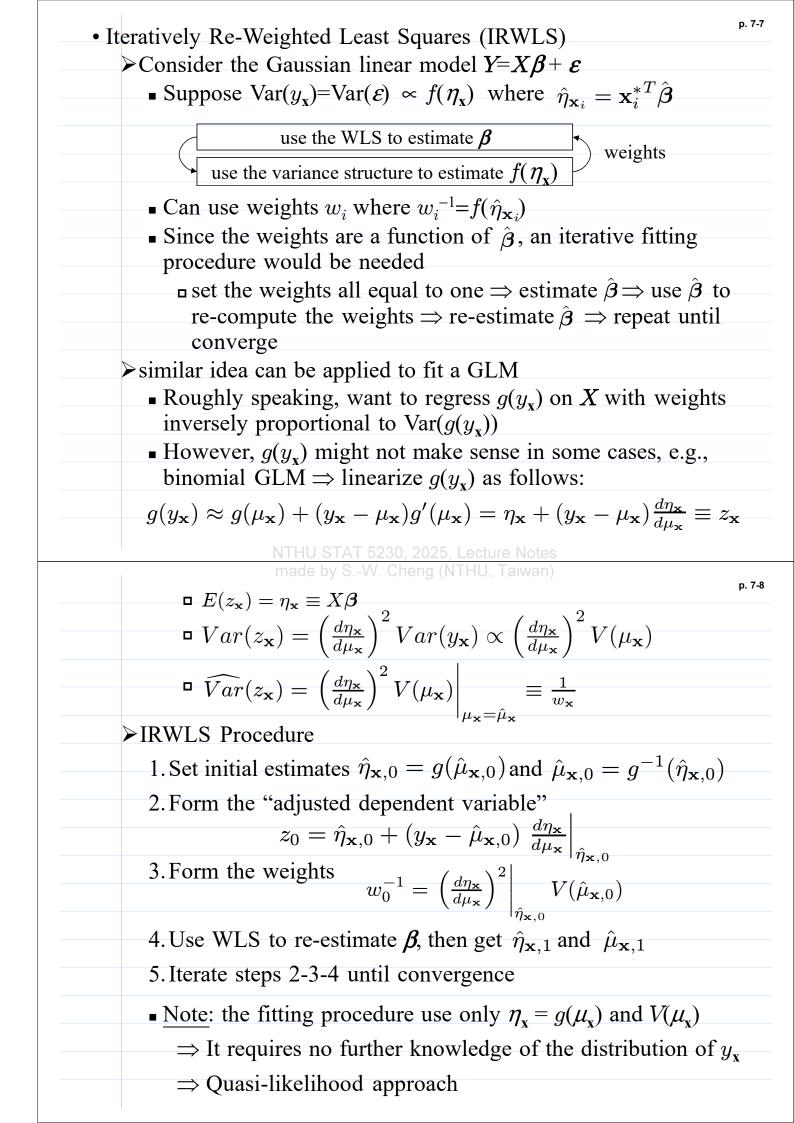
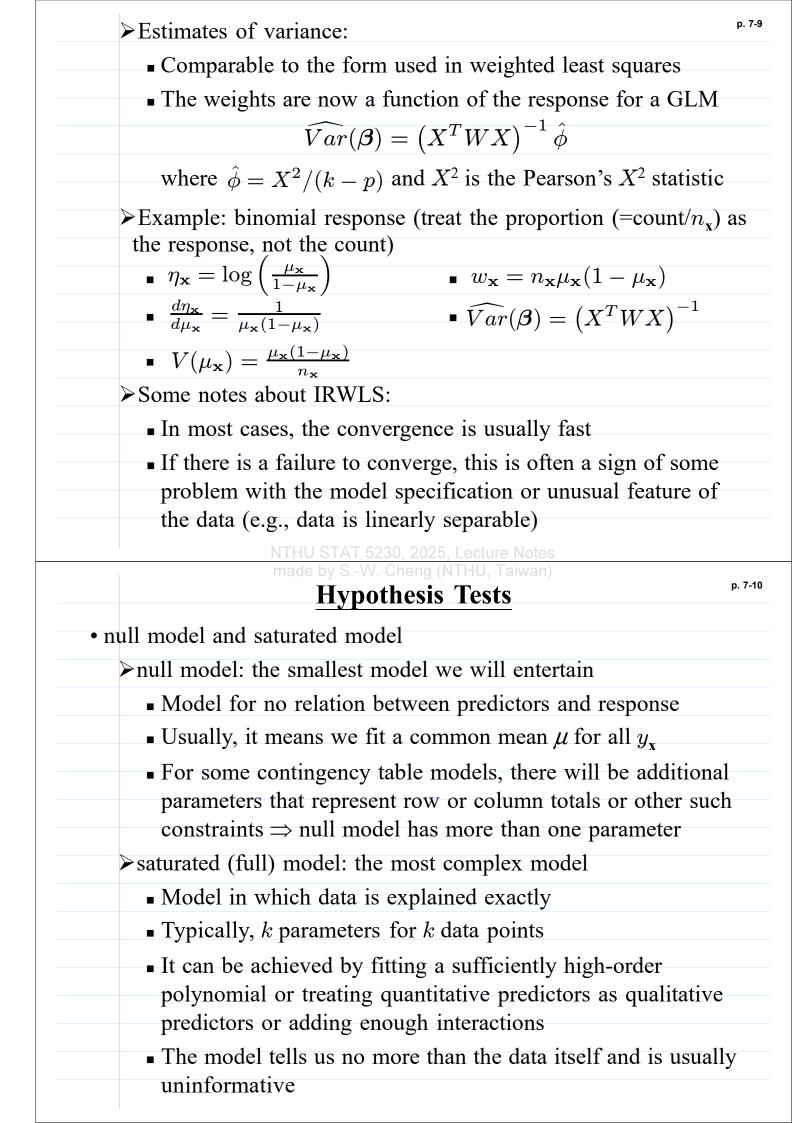


• ϕ is free in normal while fixed at 1 in Poisson and binomial ^{p. 7-3}			
 Some authors reserve the term <i>exponential family</i> distribution 			
for cases where ϕ is not used (such as Poisson and binomial)			
while using the term <i>exponential dispersion family</i> for cases			
where it is (such as normal)			
Some properties of exponential family			
1.Mean: $E(Y_x) = \mu_x = b'(\theta_x)$			
2. Variance: Var $(Y_x) = b'' (\theta_x) a(\phi)$			
• $E(Y_x)$ does not depend on ϕ			
• $Var(Y_x)$ is a product of functions of θ_x and ϕ			
• b'' (θ_x) is called the <i>variance function</i> and describes how the			
variance related to the mean			
□ In the normal density case, b' ' $(\theta_x) = 1 \Rightarrow$ variance			
independent of the mean			
For other distributions such as Poisson and binomial,			
b'' (θ_x) is not a constant function \Rightarrow variance dependents			
on the mean			
• We can introduce weights by setting $a(\phi) = \phi/w_x$, where w_x is a			
known weight that varies between observations			
NTHU STAT 5230, 2025, Lecture Notes			
• Link function $\eta_{\mathbf{x}} = g^*(\theta_{\mathbf{x}})$			
 Link function η_x = g[*](θ_x) We now re-write the link function to describe how the mean 			
• Link function $\eta_{\mathbf{x}} = g^*(\theta_{\mathbf{x}})$ p. 7-4			
 Link function η_x = g[*](θ_x) We now re-write the link function to describe how the mean 			
• Link function $\eta_{\mathbf{x}} = g^*(\theta_{\mathbf{x}})$ • We now re-write the link function to describe how the mean response, $E(Y_{\mathbf{x}}) = \mu_{\mathbf{x}}$, is linked to $\eta_{\mathbf{x}}$, i.e., $\eta_{\mathbf{x}} = g(\mu_{\mathbf{x}})$			
 Link function η_x = g*(θ_x) We now re-write the link function to describe how the mean response, E(Y_x) = μ_x, is linked to η_x, i.e., η_x = g(μ_x) In principle, g can be any monotone, continuous, and 			
 Link function η_x = g*(θ_x) We now re-write the link function to describe how the mean response, E(Y_x) = μ_x, is linked to η_x, i.e., η_x = g(μ_x) In principle, g can be any monotone, continuous, and differentiable function 			
 Link function η_x = g*(θ_x) We now re-write the link function to describe how the mean response, E(Y_x) = μ_x, is linked to η_x, i.e., η_x = g(μ_x) In principle, g can be any monotone, continuous, and differentiable function There are some convenient and common choice of g Normal (Gaussian) density: 			
 Link function η_x = g*(θ_x) We now re-write the link function to describe how the mean response, E(Y_x) = μ_x, is linked to η_x, i.e., η_x = g(μ_x) In principle, g can be any monotone, continuous, and differentiable function There are some convenient and common choice of g 			
 Link function η_x = g*(θ_x) We now re-write the link function to describe how the mean response, E(Y_x) = μ_x, is linked to η_x, i.e., η_x = g(μ_x) In principle, g can be any monotone, continuous, and differentiable function There are some convenient and common choice of g Normal (Gaussian) density: □ Standard choice: η_x = μ_x □ Other choice of g would give 			
• Link function $\eta_x = g^*(\theta_x)$ • We now re-write the link function to describe how the mean response, $E(Y_x) = \mu_x$, is linked to η_x , i.e., $\eta_x = g(\mu_x)$ • In principle, g can be any monotone, continuous, and differentiable function • There are some convenient and common choice of g • Normal (Gaussian) density: • Standard choice: $\eta_x = \mu_x$ • Other choice of g would give $Y = g^{-1}(X\beta) + \varepsilon$			
• Link function $\eta_x = g^*(\theta_x)$ • We now re-write the link function to describe how the mean response, $E(Y_x) = \mu_x$, is linked to η_x , i.e., $\eta_x = g(\mu_x)$ • In principle, g can be any monotone, continuous, and differentiable function • There are some convenient and common choice of g • Normal (Gaussian) density: • Standard choice: $\eta_x = \mu_x$ • Other choice of g would give $Y = g^{-1}(X\beta) + \varepsilon$ Notice that this does not corespond diretly to a			
 Link function η_x = g*(θ_x) We now re-write the link function to describe how the mean response, E(Y_x) = μ_x, is linked to η_x, i.e., η_x = g(μ_x) In principle, g can be any monotone, continuous, and differentiable function There are some convenient and common choice of g Normal (Gaussian) density: Standard choice: η_x = μ_x Other choice of g would give Y = g⁻¹(Xβ) + ε Notice that this does not corespond diretly to a tranfrmation on the response as, for example, in Box-Cox 			
• Link function $\eta_x = g^*(\theta_x)$ • We now re-write the link function to describe how the mean response, $E(Y_x) = \mu_x$, is linked to η_x , i.e., $\eta_x = g(\mu_x)$ • In principle, g can be any monotone, continuous, and differentiable function • There are some convenient and common choice of g • Normal (Gaussian) density: • Standard choice: $\eta_x = \mu_x$ • Other choice of g would give $Y = g^{-1}(X\beta) + \varepsilon$ Notice that this does not corespond diretly to a			
• Link function $\eta_x = g^*(\theta_x)$ • We now re-write the link function to describe how the mean response, $E(Y_x) = \mu_x$, is linked to η_x , i.e., $\eta_x = g(\mu_x)$ • In principle, g can be any monotone, continuous, and differentiable function • There are some convenient and common choice of g • Normal (Gaussian) density: • Standard choice: $\eta_x = \mu_x$ • Other choice of g would give $Y = g^{-1}(X\beta) + \varepsilon$ Notice that this does not corespond diretly to a tranfrmation on the response as, for example, in Box-Cox type transformation, i.e. $g^{-1}(Y) = X\beta + \varepsilon$			
• Link function $\eta_x = g^*(\theta_x)$ • We now re-write the link function to describe how the mean response, $E(Y_x) = \mu_x$, is linked to η_x , i.e., $\eta_x = g(\mu_x)$ • In principle, g can be any monotone, continuous, and differentiable function • There are some convenient and common choice of g • Normal (Gaussian) density: • Standard choice: $\eta_x = \mu_x$ • Other choice of g would give $Y = g^{-1}(X\beta) + \varepsilon$ Notice that this does not corespond diretly to a tranfrmation on the response as, for example, in Box-Cox type transformation, i.e. $g^{-1}(Y) = X\beta + \varepsilon$ • Poisson density:			
• Link function $\eta_x = g^*(\theta_x)$ • We now re-write the link function to describe how the mean response, $E(Y_x) = \mu_x$, is linked to η_x , i.e., $\eta_x = g(\mu_x)$ • In principle, g can be any monotone, continuous, and differentiable function • There are some convenient and common choice of g • Normal (Gaussian) density: • Standard choice: $\eta_x = \mu_x$ • Other choice of g would give $Y = g^{-1}(X\beta) + \varepsilon$ Notice that this does not corespond diretly to a tranfrmation on the response as, for example, in Box-Cox type transformation, i.e. $g^{-1}(Y) = X\beta + \varepsilon$ • Poisson density: • Identity link $\eta_x = \mu_x$ would possibly cause negative μ_x			
• Link function $\eta_x = g^*(\theta_x)$ • We now re-write the link function to describe how the mean response, $E(Y_x) = \mu_x$, is linked to η_x , i.e., $\eta_x = g(\mu_x)$ • In principle, g can be any monotone, continuous, and differentiable function • There are some convenient and common choice of g • Normal (Gaussian) density: • Standard choice: $\eta_x = \mu_x$ • Other choice of g would give $Y = g^{-1}(X\beta) + \varepsilon$ Notice that this does not corespond diretly to a tranfrmation on the response as, for example, in Box-Cox type transformation, i.e. $g^{-1}(Y) = X\beta + \varepsilon$ • Poisson density: • Identity link $\eta_x = \mu_x$ would possibly cause negative μ_x • Standard choice: $\eta_x = \log(\mu_x) \Leftrightarrow \mu_x = \exp(\eta_x) > 0$			
• Link function $\eta_x = g^*(\theta_x)$ • We now re-write the link function to describe how the mean response, $E(Y_x) = \mu_x$, is linked to η_x , i.e., $\eta_x = g(\mu_x)$ • In principle, g can be any monotone, continuous, and differentiable function • There are some convenient and common choice of g • Normal (Gaussian) density: • Standard choice: $\eta_x = \mu_x$ • Other choice of g would give $Y = g^{-1}(X\beta) + \varepsilon$ Notice that this does not corespond diretly to a tranfrmation on the response as, for example, in Box-Cox type transformation, i.e. $g^{-1}(Y) = X\beta + \varepsilon$ • Poisson density: • Identity link $\eta_x = \mu_x$ would possibly cause negative μ_x			

	• Binomial density (treat Y_x/n_x as the response):				
	□ Standard choice: logit, probit, complementary log-log				
	Canonical link: choose g such that				
	$\eta_{\mathbf{x}} = g(\mu_{\mathbf{x}}) = \theta_{\mathbf{x}}$				
	which means g must satisfy $g(b'(\theta_x)) = \theta_x$				
	• Examples:				
	Family	Link	Variance function		
	Gaussian	$\eta_{\rm x} = \mu_{\rm x}$	1		
	Poisson	$\eta_{\rm x} = \log(\mu_{\rm x})$	$\mu_{\rm x}$		
	Binomial	$\eta_{\rm x} = \log(\mu_{\rm x}/(1-\mu_{\rm x}))$	$\mu_{\mathbf{x}}(1-\mu_{\mathbf{x}})$		
	Gamma	$\eta_{\rm x} = \mu_{\rm x}^{-1}$	$\mu_{\mathbf{x}}^2$		
	Inverse Gaussian	$\eta_{\rm x} = \mu_{\rm x}^{-2}$	$\mu_{\rm x}^{3}$		
	 If a canonical link is used 				
	$\square X^T Y$ is sufficient for β				
	Mathematically and computationally convenient				
	Often physically justified				
	However, it is not required to always use the canonical				
	link and sometimes context may compel another choice				
	NTHU STAT 5230, 2025, Lecture Notes made by SW. Cheng (NTHU, Taiwan)				
	Fitting a GLM				
• 7	The log-likelihood for a sin				
	$\log L(\theta_{\mathbf{x}_i}, \phi; y_i) = f$	$w_i \left \frac{y_i \theta_{\mathbf{x}_i} - b(\theta_{\mathbf{x}_i})}{\phi} \right $	$+ c(y_i, \phi)$		
	where $a_i(\phi) = \phi/w_i$ and w_i is a known weight that varies between				
	observations				
	For independent observations (\mathbf{x}_i, y_i) , $i=1, 2,, k$, the joint log-				
	likelihood is:				
	$\sum_{i=1}^{k} \log L(\theta_{\mathbf{x}_{i}}, \phi; y_{i}) = \sum_{i=1}^{k} w_{i} \left[\frac{y_{i} \theta_{\mathbf{x}_{i}} - b(\theta_{\mathbf{x}_{i}})}{\phi} \right] + \sum_{i=1}^{k} c(y_{i}, \phi) \equiv l(\boldsymbol{\mu}_{\mathbf{x}}, \phi; Y)$				
	Likelihood approach: the parameters β , which appear in the link				
	function $X\beta = \eta_x = g^*(\theta_x)$ of a GLM, can be estimated using				
	maximum likelihood maximize the joint log-likelihood as a				
	function of β				
	• We can maximize the joint log-likelihood <i>analytically</i> and				
	find an exact solution for the MLE of β Gaussian GLM is				
	the only common case where this is possible				
1	T ' 11 /	• 1			

• Typically, we must use numerical optimization - IRWLS





>A statistical model *S* describes how we partition the data into systematic structure and random variation
• Null model represents one extreme where the data is represented entirely as random variation
• Saturated model represents the data as being entirely systematic
• Model we want usually lie between these two extremes
• Deviance
> Q: how to measure discrepancy between observed and fitted y?
> Saturated model gives us a measure of how well *any* model could possibly fit
$$\Rightarrow$$
 can consider the difference between the log-likelihood for the saturated and a model *S* of interest:
 $2(l(Y, \phi; Y) - l(\hat{\mu}, \phi; Y))$
(which has a rationale from likelihood-ratio test)
• $l(Y, \phi; Y)$: the log-likelihood for the saturated model
• $l(\hat{\mu}, \phi; Y)$: the log-likelihood for the model *S*
MTHU STAT 5230, 2025 Lectore Notes
mode Δy S.W. Cheng (NTHU Taken)
> Provided that the observations are independent and for an exponential family distribution with $a_i(\phi) = \phi'w_i$,
 $2(l(Y, \phi; Y) - l(\hat{\mu}, \phi; Y)) =$
 $\sum_i 2w_i \left[y_i (\tilde{\theta}_{x_i} - \hat{\theta}_{x_i}) - b(\tilde{\theta}_{x_i}) + b(\hat{\theta}_{x_i}) \right] / \phi \equiv D(Y, \hat{\mu}) / \phi$
where $\tilde{\theta}_x$: the estimates of θ_x under the saturated model
 $\hat{\theta}_x$: the estimates of θ_x under *S*
> $D(Y, \hat{\mu})$ is called the *deviance* and $D(Y, \hat{\mu}) / \phi$ is called the *scaled deviance*
> Deviance for the common GLM

Family deviance
Gaussian $\sum_i (w_i - \hat{\mu}_{x_i})^2 (\mu_{x_i}^2, \psi_i - \hat{\mu}_{x_i}) | Binomial $2\sum_i [y_i \log(y_i / \hat{\mu}_{x_i}) - (y_i - \hat{\mu}_{x_i})]$
Binomial $2\sum_i [y_i \log(y_i / \hat{\mu}_{x_i}) + (y_i - \hat{\mu}_{x_i})/\hat{\mu}_{x_i}]$
Inverse Gaussian $\sum_i (y_i - \hat{\mu}_{x_i})^2 (\mu_{x_i}^2, y_i)$$

Pearson's X² statistic

$$X^{2} = \sum_{i} \frac{(y_{i} - \hat{\mu}_{x_{i}})^{2}}{V(\hat{\mu}_{x_{i}})}$$
it is an alternative measure of discrepancy that is sometimes
used in replace of the deviance
• Goodness-of-fit test: whether the current model S fit the data
> Given the model S is correct,
• $D(Y, \hat{\mu}_{S})/\phi \stackrel{a}{\sim} \chi^{2}_{df_{S}}$
• $X^{2} \stackrel{a}{\sim} \chi^{2}_{df_{S}}$
• $X^{2} \stackrel{a}{\sim} \chi^{2}_{df_{S}}$
> For Gaussian GLM, cannot use the test because do not know the
value of the dispersion parameter ϕ
(Q: why not replace ϕ by an estimate $\hat{\phi}$?)
> For the binomial and the Poisson, $\phi=1$, so the test is practical
• Difference-in-deviance test: compare two nested models $S \subset L$
> Given the model S is correct,
($D(Y, \hat{\mu}_{S}) - D(Y, \hat{\mu}_{L}))/\phi \stackrel{a}{\sim} \chi^{2}_{df_{S}-df_{L}}$
MTHU STAT 5230, 2025. Lecture Notes
made by S-W. Cheng (NTHU Tawan)
> For the Gaussian model and other models where the dispersion $p^{p.744}$
 ϕ is not known, this chi-square test cannot be directly used
• We can insert an estimate of ϕ and
 $\frac{D(Y, \hat{\mu}_{S}) - D(Y, \hat{\mu}_{L})}{\hat{\phi}_{L}} \stackrel{a}{\sim} F_{df_{S}-df_{L}, df_{L}}$
where $\hat{\phi}_{L} = X_{L}^{2}/df_{L}$ and X_{L}^{2} is the Pearson's X^{2} statistic
under the model L
• For the Gaussian model, $\hat{\phi}_{L} = RSS_{L}/df_{L}$ and the resulting
 F -statistic has an exact F distribution under the model S
> Goodness-of-fit test: L=saturated model
• Notes:
> The null distribution in the goodness-of-fit and difference-in-
deviance test is only asymptotically correct
> The approximation is better when comparing models than for
the goodness of fit statistic
• Wald test for individual β_{j} :
• $\hat{\beta}_{j}/(se(\hat{\beta}_{j})\hat{\phi}) \stackrel{a}{\sim} N(0, 1)$

