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• 3 components of a GLM

A random component for the response: Yx ~ f(y|θx, φ) where

 Canonical parameter θx: represent the location

 Dispersion parameter φ: represent the scale

A systematic (linear) component for the predictors:

A link function g∗ such that ηx = g∗(θx)

GLM Definition

ηx = β0 + h1(x)β1 + · · ·+ hp−1(x)βp−1 ≡ Xβ

• Random component

Exponential family

Some distributions in exponential family

 Normal (Gaussian) density N(µx, σ2)

 θx = µx, φ = σ
2, a(φ) = φ, b(θx) = θ

2
x
/2,

c(y, φ) = −(y2/φ+ log(2πφ))/2
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 Poisson density P(µx)

f(y|θx , φ) =
e−µxµy

x

y!
= exp [y logµx − µx − log y!]

 θx = log µx, φ = 1, a(φ) = 1, b(θx) = exp(θx),
c(y, φ) = − log y!

 Binomial density B(nx, µx)

 θx = log
µx

1−µx
, φ = 1, a(φ) = 1, c(y, φ) = log nx

y

b(θx) = −nx log(1− µx) = nx log(1 + exp(θx))

 The Gamma and inverse Gaussian are other (lesser-used) 
members of the exponential family

 Some other densities such as the negative binomial and 
Weibull are not members of exponential family, but are 
sufficiently close so that GLM can be fit with some simple 
modifications
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1.Mean: E(Yx) = µx = b’(θx) 

2.Variance: Var(Yx) = b’’(θx) a(φ)

 E(Yx) does not depend on φ
 Var(Yx)is a product of functions of θx and φ
 b’’(θx) is called the variance function and describes how the 

variance related to the mean

 In the normal density case, b’’(θx) =1  variance 

independent of the mean

 For other distributions such as Poisson and binomial, 
b’’(θx) is not a constant function  variance dependents 

on the mean

 We can introduce weights by setting a(φ)=φ/wx, where wx is a 

known weight that varies between observations

Some properties of exponential family

 φ is free in normal while fixed at 1 in Poisson and binomial

 Some authors reserve the term exponential family distribution 
for cases where φ is not used (such as Poisson and binomial) 
while using the term exponential dispersion family for cases 
where it is (such as normal)
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We now re-write the link function to describe how the mean 
response, E(Yx) = µx, is linked to ηx, i.e., ηx = g(µx)

In principle, g can be any monotone, continuous, and 

differentiable function

There are some convenient and common choice of g

 Normal (Gaussian) density:

 Standard choice: ηx = µx

 Other choice of g would give

Y = g−1(Xβ) + ε
Notice that this does not corespond diretly to a 
tranfrmation on the response as, for example, in Box-Cox 
type transformation, i.e.

g−1(Y )= Xβ + ε
 Poisson density:

 Identity link ηx = µx would possibly cause negative µx

 Standard choice: ηx = log(µx) ⇔ µx= exp(ηx) > 0

 Log link means that additive effect of x lead to 
multiplicative effect on µx
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Canonical link: choose g such that 

ηx = g(µx) = θx

which means g must satisfy g(b’(θx)) = θx

 Examples:

 If a canonical link is used 

 XTY is sufficient for β
 Mathematically and computationally convenient

 Often physically justified

 However, it is not required to always use the canonical 
link and sometimes context may compel another choice

Family Link Variance function

Gaussian ηx = µx 1

Poisson ηx = log(µx) µx

Binomial ηx = log(µx/(1−µx)) µx(1−µx)

Gamma ηx = µx
−1 µx

2

Inverse Gaussian ηx = µx
−2 µx

3

 Binomial density (treat Yx/nx as the response):

 Standard choice: logit, probit, complementary log-log
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Fitting a GLM
• The log-likelihood for a single observation (xi, yi) is:

where ai(φ) = φ/wi and wi is a known weight that varies between 

observations

For independent observations (xi, yi), i=1, 2, …, k, the joint log-

likelihood is:

Likelihood approach: the parameters β, which appear in the link 

function Xβ = ηx = g∗(θx) of a GLM, can be estimated using 

maximum likelihood --- maximize the joint log-likelihood as a 

function of β
 We can maximize the joint log-likelihood analytically and 

find an exact solution for the MLE of β --- Gaussian GLM is 

the only common case where this is possible

 Typically, we must use numerical optimization - IRWLS
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• Iteratively Re-Weighted Least Squares (IRWLS)

Consider the Gaussian linear model Y=Xβ + ε
 Suppose Var(yx)=Var(ε) ∝ f(ηx)  where 

 Can use weights wi where wi
−1=f(     )

 Since the weights are a function of    , an iterative fitting 
procedure would be needed

 set the weights all equal to one  estimate  use     to 
re-compute the weights  re-estimate  repeat until 
converge

similar idea can be applied to fit a GLM

 Roughly speaking, want to regress g(yx) on X with weights 
inversely proportional to Var(g(yx))

 However, g(yx) might not make sense in some cases, e.g., 
binomial GLM  linearize g(yx) as follows:

use the WLS to estimate β

use the variance structure to estimate f(ηx)
weights

η̂xi = x
∗

i
T
β̂

η̂xi

g(yx) ≈ g(µx) + (yx − µx)g
′(µx) = ηx + (yx − µx)

dηx
dµx

≡ zx

β̂

β̂ β̂

β̂
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�V ar(zx) =
�
dηx
dµx

�2
V (µx)

����
µx=µ̂x

≡ 1
wx

IRWLS Procedure

1.Set initial estimates                          and 

2.Form the “adjusted dependent variable”

3.Form the weights

4.Use WLS to re-estimate β, then get         and 

5. Iterate steps 2-3-4 until convergence

η̂x,0 = g(µ̂x,0) µ̂x,0 = g
−1(η̂x,0)

z0 = η̂x,0 + (yx − µ̂x,0)
dηx
dµx η̂x,0

w−10 =
�
dηx
dµx

�2����
η̂x,0

V (µ̂x,0)

η̂x,1

 Note: the fitting procedure use only ηx = g(µx) and V(µx)

 It requires no further knowledge of the distribution of yx

 Quasi-likelihood approach

E(zx) = ηx ≡ Xβ





µ̂x,1
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Example: binomial response (treat the proportion (=count/nx) as 

the response, not the count)

ηx = log
�

µx
1−µx

�

dηx
dµx

= 1
µx(1−µx)

V (µx) =
µx(1−µx)

nx

wx = nxµx(1− µx)

Some notes about IRWLS:

 In most cases, the convergence is usually fast

 If there is a failure to converge, this is often a sign of some 

problem with the model specification or unusual feature of 

the data (e.g., data is linearly separable)

Estimates of variance:

 Comparable to the form used in weighted least squares

 The weights are now a function of the response for a GLM

where                             and X2 is the Pearson’s X2 statistic

V ar(β) = XTWX
−1
φ̂

φ̂ = X2/(k − p)









�V ar(β) =
�
XTWX

�−1

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Hypothesis Tests

• null model and saturated model

null model: the smallest model we will entertain

 Model for no relation between predictors and response

 Usually, it means we fit a common mean µ for all yx

 For some contingency table models, there will be additional 

parameters that represent row or column totals or other such 

constraints  null model has more than one parameter

saturated (full) model: the most complex model 

 Model in which data is explained exactly

 Typically, k parameters for k data points

 It can be achieved by fitting a sufficiently high-order 

polynomial or treating quantitative predictors as qualitative 

predictors or adding enough interactions

 The model tells us no more than the data itself and is usually 

uninformative
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A statistical model S describes how we partition the data into 

systematic structure and random variation

 Null model represents one extreme where the data is 

represented entirely as random variation

 Saturated model represents the data as being entirely 

systematic

 Model we want usually lie between these two extremes

• Deviance

 Q: how to measure discrepancy between observed and fitted y? 

Saturated model gives us a measure of how well any model 

could possibly fit  can consider the difference between the 

log-likelihood for the saturated and a model S of interest:

(which has a rationale from likelihood-ratio test)

 : the log-likelihood for the saturated model 

 : the log-likelihood for the model S

2(l(Y, φ; Y ) − l(µ̂, φ; Y ))

l(Y, φ; Y )

l(µ̂, φ; Y )
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Provided that the observations are independent and for an 

exponential family distribution with ai(φ) = φ/wi, 

where       : the estimates of θx under the saturated model

: the estimates of θx under S

2(l(Y, φ; Y )− l(µ̂, φ; Y )) =�
i 2wi

�
yi

�
θ̃xi − θ̂xi

�
− b(θ̃xi) + b(θ̂xi)

	

φ ≡ D(Y, µ̂)/φ

θ̃x
θ̂x

 is called the deviance and                     is called the 

scaled deviance

Deviance for the common GLM

D(Y, µ̂) D(Y, µ̂)/φ

Family deviance

Gaussian

Poisson

Binomial

Gamma

Inverse Gaussian

�
i(yi − µ̂xi)

2

2
�

i[yi log(yi/µ̂xi) − (yi − µ̂xi)]

2
�
i[yi log(yi/µ̂xi) + (n− yi) log((n− yi)/(n− µ̂xi))]

2
�

i[− log(yi/µ̂xi) + (yi − µ̂xi)/µ̂xi ]�
i(yi − µ̂xi)

2/(µ2
xi
yi)
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Pearson’s X2 statistic

it is an alternative measure of discrepancy that is sometimes 

used in replace of the deviance 

• Goodness-of-fit test: whether the current model S fit the data

Given the model S is correct, 

For Gaussian GLM, cannot use the test because do not know the 

value of the dispersion parameter φ
(Q: why not replace φ by an estimate     ?)

For the binomial and the Poisson, φ=1, so the test is practical

X2 =
i

(yi − µ̂xi)
2

V (µ̂xi)

D(Y, µ̂S)/φ
a
∼ χ2dfS

X2 a
∼ χ2dfS





• Difference-in-deviance test: compare two nested models S⊂L
Given the model S is correct,

(D(Y, µ̂S)− D(Y, µ̂L))/φ
a
∼ χ2dfS−dfL

φ̂
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For the Gaussian model and other models where the dispersion 

φ is not known, this chi-square test cannot be directly used 

 We can insert an estimate of φ and

where                        and        is the Pearson’s X2 statistic 

under the model L

 For the Gaussian model,                             and the resulting 

F-statistic has an exact F distribution under the model S

Goodness-of-fit test: L=saturated model

• Notes:

The null distribution in the goodness-of-fit and difference-in-
deviance test is only asymptotically correct 

The approximation is better when comparing models than for 
the goodness of fit statistic

• Wald test for individual βj:

D(Y, µ̂S)− D(Y, µ̂L)

φ̂L

a
∼ FdfS−dfL,dfL

φ̂L = RSSL/dfL

β̂j/se(β̂j)
a
∼ N(0, 1) β̂j/(se(β̂j)φ̂)

a
∼ tdfL

φ̂L = X
2
L/dfL X2

L


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• variable selection

stepwise methods

 Can sequentially (forward or backward or a mix of both) 

apply difference-in-deviance test to compare nested models 

(in much the same manner as in standard regression models)

 The usual concerns about the validity of multiple testing and 

missing good model carry over 

criterion-based methods

AICS = DevianceS + 2p

BICS = DevianceS + p log k

where p is the number of parameters in the model S and k is 

the number of covariate classes

 Choose the model with the smallest AIC or BIC

 AIC will tend to pick a larger model than the BIC

 AIC and BIC can be used to compare non-nested model


