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 Fit a log-linear model Yxr ~ xc+ r + r:X, where

Yxr: (y11, …, y1J, y21, …, y2J, …, yI1, …, yIJ)
T

xc: a nominal factor which treats each covariate class as a 
level (i.e., xc has I levels)

r:X: the interaction term with the sameX (without 

the intercept term)in the multinomial logit model

 The parameters associated with xc will represent the total 
for the cases (⇔ n1, n2, …, nI)

 the parameters associated with r will represent the 

category totals (⇔ intercepts in multinomial logit model)

 The interaction terms r:X tell us how the probability of 

falling in the different categories changes with X (⇔
coefficients of X in the multinomial logit model)

 This multinomial log-linear model would have same 

deviance as its corresponding multinomial logit model

 Q: what information in the log-linear model not valid?

Multinomial logit can be viewed as a GLM-type model, which 

allows us to apply all the methodology developed for GLM
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• Q: why can multinomial log-linear model be connected to 

multinomial logit model?

Suppose that

nx
indep
∼ Poisson(λx)

(yx1, . . . , yxJ |nx)
indep
∼ multinomial(nx, px1, . . . , pxJ)

yxj
indep
∼ Poisson(µxj = λxpxj)

log
µxj

µx1
= log

λxpxj

λxpx1
= log

pxj

px1
= ηxj = Xβj

log (µxj) = log (µx1) +Xβj

= log (λxpx1) +Xβj

Then,

If we fit a log-linear model for yxj, then:



β0j + h1(x)β1j + · · ·+ hp−1(x)βp−1,j

 Reading: Faraway (2006, 1st ed.), 5.1
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Ordinal Multinomial Responses
• Suppose that

We have a multinomial response with J ordered categories, and

For individual x, observe ordinal response (yx1, …, yxJ) 

• For an ordered multinomial response, it is often easier to work with 

the cumulative probabilities 

 px1=γx1; pxj=γx,j– γx,j−1, j=2,…, J−1; γxJ=1 

 Q: why cumulative probabilities are better?

 the cumulative probabilities are increasing and invariant to 

combining adjacent categories

 γxJ=1, so we need only model J−1 probability

• Q: how to link γx = (γx1, γx2, …, γx,J−1) with x?

(γx1,        …  , γx,J−1)

ηx1 =Xβ1 ηx,J−1=XβJ−1
…

g

γxj = px1 + · · ·+ pxj, j = 1, . . . , J

g

Xβj = β0j −

h1(x)β1 − · · ·−

hp−1(x)βp−1

p. 6-7

some choices of g: (1) logit (2) probit (3) complementary log-log

 Notice that the intercepts, β0j, are different for the J categories 

 β=(β1, …, βp−1) do not depend on j we assume that the 

predictors have a uniform effect on the probabilities of 

response categories in a sense that we will shortly make clear

 Negative sign before β

P (yx � j) = P (zx � β0j)

= P (zx − β
T
x
∗ � β0j − β

T
x
∗)

= F (β0j − β
T
x
∗)

• Latent variable approach for ordinal variables:

let zx be some unobserved continuous 

variable that might be thought of as the real 

underlying latent response

we only observe a discretized version of zx

in the form of yx where yx=j is observed if 

β0,j−1<zx ≤ β0,j

suppose that zx−βTx∗ has a distribution F :
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γxj =
exp(β0j − β

T
x
∗)

1 + exp(β0j − β
T
x∗)

log

�
γj(x)

1− γj(x)

�
= β0j − β

T
x
∗

If F follows the logistic distribution, i.e., F(z)=ez/(1+ez), then

• so, we would have a logit model for the cumulative 

probabilities γxj

Choosing Normal for latent variable (i.e, F) leads to probit model

F=Extreme value distribution leads to complementary log-log

Notice that if β > 0, as x increases, P(yx＞j) will also increase

 this explain the use of the minus sign in the definition of the 

model because it allows for the more intuitive interpretation of the 

sign of β
• Proportional odds model

• Let γxj = γj(x) = P(yx≤j|x), then the proportional odds model, 

which use the logit link, is:

p. 6-9

It is so called because the relative odds for the event yx≤j
comparing x=x1 and x=x2 are:

 This does not depend on j

 Of course, this assumption of proportional odds does need to 
be checked for a given dataset

 It can be checked by computing the sample (observed) odds 
proportions with respect to x

Some advantages

 The model use fewer parameters than the multinomial logit 
model (Q: the former nested in the latter?)

 Typically, the output from the proportional odds model is 
easier to interpret

Inferences follows the usual GLM likelihood-based approach

Interpretation of the fitted coefficients: odds of moving from 
one category to another increase by a factor of exp(β) as x
increases by one unit (check lab)

�
γj(x1)

1− γj(x1)

���
γj(x2)

1− γj(x2)

�
= exp (−βT (x∗

1
− x∗

2
))
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• ordered probit model

If the latent variable zx has a standard normal distribution, then

Coefficients estimates could be very different from proportional 

odds model, but predicted values usually are very similar

• proportional hazards model

Concept of hazard 

 Developed in insurance application: when issuing a life 

insurance policy, the insurer is interested in the prob. that the 

person will die during the term of the policy given that they 

are alive now

 This is not the same as the unconditional probability of death

Suppose we use the complementary log-log link, i.e.,

Then, the hazard of category j is the probability of falling in 

category j given that your category is greater than j:

Φ−1 (γj(x)) = β0j − β
T
x
∗

log(− log (1− γj(x))) = β0j − β
T
x
∗
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