
p. 6-4

 Fit a log-linear model Yxr ~ xc+ r + r:X, where

Yxr: (y11, …, y1J, y21, …, y2J, …, yI1, …, yIJ)
T

xc: a nominal factor which treats each covariate class as a 
level (i.e., xc has I levels)

r:X: the interaction term with the sameX (without 

the intercept term)in the multinomial logit model

 The parameters associated with xc will represent the total 
for the cases (⇔ n1, n2, …, nI)

 the parameters associated with r will represent the 

category totals (⇔ intercepts in multinomial logit model)

 The interaction terms r:X tell us how the probability of 

falling in the different categories changes with X (⇔
coefficients of X in the multinomial logit model)

 This multinomial log-linear model would have same 

deviance as its corresponding multinomial logit model

 Q: what information in the log-linear model not valid?

Multinomial logit can be viewed as a GLM-type model, which 

allows us to apply all the methodology developed for GLM

p. 6-5

• Q: why can multinomial log-linear model be connected to 

multinomial logit model?

Suppose that

nx
indep
∼ Poisson(λx)

(yx1, . . . , yxJ |nx)
indep
∼ multinomial(nx, px1, . . . , pxJ)

yxj
indep
∼ Poisson(µxj = λxpxj)

log
µxj

µx1
= log

λxpxj

λxpx1
= log

pxj

px1
= ηxj = Xβj

log (µxj) = log (µx1) +Xβj

= log (λxpx1) +Xβj

Then,

If we fit a log-linear model for yxj, then:



β0j + h1(x)β1j + · · ·+ hp−1(x)βp−1,j

 Reading: Faraway (2006, 1st ed.), 5.1
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Ordinal Multinomial Responses
• Suppose that

We have a multinomial response with J ordered categories, and

For individual x, observe ordinal response (yx1, …, yxJ) 

• For an ordered multinomial response, it is often easier to work with 

the cumulative probabilities 

 px1=γx1; pxj=γx,j– γx,j−1, j=2,…, J−1; γxJ=1 

 Q: why cumulative probabilities are better?

 the cumulative probabilities are increasing and invariant to 

combining adjacent categories

 γxJ=1, so we need only model J−1 probability

• Q: how to link γx = (γx1, γx2, …, γx,J−1) with x?

(γx1,        …  , γx,J−1)

ηx1 =Xβ1 ηx,J−1=XβJ−1
…

g

γxj = px1 + · · ·+ pxj, j = 1, . . . , J

g

Xβj = β0j −

h1(x)β1 − · · ·−

hp−1(x)βp−1

p. 6-7

some choices of g: (1) logit (2) probit (3) complementary log-log

 Notice that the intercepts, β0j, are different for the J categories 

 β=(β1, …, βp−1) do not depend on j we assume that the 

predictors have a uniform effect on the probabilities of 

response categories in a sense that we will shortly make clear

 Negative sign before β

P (yx � j) = P (zx � β0j)

= P (zx − β
T
x
∗ � β0j − β

T
x
∗)

= F (β0j − β
T
x
∗)

• Latent variable approach for ordinal variables:

let zx be some unobserved continuous 

variable that might be thought of as the real 

underlying latent response

we only observe a discretized version of zx

in the form of yx where yx=j is observed if 

β0,j−1<zx ≤ β0,j

suppose that zx−βTx∗ has a distribution F :
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γxj =
exp(β0j − β

T
x
∗)

1 + exp(β0j − β
T
x∗)

log

�
γj(x)

1− γj(x)

�
= β0j − β

T
x
∗

If F follows the logistic distribution, i.e., F(z)=ez/(1+ez), then

• so, we would have a logit model for the cumulative 

probabilities γxj

Choosing Normal for latent variable (i.e, F) leads to probit model

F=Extreme value distribution leads to complementary log-log

Notice that if β > 0, as x increases, P(yx＞j) will also increase

 this explain the use of the minus sign in the definition of the 

model because it allows for the more intuitive interpretation of the 

sign of β
• Proportional odds model

• Let γxj = γj(x) = P(yx≤j|x), then the proportional odds model, 

which use the logit link, is:

p. 6-9

It is so called because the relative odds for the event yx≤j
comparing x=x1 and x=x2 are:

 This does not depend on j

 Of course, this assumption of proportional odds does need to 
be checked for a given dataset

 It can be checked by computing the sample (observed) odds 
proportions with respect to x

Some advantages

 The model use fewer parameters than the multinomial logit 
model (Q: the former nested in the latter?)

 Typically, the output from the proportional odds model is 
easier to interpret

Inferences follows the usual GLM likelihood-based approach

Interpretation of the fitted coefficients: odds of moving from 
one category to another increase by a factor of exp(β) as x
increases by one unit (check lab)

�
γj(x1)

1− γj(x1)

���
γj(x2)

1− γj(x2)

�
= exp (−βT (x∗

1
− x∗

2
))
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• ordered probit model

If the latent variable zx has a standard normal distribution, then

Coefficients estimates could be very different from proportional 

odds model, but predicted values usually are very similar

• proportional hazards model

Concept of hazard 

 Developed in insurance application: when issuing a life 

insurance policy, the insurer is interested in the prob. that the 

person will die during the term of the policy given that they 

are alive now

 This is not the same as the unconditional probability of death

Suppose we use the complementary log-log link, i.e.,

Then, the hazard of category j is the probability of falling in 

category j given that your category is greater than j:

Φ−1 (γj(x)) = β0j − β
T
x
∗

log(− log (1− γj(x))) = β0j − β
T
x
∗
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