
p. 6-1

• Recall: in binomial GLM, observe data

where yx is bounded by nx=number of total trials 

• Data: now observe a response with J categories, where J > 2:

(xi1, xi2, . . . , xim, yi), i = 1, 2, . . . , I ⇔ (xi, yi)⇔ (x, yx)

Multinomial Data

(xi1, xi2, . . . , xim, yi1, yi2, . . . , yiJ ), i = 1, 2, . . . , I
⇔ (xi, Yi)⇔ (x, Yx), where (i) Yi = (yi1, yi2, . . . , yiJ ),

(ii) yij= # of observations falling into category j at xi, 

(iii) (or denoted by nx), and ni’s are fixed

Yx ~ multinomial(nx, px1, px2, …, pxJ), where 

we may encounter grouped or ungrouped data

 For ungrouped data, ni=1 for i=1, 2, …, I

 The idea of covariate classes can be similarly applied to 

generate grouped data from ungrouped data (Q: what benefit?)

The J categories can be 

 nominal or ordinal, or 

 have a hierarchical or nested structure

J

j=1 yij = ni
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Nominal Multinomial Responses

• Q: how to link px=(px1, px2, …, pxJ) with x? 

log

ηx,2 =Xβ2 ηx,J =XβJ

…

…

The link obeys the constraints 0≤pxj≤1, j=1,…,J, and Σj pxj=1

log

ηx,1=0

exp

exp log explog exp

pxj = exp(ηxj)
��
1 +

�J

j=2 exp(ηxj)
�

Xβj = β0j +

h1(x)β1j + · · ·+

hp−1(x)βp−1,j

(1−px, px)  (1, px/(1−px))  px/(1−px) ηx = Xβ
Recall: binomial logit model.

• Multinomial logit model:

(px,1, px,2, …, px,J)  (1, px,2/px,1,     …  , px,J/px,1)

Category 1 declared as the baseline (note that we add ηx1=0)



 Inferences

 Estimation of the parameters: can use maximum likelihood

 Other inferences: can use standard likelihood-based approach

 Concepts and methods in GLM can be similarly applied 
(Q: why?)
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 Interpretation of βj

log (pxj/pxj′) = x
T
�
βj − βj′

�

Procedure:

x
z

1 … J

x1 y11 … y1J n1

… … … … …

xI yI1 … yIJ nI

• Multinomial log-linear model:

 The log-odds in favor of category j over category j’ is

( the contrasts among the vectors βj are of interest) 

 The interpretation of βj depends on the choice of 

baseline category  the kth component of βj
represents the change in log-odds of moving from the 

baseline category to the jth category for a unit change 

in the kth predictor of x (other predictors held constant)

 Intercepts of βj represent probabilities of J categories at x=0

Recall: the connection between Poisson and 

multinomial  it is possible to fit a model 

for multinomial response using a Poisson 

 Arrange the data in a two-way tables

 Declare a nominal variable that has a level for each 
multinomial response category, called it response factor, z
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 Fit a log-linear model Yx,z ~ xc+ z + z:X, where

Yx,z: (y11, …, y1J, y21, …, y2J, …, yI1, …, yIJ)
T

xc: a nominal factor which treats each covariate class as a 
level (i.e., xc has I levels)

z:X:the interaction term with the sameX (without 

the intercept term)in the multinomial logit model

 The parameters associated with xc will represent the total 
for the cases (⇔ n1, n2, …, nI)

 the parameters associated with r will represent the 

category totals (⇔ intercepts in multinomial logit model)

 The interaction terms z:X tell us how the probability of 

falling in the different categories changes with z (⇔
coefficients of X in the multinomial logit model)

 This multinomial log-linear model would have same 

deviance as its corresponding multinomial logit model

 Q: what information in the log-linear model not valid?

Multinomial logit can be viewed as a GLM-type model, which 

allows us to apply all the methodology developed for GLM
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• Q: why can multinomial log-linear model be connected to 

multinomial logit model?

nx
indep
∼ Poisson(λx)

(yx1, . . . , yxJ |nx)
indep
∼ multinomial(nx, px1, . . . , pxJ)

yxj
indep
∼ Poisson(µxj = λxpxj)

log
µxj
µx1

= log
λxpxj
λxpx1

= log
pxj
px1

= ηxj = Xβj

log (µxj) = log (µx1) +Xβj

= log (λxpx1) +Xβj

Then,

If we fit a log-linear model for yxj, then:



β0j + h1(x)β1j + · · ·+ hp−1(x)βp−1,j

Suppose that

 Reading: Faraway (2006, 1st ed.), 5.1
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Ordinal Multinomial Responses
• Suppose that

We have a multinomial response withJ ordered categories, and

For individual x, observe ordinal response (yx1, …, yxJ) 

• For an ordered multinomial response, it is often easier to work with 

the cumulative probabilities 

 px1=γx1; pxj=γx,j– γx,j−1, j=2,…, J−1; γxJ=1 

 Q: why cumulative probabilities are better?

 the cumulative probabilities are increasing and invariant to 

combining adjacent categories

 γxJ=1, so we need only model J−1 probability

• Q: how to link γx = (γx1, γx2, …, γx,J−1) with x?

(γx1,        …  , γx,J-1)

ηx1 =Xβ1 ηx,J−1=XβJ−1
…

g

γxj = px1 + · · ·+ pxj, j = 1, . . . , J

g

Xβj = β0j −

h1(x)β1 − · · ·−

hp−1(x)βp−1
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• Latent variable approach for ordinal variables:

let zx be some unobserved continuous 

variable that might be thought of as the real 

underlying latent response

we only observe a discretized version of zx

in the form of yx where yx=j is observed if 

β0,j−1<zx ≤ β0,j

suppose that zx−βTx∗ has a distribution F :

some choices of g: (1) logit (2) probit (3) complementary log-log

 Notice that the intercepts, β0j, are different for the J categories 

 β=(β1, …, βp−1) do not depend on j we assume that the 

predictors have a uniform effect on the probabilities of 

response categories in a sense that we will shortly make clear

 Negative sign before β

P (yx � j) = P (zx � β0j)

= P (zx − β
T
x
∗ � β0j − β

T
x
∗)

= F (β0j − β
T
x
∗)
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If F follows the logistic distribution, i.e., F(z)=ez/(1+ez), then

• so, we would have a logit model for the cumulative 

probabilities γxj

Choosing Normal for latent variable (i.e, F) leads to probit model

F=Extreme value distribution leads to complementary log-log

Notice that if β > 0, as x increases, P(yx=J) will also increase

 this explain the use of the minus sign in the definition of the 

model because it allows for the more intuitive interpretation of the 

sign of β

γxj =
exp(β0j − β

T
x
∗)

1 + exp(β0j − β
T
x∗)

• Proportional odds model

• Let γxj = γj(x) = P(yx≤j|x), then the proportional odds model, 

which use the logit link, is:

log

�
γj(x)

1− γj(x)

�
= β0j − β

T
x
∗
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It is so called because the relative odds for the event yx≤j
comparing x=x1 and x=x2 are:

 This does not depend on j

 Of course, this assumption of proportional odds does need to 
be checked for a given dataset

 It can be checked by computing the sample (observed) odds 
proportions with respect to x

Some advantages

 The model use fewer parameters than the multinomial logit 
model (Q: the former nested in the latter?)

 Typically, the output from the proportional odds model is 
easier to interpret

Inferences follows the usual GLM likelihood-based approach

Interpretation of the fitted coefficients: odds of moving from 
one category to another increase by a factor of exp(β) as x
increases by one unit (check lab)

�
γj(x1)

1− γj(x1)

�	�
γj(x2)

1− γj(x2)

�
= exp (−βT (x∗

1
− x∗

2
))
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• ordered probit model

If the latent variable zx has a standard normal distribution, then

Coefficients estimates could be very different from proportional 

odds model, but predicted values usually are very similar

• proportional hazards model

Concept of hazard 

 Developed in insurance application: when issuing a life 

insurance policy, the insurer is interested in the prob. That the 

person will die during the term of the policy given that they 

are alive now

 This is not the same as the unconditional probability of death

Suppose we use the complementary log-log link, i.e.,

Then, the hazard of category j is the probability of falling in 

category j given that your category is greater than j:

Φ−1 (γj(x)) = β0j − β
T
x
∗

log(− log (1− γj(x))) = β0j − β
T
x
∗
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• Generalization: 

The proportional hazards and odds models can be generalized 

by allowing beta to vary, i.e.,

But, this loses the proportionality property

 These hazards are then proportional across categories as x varies

 The corresponding latent variable distribution is the extreme 

value distribution:

 The extreme value distribution is not symmetric like the logistic 

and normal

F (z) = 1− exp(− exp(z))

log

�
γj(x)

1− γj(x)

�
= β0j − β

T
j x

∗

 Reading: Faraway (2006, 1st ed.), 5.3
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Hierarchical or Nested Multinomial Responses

• Consider a multinomial response with the 4 categories:

Birth
NoCNS

CNS

AN

Other

Sp

NoCNS: no central nervous system malformation (yx,1)

AN: anencephalus (yx,2)

Sp: spina bifida (yx,3)

Other: other malformations (yx,4)

There exists a hierarchical structure between the 4 categories

 Q: what are the problems if we ignore the hierarchical structure 

and just treat them as 4 nominal categories in the analysis?

 In the data, most births suffer no malformation and so NoCNS 

dominates the other 3 categories (Q: why is this a problem?)

 Q: what happen if x has significant effects on the prob. of 

NoCNS but not on the other 3 categories, and NoCNS is 

chosen to be the baseline? (check lab)
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The 1st part is a binomial likelihood for CNS vs. NoCNS

pyx1
x1
pyx2
x2
pyx3
x3
pyx4
x4

• The likelihood of (yx1, yx2, yx3, yx4) is proportional to (note: most 

inference methods in GLM are based on the likelihood approach):

where pxc=px2+px3+px4=1−px1 (= prob. of a birth with CNS malform.)

The 2nd part is a multinomial likelihood for the three CNS 

categories conditional on the presence of CNS

 e.g., px2/pxc is the conditional probability of an anencephalus 

birth given that a malformation has occurred at x

We can separately 

 develop a binomial model for whether malformation occurs 

using data from all objects, and

 develop a multinomial model for the type of malformation 

using data only from subjects with CNS malformation

 Reading: Faraway (2006, 1st ed.), 5.2


