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• Recall: in binomial GLM, observe data

where yx is bounded by nx=number of total trials 

• Data: now observe a response with J categories, where J > 2:

(xi1, xi2, . . . , xim, yi), i = 1, 2, . . . , I ⇔ (xi, yi)⇔ (x, yx)

Multinomial Data

(xi1, xi2, . . . , xim, yi1, yi2, . . . , yiJ ), i = 1, 2, . . . , I
⇔ (xi, Yi)⇔ (x, Yx), where (i) Yi = (yi1, yi2, . . . , yiJ ),

(ii) yij= # of observations falling into category j at xi, 

(iii) (or denoted by nx), and ni’s are fixed

Yx ~ multinomial(nx, px1, px2, …, pxJ), where 

we may encounter grouped or ungrouped data

 For ungrouped data, ni=1 for i=1, 2, …, I

 The idea of covariate classes can be similarly applied to 

generate grouped data from ungrouped data (Q: what benefit?)

The J categories can be 

 nominal or ordinal, or 

 have a hierarchical or nested structure

J

j=1 yij = ni
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Nominal Multinomial Responses

• Q: how to link px=(px1, px2, …, pxJ) with x? 

log

ηx,2 =Xβ2 ηx,J =XβJ

…

…

The link obeys the constraints 0≤pxj≤1, j=1,…,J, and Σj pxj=1

log

ηx,1=0

exp

exp log explog exp

pxj = exp(ηxj)
��
1 +

�J

j=2 exp(ηxj)
�

Xβj = β0j +

h1(x)β1j + · · ·+

hp−1(x)βp−1,j

(1−px, px)  (1, px/(1−px))  px/(1−px) ηx = Xβ
Recall: binomial logit model.

• Multinomial logit model:

(px,1, px,2, …, px,J)  (1, px,2/px,1,     …  , px,J/px,1)

Category 1 declared as the baseline (note that we add ηx1=0)



 Inferences

 Estimation of the parameters: can use maximum likelihood

 Other inferences: can use standard likelihood-based approach

 Concepts and methods in GLM can be similarly applied 
(Q: why?)
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 Interpretation of βj

log (pxj/pxj′) = x
T
�
βj − βj′

�

Procedure:

x
z

1 … J

x1 y11 … y1J n1

… … … … …

xI yI1 … yIJ nI

• Multinomial log-linear model:

 The log-odds in favor of category j over category j’ is

( the contrasts among the vectors βj are of interest) 

 The interpretation of βj depends on the choice of 

baseline category  the kth component of βj
represents the change in log-odds of moving from the 

baseline category to the jth category for a unit change 

in the kth predictor of x (other predictors held constant)

 Intercepts of βj represent probabilities of J categories at x=0

Recall: the connection between Poisson and 

multinomial  it is possible to fit a model 

for multinomial response using a Poisson 

 Arrange the data in a two-way tables

 Declare a nominal variable that has a level for each 
multinomial response category, called it response factor, z
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 Fit a log-linear model Yx,z ~ xc+ z + z:X, where

Yx,z: (y11, …, y1J, y21, …, y2J, …, yI1, …, yIJ)
T

xc: a nominal factor which treats each covariate class as a 
level (i.e., xc has I levels)

z:X:the interaction term with the sameX (without 

the intercept term)in the multinomial logit model

 The parameters associated with xc will represent the total 
for the cases (⇔ n1, n2, …, nI)

 the parameters associated with r will represent the 

category totals (⇔ intercepts in multinomial logit model)

 The interaction terms z:X tell us how the probability of 

falling in the different categories changes with z (⇔
coefficients of X in the multinomial logit model)

 This multinomial log-linear model would have same 

deviance as its corresponding multinomial logit model

 Q: what information in the log-linear model not valid?

Multinomial logit can be viewed as a GLM-type model, which 

allows us to apply all the methodology developed for GLM
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• Q: why can multinomial log-linear model be connected to 

multinomial logit model?

nx
indep
∼ Poisson(λx)

(yx1, . . . , yxJ |nx)
indep
∼ multinomial(nx, px1, . . . , pxJ)

yxj
indep
∼ Poisson(µxj = λxpxj)

log
µxj
µx1

= log
λxpxj
λxpx1

= log
pxj
px1

= ηxj = Xβj

log (µxj) = log (µx1) +Xβj

= log (λxpx1) +Xβj

Then,

If we fit a log-linear model for yxj, then:



β0j + h1(x)β1j + · · ·+ hp−1(x)βp−1,j

Suppose that

 Reading: Faraway (2006, 1st ed.), 5.1
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Ordinal Multinomial Responses
• Suppose that

We have a multinomial response withJ ordered categories, and

For individual x, observe ordinal response (yx1, …, yxJ) 

• For an ordered multinomial response, it is often easier to work with 

the cumulative probabilities 

 px1=γx1; pxj=γx,j– γx,j−1, j=2,…, J−1; γxJ=1 

 Q: why cumulative probabilities are better?

 the cumulative probabilities are increasing and invariant to 

combining adjacent categories

 γxJ=1, so we need only model J−1 probability

• Q: how to link γx = (γx1, γx2, …, γx,J−1) with x?

(γx1,        …  , γx,J-1)

ηx1 =Xβ1 ηx,J−1=XβJ−1
…

g

γxj = px1 + · · ·+ pxj, j = 1, . . . , J

g

Xβj = β0j −

h1(x)β1 − · · ·−

hp−1(x)βp−1
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• Latent variable approach for ordinal variables:

let zx be some unobserved continuous 

variable that might be thought of as the real 

underlying latent response

we only observe a discretized version of zx

in the form of yx where yx=j is observed if 

β0,j−1<zx ≤ β0,j

suppose that zx−βTx∗ has a distribution F :

some choices of g: (1) logit (2) probit (3) complementary log-log

 Notice that the intercepts, β0j, are different for the J categories 

 β=(β1, …, βp−1) do not depend on j we assume that the 

predictors have a uniform effect on the probabilities of 

response categories in a sense that we will shortly make clear

 Negative sign before β

P (yx � j) = P (zx � β0j)

= P (zx − β
T
x
∗ � β0j − β

T
x
∗)

= F (β0j − β
T
x
∗)
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If F follows the logistic distribution, i.e., F(z)=ez/(1+ez), then

• so, we would have a logit model for the cumulative 

probabilities γxj

Choosing Normal for latent variable (i.e, F) leads to probit model

F=Extreme value distribution leads to complementary log-log

Notice that if β > 0, as x increases, P(yx=J) will also increase

 this explain the use of the minus sign in the definition of the 

model because it allows for the more intuitive interpretation of the 

sign of β

γxj =
exp(β0j − β

T
x
∗)

1 + exp(β0j − β
T
x∗)

• Proportional odds model

• Let γxj = γj(x) = P(yx≤j|x), then the proportional odds model, 

which use the logit link, is:

log

�
γj(x)

1− γj(x)

�
= β0j − β

T
x
∗
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It is so called because the relative odds for the event yx≤j
comparing x=x1 and x=x2 are:

 This does not depend on j

 Of course, this assumption of proportional odds does need to 
be checked for a given dataset

 It can be checked by computing the sample (observed) odds 
proportions with respect to x

Some advantages

 The model use fewer parameters than the multinomial logit 
model (Q: the former nested in the latter?)

 Typically, the output from the proportional odds model is 
easier to interpret

Inferences follows the usual GLM likelihood-based approach

Interpretation of the fitted coefficients: odds of moving from 
one category to another increase by a factor of exp(β) as x
increases by one unit (check lab)

�
γj(x1)

1− γj(x1)

�	�
γj(x2)

1− γj(x2)

�
= exp (−βT (x∗

1
− x∗

2
))
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• ordered probit model

If the latent variable zx has a standard normal distribution, then

Coefficients estimates could be very different from proportional 

odds model, but predicted values usually are very similar

• proportional hazards model

Concept of hazard 

 Developed in insurance application: when issuing a life 

insurance policy, the insurer is interested in the prob. That the 

person will die during the term of the policy given that they 

are alive now

 This is not the same as the unconditional probability of death

Suppose we use the complementary log-log link, i.e.,

Then, the hazard of category j is the probability of falling in 

category j given that your category is greater than j:

Φ−1 (γj(x)) = β0j − β
T
x
∗

log(− log (1− γj(x))) = β0j − β
T
x
∗
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• Generalization: 

The proportional hazards and odds models can be generalized 

by allowing beta to vary, i.e.,

But, this loses the proportionality property

 These hazards are then proportional across categories as x varies

 The corresponding latent variable distribution is the extreme 

value distribution:

 The extreme value distribution is not symmetric like the logistic 

and normal

F (z) = 1− exp(− exp(z))

log

�
γj(x)

1− γj(x)

�
= β0j − β

T
j x

∗

 Reading: Faraway (2006, 1st ed.), 5.3
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Hierarchical or Nested Multinomial Responses

• Consider a multinomial response with the 4 categories:

Birth
NoCNS

CNS

AN

Other

Sp

NoCNS: no central nervous system malformation (yx,1)

AN: anencephalus (yx,2)

Sp: spina bifida (yx,3)

Other: other malformations (yx,4)

There exists a hierarchical structure between the 4 categories

 Q: what are the problems if we ignore the hierarchical structure 

and just treat them as 4 nominal categories in the analysis?

 In the data, most births suffer no malformation and so NoCNS 

dominates the other 3 categories (Q: why is this a problem?)

 Q: what happen if x has significant effects on the prob. of 

NoCNS but not on the other 3 categories, and NoCNS is 

chosen to be the baseline? (check lab)
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The 1st part is a binomial likelihood for CNS vs. NoCNS

pyx1
x1
pyx2
x2
pyx3
x3
pyx4
x4

• The likelihood of (yx1, yx2, yx3, yx4) is proportional to (note: most 

inference methods in GLM are based on the likelihood approach):

where pxc=px2+px3+px4=1−px1 (= prob. of a birth with CNS malform.)

The 2nd part is a multinomial likelihood for the three CNS 

categories conditional on the presence of CNS

 e.g., px2/pxc is the conditional probability of an anencephalus 

birth given that a malformation has occurred at x

We can separately 

 develop a binomial model for whether malformation occurs 

using data from all objects, and

 develop a multinomial model for the type of malformation 

using data only from subjects with CNS malformation

 Reading: Faraway (2006, 1st ed.), 5.2


