• <u>Recall</u> : in binomial GLM, observe data	
$(x_{i1}, x_{i2}, \dots, x_{im}, y_i), i = 1, 2, \dots, I \Leftrightarrow (\mathbf{x}_i, y_i) \Leftrightarrow (\mathbf{x}, y_\mathbf{x})$	
where y_x is bounded by n_x =number of total trials	
• Data: now observe a response with <i>J</i> categories, where <i>J</i> > 2:	
$(x_{i1}, x_{i2}, \dots, x_{im}, y_{i1}, y_{i2}, \dots, y_{iJ}), i = 1, 2, \dots, I$	
$\Leftrightarrow (\mathbf{x}_i, Y_i) \Leftrightarrow (\mathbf{x}, Y_{\mathbf{x}}), \text{ where } (i) Y_i = (y_{i1}, y_{i2}, \dots, y_{iJ}),$	
(ii) $y_{ij} = \#$ of observations falling into category j at \mathbf{x}_i ,	
(iii) $\sum_{j=1}^{J} y_{ij} = n_i$ (or denoted by n_x), and n_i 's are fixed	1
$\succ Y_{\mathbf{x}} \sim \text{multinomial}(n_{\mathbf{x}}, p_{\mathbf{x}1}, p_{\mathbf{x}2},, p_{\mathbf{x}J})$, where $\sum_{j=1}^{J} p_{\mathbf{x}j} = 1$	
we may encounter grouped or ungrouped data	
• For ungrouped data, $n_i=1$ for $i=1, 2,, I$	
• The idea of covariate classes can be similarly applied to	·?)
The J categories can be	•)
■ <i>nominal</i> or <i>ordinal</i> , or	
■ have a <i>hierarchical or nested</i> structure	
NTHU STAT 5230, 2025, Lecture Notes	
made by SW. Cheng (NTHU, Taiwan)	
made by SW. Cheng (NTHU, Taiwan) Nominal Multinomial Responses	p. 6-2
• Q: how to link $p_x = (p_{x1}, p_{x2},, p_{xJ})$ with x?	p. 6-2
• Q: how to link $p_x = (p_{x1}, p_{x2},, p_{xJ})$ with x? • Recall: binomial logit model.	p. 6-2
• Q: how to link $p_x = (p_{x1}, p_{x2},, p_{xJ})$ with x? • Recall: binomial logit model. $(1-p_x, p_x) \Rightarrow (1, p_x/(1-p_x)) \Rightarrow p_x/(1-p_x) \xrightarrow{\log} \eta_x = X\beta$	p. 6-2
• Q: how to link $p_x = (p_{x1}, p_{x2},, p_{xJ})$ with x? • Recall: binomial logit model. $(1-p_x, p_x) \Rightarrow (1, p_x/(1-p_x)) \Rightarrow p_x/(1-p_x) \xrightarrow{\log} \eta_x = X\beta$ • Multinomial logit model:	p. 6-2
• Q: how to link $p_x = (p_{x1}, p_{x2},, p_{xJ})$ with x? • Recall: binomial logit model. $(1-p_x, p_x) \Rightarrow (1, p_x/(1-p_x)) \Rightarrow p_x/(1-p_x) \xrightarrow{\log} \eta_x = X\beta$ • Multinomial logit model: $(p_{x,1}, p_{x,2},, p_{x,J}) \Rightarrow (1, p_{x,2}/p_{x,1},, p_{x,J}/p_{x,1})$	p. 6-2
$Nominal Multinomial Responses$ $\bullet \mathbf{Q}: how to link p_{\mathbf{x}} = (p_{\mathbf{x}1}, p_{\mathbf{x}2},, p_{\mathbf{x}J}) \text{ with } \mathbf{x}?$ $\bullet \underline{Recall}: \text{ binomial logit model.}$ $(1-p_{\mathbf{x}}, p_{\mathbf{x}}) \Rightarrow (1, p_{\mathbf{x}}/(1-p_{\mathbf{x}})) \Rightarrow p_{\mathbf{x}}/(1-p_{\mathbf{x}}) \xrightarrow{\log} \eta_{\mathbf{x}} = X\boldsymbol{\beta}$ $\bullet Multinomial logit model:$ $(p_{\mathbf{x},1}, p_{\mathbf{x},2},, p_{\mathbf{x},J}) \Rightarrow (1, p_{\mathbf{x},2}/p_{\mathbf{x},1},, p_{\mathbf{x},J}/p_{\mathbf{x},1})$ $\overline{X\beta_{j}} = \beta_{0j} + \log \left[\exp \log \left[\exp m - \log \right] \right]$	p. 6-2
• Q: how to link $p_{\mathbf{x}} = (p_{\mathbf{x}1}, p_{\mathbf{x}2}, \dots, p_{\mathbf{x}J})$ with \mathbf{x} ? • Recall: binomial logit model. $(1-p_{\mathbf{x}}, p_{\mathbf{x}}) \Rightarrow (1, p_{\mathbf{x}}/(1-p_{\mathbf{x}})) \Rightarrow p_{\mathbf{x}}/(1-p_{\mathbf{x}}) \xrightarrow{\log} \eta_{\mathbf{x}} = X\beta$ • Multinomial logit model: $(p_{\mathbf{x},1}, p_{\mathbf{x},2}, \dots, p_{\mathbf{x},J}) \Rightarrow (1, p_{\mathbf{x},2}/p_{\mathbf{x},1}, \dots, p_{\mathbf{x},J}/p_{\mathbf{x},1})$ $X\beta_{j} = \beta_{0j} + \log p_{1j} \log p_{1j} + \dots + \log p_{1j} + \log p_{1j} \log p_{1j} + \dots + \log p_{1j} $	p. 6-2
$Nominal Multinomial Responses$ • Q: how to link $p_{\mathbf{x}} = (p_{\mathbf{x}1}, p_{\mathbf{x}2}, \dots, p_{\mathbf{x}J})$ with \mathbf{x} ? • Recall: binomial logit model. $(1-p_{\mathbf{x}}, p_{\mathbf{x}}) \Rightarrow (1, p_{\mathbf{x}}/(1-p_{\mathbf{x}})) \Rightarrow p_{\mathbf{x}}/(1-p_{\mathbf{x}}) \xrightarrow{\log} \eta_{\mathbf{x}} = X\boldsymbol{\beta}$ • Multinomial logit model: $(p_{\mathbf{x},1}, p_{\mathbf{x},2}, \dots, p_{\mathbf{x},J}) \Rightarrow (1, p_{\mathbf{x},2}/p_{\mathbf{x},1}, \dots, p_{\mathbf{x},J}/p_{\mathbf{x},1})$ $X\beta_{j} = \beta_{0j} + \log p \exp \log p \exp \dots \log p \exp p \dots \log p \otimes p \dots \log p \otimes p \dots \otimes p \otimes p \otimes p \dots \otimes p \otimes p \otimes p$	p. 6-2
$ \underbrace{\text{Nominal Multinomial Responses}}_{\textbf{V} \text{ or } \textbf{V} \text{ or } \textbf{V}$	p. 6-2
$Nominal Multinomial Responses$ • Q: how to link $p_x = (p_{x1}, p_{x2},, p_{xJ})$ with x? > Recall: binomial logit model. $(1-p_x, p_x) \Rightarrow (1, p_x/(1-p_x)) \Rightarrow p_x/(1-p_x) \xrightarrow{\log} \eta_x = X\beta$ • Multinomial logit model: $(p_{x,1}, p_{x,2},, p_{x,J}) \Rightarrow (1, p_{x,2}/p_{x,1},, p_{x,J}/p_{x,1})$ $X\beta_j = \beta_{0j} + \log_{h_1(x)\beta_{1j} + + h_{h_{p-1}(x)\beta_{p-1,j}}} \log_{\eta_{x,1}} = 0 \eta_{x,2} = X\beta_2 \eta_{x,J} = X\beta_J$ > The link obeys the constraints $0 \le p_{xj} \le 1, j = 1,, J$, and $\Sigma_j p_{xj} = 1$ > Category 1 declared as the <i>baseline</i> (note that we add $\eta_{x1} = 0$)	p. 6-2
$ \begin{array}{c c} & \textbf{Nominal Multinomial Responses} \\ \hline \textbf{O}: \text{ how to link } p_{\textbf{x}} = (p_{\textbf{x}1}, p_{\textbf{x}2}, \dots, p_{\textbf{x}J}) \text{ with } \textbf{x}? \\ \hline \textbf{Recall: binomial logit model.} \\ & (1-p_{\textbf{x}}, p_{\textbf{x}}) \Rightarrow (1, p_{\textbf{x}}/(1-p_{\textbf{x}})) \Rightarrow p_{\textbf{x}}/(1-p_{\textbf{x}}) \underbrace{\frac{\log}{\exp}}_{\exp} \eta_{\textbf{x}} = X\beta \\ \hline \textbf{Multinomial logit model:} \\ & (p_{\textbf{x},1}, p_{\textbf{x},2}, \dots, p_{\textbf{x},J}) \Rightarrow (1, p_{\textbf{x},2}/p_{\textbf{x},1}, \dots, p_{\textbf{x},J}/p_{\textbf{x},1}) \\ \hline X\beta_{j} = \beta_{0j} + \\ & h_{1}(\textbf{x})\beta_{1j} + \dots + \\ & h_{p-1}(\textbf{x})\beta_{p-1,j} \end{array} \begin{array}{c} \log \left[\exp p & \cdots & \log \right] \left[\exp p \\ & \eta_{\textbf{x},1} = 0 & \eta_{\textbf{x},2} = X\beta_{2} & \cdots & \eta_{\textbf{x},J} = X\beta_{J} \\ \hline \end{array} \right] \\ \hline \end{array} $ $ \begin{array}{c} \text{The link obeys the constraints } 0 \le p_{\textbf{x}j} \le 1, \ j = 1, \dots, J, \ \text{and } \Sigma_{j}p_{\textbf{x}j} = 1 \\ \hline \end{array} $ $ \begin{array}{c} \text{Category 1 declared as the baseline (note that we add } \eta_{\textbf{x}1} = 0) \\ \hline \end{array} $ $ \begin{array}{c} p_{\textbf{x},j} = \exp(\eta_{\textbf{x}j}) / \left[1 + \sum_{j=2}^{J} \exp(\eta_{\textbf{x}j}) \right] \end{array}$	p. 6-2
$ \begin{array}{c c} & \textbf{Nominal Multinomial Responses} \\ \hline \textbf{Nominal Multinomial Responses} \\ \hline \textbf{O}: how to link $p_{x}=(p_{x1}, p_{x2},, p_{xJ})$ with $x? \\ \hline \textbf{Necall}: binomial logit model. \\ (1-p_{x}, p_{x}) \Rightarrow (1, p_{x}/(1-p_{x})) \Rightarrow p_{x}/(1-p_{x}) \xrightarrow{\log} \eta_{x} = X\beta \\ \hline \textbf{Multinomial logit model}: \\ (p_{x,1}, p_{x,2},, p_{x,J}) \Rightarrow (1, p_{x,2}/p_{x,1},, p_{x,J}/p_{x,1}) \\ \hline \textbf{X}\beta_{j} &= \beta_{0j} + \\ h_{1}(x)\beta_{1j} + \cdots + \\ h_{p-1}(x)\beta_{p-1,j} \\ \hline \textbf{Nominal logit model}: \\ \hline \textbf{Nominal logit model}: \\ \hline \textbf{Multinomial logit model}: \\ \hline \textbf{Multinomial logit model}: \\ (p_{x,1}, p_{x,2},, p_{x,J}) \Rightarrow (1, p_{x,2}/p_{x,1},, p_{x,J}/p_{x,1}) \\ \hline \textbf{X}\beta_{j} &= \beta_{0j} + \\ h_{1}(x)\beta_{1j} + \cdots + \\ h_{p-1}(x)\beta_{p-1,j} \\ \hline \textbf{Multinomial logit logit} = 1 \\ \hline \textbf{Multinomial logit model}: \\ \hline Multino$	p. 6-2
$ \begin{array}{c c} \hline \textbf{Nominal Multinomial Responses} \\ \hline \textbf{O}: \text{ how to link } p_{\textbf{x}} = (p_{\textbf{x}1}, p_{\textbf{x}2}, \dots, p_{\textbf{x}J}) \text{ with } \textbf{x}? \\ \hline \textbf{Recall: binomial logit model.} \\ \hline (1-p_{\textbf{x}}, p_{\textbf{x}}) \Rightarrow (1, p_{\textbf{x}}/(1-p_{\textbf{x}})) \Rightarrow p_{\textbf{x}}/(1-p_{\textbf{x}}) \xrightarrow{\log} \eta_{\textbf{x}} = X\beta \\ \hline \textbf{Multinomial logit model:} \\ \hline (p_{\textbf{x},1}, p_{\textbf{x},2}, \dots, p_{\textbf{x},J}) \Rightarrow (1, p_{\textbf{x},2}/p_{\textbf{x},1}, \dots, p_{\textbf{x},J}/p_{\textbf{x},1}) \\ \hline X\beta_{j} &= \beta_{0j} + \\ \hline h_{1}(\textbf{x})\beta_{1j} + \dots + \\ \hline h_{p-1}(\textbf{x})\beta_{p-1,j} \\ \hline \end{array} \begin{array}{c} \text{Note that obeys the constraints } 0 \leq p_{\textbf{x}j} \leq 1, \ j=1,\dots,J, \ \text{and } \Sigma_{j}p_{\textbf{x}j} = 1 \\ \hline \text{Category 1 declared as the baseline (note that we add } \eta_{\textbf{x}1} = 0) \\ \hline p_{\textbf{x}j} &= \exp(\eta_{\textbf{x}j}) / \left[1 + \sum_{j=2}^{J} \exp(\eta_{\textbf{x}j}) \right] \\ \hline \text{Inferences} \\ \hline \end{array} $	p. 6-2
$Nominal Multinomial Responses$ • Q: how to link $p_x = (p_{x1}, p_{x2},, p_{xJ})$ with x? > Recall: binomial logit model. $(1-p_x, p_x) \Rightarrow (1, p_x/(1-p_x)) \Rightarrow p_x/(1-p_x) \xrightarrow{\log} \eta_x = X\beta$ • Multinomial logit model: $(p_{x,1}, p_{x,2},, p_{x,J}) \Rightarrow (1, p_{x,2}/p_{x,1},, p_{x,J}/p_{x,1})$ $X\beta_j = \beta_{0j} + \log exp - \log exp \log exp + h_1(x)\beta_{j-1,j} $ $\eta_{x,1} = 0 - \eta_{x,2} = X\beta_2 \eta_{x,J} = X\beta_J$ > The link obeys the constraints $0 \le p_{xj} \le 1, j=1,,J$, and $\Sigma_j p_{xj} = 1$ > Category 1 declared as the baseline (note that we add $\eta_{x1} = 0$) > $p_{xj} = \exp(\eta_{xj}) / [1 + \sum_{j=2}^{J} \exp(\eta_{xj})]$ > Inferences • Estimation of the parameters: can use maximum likelihood • Other inferences: can use standard likelihood-based approac • Concepts and methods in GLM can be similarly applied	p. 6-2

> Interpretation of β_i	p. 6-3
• The log-odds in favor of category j over category j' is	
$\log \left(p_{\mathbf{x}j} / p_{\mathbf{x}j'} \right) = \mathbf{x}^T \left(\boldsymbol{\beta}_j - \boldsymbol{\beta}_{j'} \right)$	
(\Rightarrow the contrasts among the vectors β_j are of interest)	
• The interpretation of β_i depends on the choice of	
baseline category \Rightarrow the k^{th} component of β_j	
represents the change in log-odds of moving from the	
baseline category to the j^{th} category for a unit change	
in the k^{th} predictor of x (other predictors held constant)	
• Intercepts of $\boldsymbol{\beta}_j$ represent probabilities of J categories at x	=0
Multinomial log-linear model: z	
Recall: the connection between Poisson and $\begin{array}{c c} \mathbf{x} & 1 & \dots & J \\ \hline \mathbf{x} & 1 & \dots & J \\ \hline \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{y} \\ \hline \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{y} \\ \hline \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{y} \\ \hline \mathbf{x} & \mathbf{x} \\ \hline $	
multinomial \Rightarrow it is possible to fit a model $x_1 y_{11} \dots y_{13}$	
$\frac{1}{\mathbf{x}_{I}} = \frac{1}{\mathbf{y}_{I_{1}}} + \frac{1}{\mathbf{x}_{I}} = \frac{1}{\mathbf{x}_{I}} + \frac{1}{\mathbf{y}_{I_{1}}} + \frac{1}{\mathbf{x}_{I}} + $	n_I
➢ Procedure:	
Arrange the data in a two-way tables Declare a nominal variable that has a level for each	
Declare a nominal variable that has a level for each multinomial response category called it response factor	7
multinonnar response earegory, earled it response jucion, A	
NTHU STAT 5230, 2025, Lecture Notes	
• Fit a log-linear model $Y_{x,z} \sim \mathbf{x}_{z} + z + z; X$, where	p. 6-4
• Fit a log-linear model $Y_{\mathbf{x},z} \sim \mathbf{x}_c + z + z : X$, where $Y_{\mathbf{x},z} : (y_{11}, \dots, y_{1,T}, y_{21}, \dots, y_{2,T}, \dots, y_{11}, \dots, y_{1,T})^T$	p. 6-4
• Fit a log-linear model $Y_{\mathbf{x},z} \sim \mathbf{x}_c + z + z:X$, where $Y_{\mathbf{x},z}: (y_{11}, \dots, y_{1J}, y_{21}, \dots, y_{2J}, \dots, y_{I1}, \dots, y_{IJ})^T$ $\mathbf{x}_c:$ a nominal factor which treats each covariate class as	p. 6-4 S A
• Fit a log-linear model $Y_{\mathbf{x},z} \sim \mathbf{x}_c + z + z:X$, where $Y_{\mathbf{x},z}: (y_{11}, \dots, y_{1J}, y_{21}, \dots, y_{2J}, \dots, y_{I1}, \dots, y_{IJ})^T$ $\mathbf{x}_c:$ a nominal factor which treats each covariate class as level (i.e., \mathbf{x}_c has <i>I</i> levels)	р. 6-4 S A
• Fit a log-linear model $Y_{\mathbf{x},z} \sim \mathbf{x}_c + z + z:X$, where $Y_{\mathbf{x},z}: (y_{11}, \dots, y_{1J}, y_{21}, \dots, y_{2J}, \dots, y_{I1}, \dots, y_{IJ})^T$ $\mathbf{x}_c:$ a nominal factor which treats each covariate class as level (i.e., \mathbf{x}_c has I levels) z:X: the interaction term with the same X (without	p. 6-4 S A
• Fit a log-linear model $Y_{\mathbf{x},z} \sim \mathbf{x}_c + z + z$: X , where $Y_{\mathbf{x},z}$: $(y_{11},, y_{1J}, y_{21},, y_{2J},, y_{I1},, y_{IJ})^T$ \mathbf{x}_c : a nominal factor which treats each covariate class as level (i.e., \mathbf{x}_c has I levels) z: X : the interaction term with the same X (without the intercept term) in the multinomial logit model	p. 6-4 S A
■ Fit a log-linear model $Y_{\mathbf{x},z} \sim \mathbf{x}_c + z + z:X$, where $Y_{\mathbf{x},z}: (y_{11},, y_{1J}, y_{21},, y_{2J},, y_{I1},, y_{IJ})^T$ $\mathbf{x}_c:$ a nominal factor which treats each covariate class a level (i.e., \mathbf{x}_c has <i>I</i> levels) z:X: the interaction term with the same <i>X</i> (without the intercept term)in the multinomial logit model □ The parameters associated with \mathbf{x}_c will represent the to	p.6-4 Sa
■ Fit a log-linear model $Y_{\mathbf{x},z} \sim \mathbf{x}_c + z + z:X$, where $Y_{\mathbf{x},z}: (y_{11},, y_{1J}, y_{21},, y_{2J},, y_{I1},, y_{IJ})^T$ $\mathbf{x}_c:$ a nominal factor which treats each covariate class a level (i.e., \mathbf{x}_c has <i>I</i> levels) z:X: the interaction term with the same <i>X</i> (without the intercept term) in the multinomial logit model □ The parameters associated with \mathbf{x}_c will represent the to for the cases ($\Leftrightarrow n_1, n_2,, n_I$)	p. 6-4 S a
■ Fit a log-linear model $Y_{\mathbf{x},z} \sim \mathbf{x}_c + z + z$: <i>X</i> , where $Y_{\mathbf{x},z}$: $(y_{11},, y_{1J}, y_{21},, y_{2J},, y_{I1},, y_{IJ})^T$ \mathbf{x}_c : a nominal factor which treats each covariate class at level (i.e., \mathbf{x}_c has <i>I</i> levels) z: <i>X</i> :the interaction term with the same <i>X</i> (without the intercept term)in the multinomial logit model \Box The parameters associated with \mathbf{x}_c will represent the to for the cases ($\Leftrightarrow n_1, n_2,, n_I$) \Box the parameters associated with <i>r</i> will represent the	p. 6-4 S a tal
■ Fit a log-linear model $Y_{\mathbf{x},z} \sim \mathbf{x}_c + z + z$: <i>X</i> , where $Y_{\mathbf{x},z}$: $(y_{11},, y_{1J}, y_{21},, y_{2J},, y_{I1},, y_{IJ})^T$ \mathbf{x}_c : a nominal factor which treats each covariate class a level (i.e., \mathbf{x}_c has <i>I</i> levels) <i>z</i> : <i>X</i> :the interaction term with the same <i>X</i> (without the intercept term)in the multinomial logit model □ The parameters associated with \mathbf{x}_c will represent the to for the cases ($\Leftrightarrow n_1, n_2,, n_I$) □ the parameters associated with <i>r</i> will represent the category totals (\Leftrightarrow intercepts in multinomial logit model	p. 6-4 s a tal
■ Fit a log-linear model $Y_{\mathbf{x},z} \sim \mathbf{x}_c + z + z:X$, where $Y_{\mathbf{x},z}: (y_{11},, y_{1J}, y_{21},, y_{2J},, y_{I1},, y_{IJ})^T$ $\mathbf{x}_c:$ a nominal factor which treats each covariate class a level (i.e., \mathbf{x}_c has <i>I</i> levels) z:X: the interaction term with the same <i>X</i> (without the intercept term) in the multinomial logit model \Box The parameters associated with \mathbf{x}_c will represent the to for the cases ($\Leftrightarrow n_1, n_2,, n_I$) \Box the parameters associated with <i>r</i> will represent the category totals (\Leftrightarrow intercepts in multinomial logit model \Box The interaction terms <i>z</i> : <i>X</i> tell us how the probability o	p. 6-4 s a tal el) f
■ Fit a log-linear model $Y_{\mathbf{x},z} \sim \mathbf{x}_c + z + z$:X, where $Y_{\mathbf{x},z}$: $(y_{11},, y_{1J}, y_{21},, y_{2J},, y_{I1},, y_{IJ})^T$ \mathbf{x}_c : a nominal factor which treats each covariate class a level (i.e., \mathbf{x}_c has I levels) z:X:the interaction term with the sameX(without the intercept term)in the multinomial logit model □ The parameters associated with \mathbf{x}_c will represent the to for the cases ($\Leftrightarrow n_1, n_2,, n_I$) □ the parameters associated with r will represent the category totals (\Leftrightarrow intercepts in multinomial logit model □ The interaction terms z :X tell us how the probability o falling in the different categories changes with z (\Leftrightarrow acefficients of X in the multinomial logit model)	p. 6-4 s a tal el) f
■ Fit a log-linear model $Y_{\mathbf{x},z} \sim \mathbf{x}_c + z + z$: X, where $Y_{\mathbf{x},z}$: $(y_{11},, y_{1J}, y_{21},, y_{2J},, y_{I1},, y_{IJ})^T$ \mathbf{x}_c : a nominal factor which treats each covariate class at level (i.e., \mathbf{x}_c has I levels) z: X: the interaction term with the same X(without the intercept term) in the multinomial logit model \Box The parameters associated with \mathbf{x}_c will represent the to for the cases ($\Leftrightarrow n_1, n_2,, n_I$) \Box the parameters associated with r will represent the category totals (\Leftrightarrow intercepts in multinomial logit model \Box The interaction terms z : X tell us how the probability of falling in the different categories changes with z (\Leftrightarrow coefficients of X in the multinomial logit model) This multinomial logit model)	p. 6-4 s a tal el) f
■ Fit a log-linear model $Y_{\mathbf{x},z} \sim \mathbf{x}_c + z + z:X$, where $Y_{\mathbf{x},z}: (y_{11},, y_{1J}, y_{21},, y_{2J},, y_{I1},, y_{IJ})^T$ \mathbf{x}_c : a nominal factor which treats each covariate class a level (i.e., \mathbf{x}_c has <i>I</i> levels) <i>z</i> : <i>X</i> :the interaction term with the same <i>X</i> (without the intercept term)in the multinomial logit model □ The parameters associated with \mathbf{x}_c will represent the to for the cases ($\Leftrightarrow n_1, n_2,, n_I$) □ the parameters associated with <i>r</i> will represent the category totals (\Leftrightarrow intercepts in multinomial logit model □ The interaction terms <i>z</i> : <i>X</i> tell us how the probability o falling in the different categories changes with <i>z</i> (\Leftrightarrow coefficients of <i>X</i> in the multinomial logit model) □ This multinomial log-linear model would have same deviance as its corresponding multinomial logit model	p. 6-4 s a tal el) f
■ Fit a log-linear model $Y_{\mathbf{x},z^{\sim}} \mathbf{x}_{c} + z + z:X$, where $Y_{\mathbf{x},z^{\circ}} (y_{11},, y_{1J}, y_{21},, y_{2J},, y_{I1},, y_{IJ})^{T}$ \mathbf{x}_{c} : a nominal factor which treats each covariate class at level (i.e., \mathbf{x}_{c} has <i>I</i> levels) z:X: the interaction term with the same <i>X</i> (without the intercept term) in the multinomial logit model \Box The parameters associated with \mathbf{x}_{c} will represent the to for the cases ($\Leftrightarrow n_{1}, n_{2},, n_{I}$) \Box the parameters associated with <i>r</i> will represent the category totals (\Leftrightarrow intercepts in multinomial logit model \Box The interaction terms <i>z</i> : <i>X</i> tell us how the probability of falling in the different categories changes with <i>z</i> (\Leftrightarrow coefficients of <i>X</i> in the multinomial logit model) \Box This multinomial log-linear model would have same deviance as its corresponding multinomial logit model	p. 6-4 s a tal el) f
• Fit a log-linear model $Y_{\mathbf{x},z} \sim \mathbf{x}_c + z + z:X$, where $Y_{\mathbf{x},z}: (y_{11},, y_{1J}, y_{21},, y_{2J},, y_{I1},, y_{IJ})^T$ $\mathbf{x}_c:$ a nominal factor which treats each covariate class a level (i.e., \mathbf{x}_c has I levels) z:X: the interaction term with the same X (without the intercept term) in the multinomial logit model \Box The parameters associated with \mathbf{x}_c will represent the to for the cases ($\Leftrightarrow n_1, n_2,, n_I$) \Box the parameters associated with r will represent the category totals (\Leftrightarrow intercepts in multinomial logit model \Box The interaction terms $z:X$ tell us how the probability o falling in the different categories changes with z (\Leftrightarrow coefficients of X in the multinomial logit model) \Box This multinomial log-linear model would have same deviance as its corresponding multinomial logit model \blacksquare Wultinomial logit can be viewed as a GLM type model whi	p. 6-4 s a tal el) f
■ Fit a log-linear model $Y_{\mathbf{x},z} \sim \mathbf{x}_c + z + z : X$, where $Y_{\mathbf{x},z}: (y_{11},, y_{1J}, y_{21},, y_{2J},, y_{I1},, y_{IJ})^T$ $\mathbf{x}_c:$ a nominal factor which treats each covariate class a level (i.e., \mathbf{x}_c has <i>I</i> levels) z:X: the interaction term with the same <i>X</i> (without the intercept term)in the multinomial logit model \Box The parameters associated with \mathbf{x}_c will represent the to for the cases ($\Leftrightarrow n_1, n_2,, n_I$) \Box the parameters associated with <i>r</i> will represent the category totals (\Leftrightarrow intercepts in multinomial logit model \Box The interaction terms <i>z</i> : <i>X</i> tell us how the probability o falling in the different categories changes with <i>z</i> (\Leftrightarrow coefficients of <i>X</i> in the multinomial logit model) \Box This multinomial log-linear model would have same deviance as its corresponding multinomial logit model \bullet Q: what information in the log-linear model not valid? Multinomial logit can be viewed as a GLM-type model, which allows us to apply all the methodology developed for GLM	p. 6-4 s a tal el) f

> some choices of g: (1) logit (2) probit (3) complementary log-log²
• Notice that the intercepts,
$$\beta_{0j}$$
, are different for the J categories
• $\beta = (\beta_1, ..., \beta_{p-1})$ do not depend on $j \Rightarrow$ we assume that the
predictors have a uniform effect on the probabilities of
response categories in a sense that we will shortly make clear
• Negative sign before β
• Latent variable approach for ordinal variables:
> let z_x be some unobserved continuous
variable that might be thought of as the real
underlying latent response
> we only observe a discretized version of z_x
in the form of y_x where $y_x=j$ is observed if
 $\beta_{0,j-1} < z_x \leq \beta_{0,j}$
> suppose that $z_x - \beta^T x^*$ has a distribution F:
 $P(y_x \leq j) = P(z_x \leq \beta_{0,j})$
 $= P(z_x - \beta^T x^* \leq \beta_{0,j} - \beta^T x^*)$
 $= F(\beta_{0,j} - \beta^T x^*)$
NHHU STAT 6200 2025. Lecture Motes
mode by SW Cheeg(NHU Tahwen)
> If F follows the logistic distribution, i.e., $F(z)=e^{z/(1+e^z)}$, then p^{e4e}
 $\gamma_{xj} = \frac{\exp(\beta_{0,j} - \beta^T x^*)}{1 + \exp(\beta_{0,j} - \beta^T x^*)}$
• so, we would have a logit model for the cumulative
probabilities γ_{xj}
> Choosing Normal for latent variable (i.e. F) leads to probit model
> F=Extreme value distribution leads to complementary log-log
> Notice that if $\beta > 0$, as x increases, $P(y_x=J)$ will also increase
 \Rightarrow this explain the use of the minus sign in the definition of the
model because it allows for the more intuitive interpretation of the
sign of β
• Proportional odds model
• Let $\gamma_{xj} = \gamma_j(x) = P(y_x \le j|x)$, then the proportional odds model,
which use the logit link, is:
 $p(x) = p(y_x \le j|x)$, then the proportional odds model,
which use the logit link, is:

$$\log\left(rac{\gamma_j(\mathbf{x})}{1-\gamma_j(\mathbf{x})}
ight)=eta_{0j}-oldsymbol{eta}^T\mathbf{x}^*$$

hazard_x(j) =
$$P(y_x = j | y_x \ge j) = P(y_x = j)/P(y_x \ge j)^{p^{n+1}}$$

= $\frac{P_{xj}}{1 - \gamma_{x,j-1}} = \frac{\gamma_{xj} - \gamma_{x,j-1}}{1 - \gamma_{x,j-1}} = 1 - \frac{1 - \gamma_{xj}}{1 - \gamma_{x,j-1}}$
• These hazards are then proportional across categories as x varies
• The corresponding latent variable distribution is the extreme
value distribution:
 $F(z) = 1 - \exp(-\exp(z))$
• The extreme value distribution is not symmetric like the logistic
and normal
• Generalization:
> The proportional hazards and odds models can be generalized
by allowing beta to vary, i.e.,
 $\log\left(\frac{\gamma_j(\mathbf{x})}{1 - \gamma_j(\mathbf{x})}\right) = \beta_{0j} - \beta_j^T \mathbf{x}^*$
> But, this loses the proportionality property
• Reading: Faraway (2006, 1° ed.), 5.3
MIHU STAT 5230, 2025. Lecture Notes
mode by SW. Cheon (MIHU) Tawan)
Hierarchical or Nested Multinomial Responses
• Consider a multinomial response with the 4 categories:
> NoCNS: no central nervous system malformation $(y_{x,1})$
AN: anencephalus $(y_{x,2})$
Sp: spina bifda $(y_{x,3})$
Other: other malformations $(y_{x,4})$
AN
Birth (CNS) $Other$
> There exists a hierarchical structure between the 4 categories
> Q: what are the problems if we ignore the hierarchical structure
and just treat them as 4 nominal categories in the analysis?
• In the data, most births suffer no malformation and so NoCNS
dominates the other 3 categories (Q: why is this a problem?)
• Q: what happen if x has significant effects on the prob. of
NoCNS but not on the other 3 categories, and NoCNS is
chosen to be the baseline? (check lab)

inference methods in GLM are based on the likelihood approach): $p_{x1}^{y_{x1}} p_{x2}^{y_{x2}} p_{x3}^{y_{x3}} p_{x4}^{y_{x4}} = \left[p_{x1}^{y_{x1}} (p_{xc})^{y_{x2}+y_{x3}+y_{x4}} \right] \times \left[\left(\frac{p_{x2}}{p_{xc}} \right)^{y_{x2}} \left(\frac{p_{x3}}{p_{xc}} \right)^{y_{x3}} \left(\frac{p_{x4}}{p_{xc}} \right)^{y_{x4}} \right]$ where $p_{xc}=p_{x2}+p_{x3}+p_{x4}=1-p_{x1}$ (= prob. of a birth with CNS malform.) > The 1 st part is a binomial likelihood for CNS vs. NoCNS > The 2 nd part is a multinomial likelihood for the three CNS categories <i>conditional</i> on the presence of CNS • e.g., p_{x2}/p_{xc} is the conditional probability of an anencephalus birth given that a malformation has occurred at x > We can separately • develop a binomial model for whether malformation occurs using data from <i>all objects</i> , and • develop a multinomial model for the type of malformation using data only from <i>subjects with CNS malformation</i>	• The likelihood of $(y_{x_1}, y_{x_2}, y_{x_3}, y_{x_4})$ is proportional to (note: most ^{p. 6-13}
$p_{x1}^{y_{x1}} p_{x2}^{y_{x2}} p_{x3}^{y_{x3}} p_{x4}^{y_{x4}} = \left[p_{x1}^{y_{x1}} (p_{xc})^{y_{x2}+y_{x3}+y_{x4}} \right] \times \left[\left(\frac{p_{x2}}{p_{xc}} \right)^{y_{x2}} \left(\frac{p_{x3}}{p_{xc}} \right)^{y_{x3}} \left(\frac{p_{x4}}{p_{xc}} \right)^{y_{x4}} \right]$ where $p_{xc}=p_{x2}+p_{x3}+p_{x4}=1-p_{x1}$ (= prob. of a birth with CNS malform.) > The 1 st part is a binomial likelihood for CNS vs. NoCNS > The 2 nd part is a multinomial likelihood for the three CNS categories <i>conditional</i> on the presence of CNS • e.g., p_{x2}/p_{xc} is the conditional probability of an anencephalus birth given that a malformation has occurred at x > We can separately • develop a binomial model for whether malformation occurs using data from <i>all objects</i> , and • develop a multinomial model for the type of malformation using data only from <i>subjects with CNS malformation</i>	inference methods in GLM are based on the likelihood approach):
$= \left[p_{x1}^{y_{x1}} (p_{xc})^{y_{x2}+y_{x3}+y_{x4}} \right] \times \left[\left(\frac{p_{x2}}{p_{xc}} \right)^{y_{x2}} \left(\frac{p_{x3}}{p_{xc}} \right)^{y_{x3}} \left(\frac{p_{x4}}{p_{xc}} \right)^{y_{x4}} \right]$ where $p_{xc}=p_{x2}+p_{x3}+p_{x4}=1-p_{x1}$ (= prob. of a birth with CNS malform.) > The 1 st part is a binomial likelihood for CNS vs. NoCNS > The 2 nd part is a multinomial likelihood for the three CNS categories <i>conditional</i> on the presence of CNS • e.g., p_{x2}/p_{xc} is the conditional probability of an anencephalus birth given that a malformation has occurred at x > We can separately • develop a binomial model for whether malformation occurs using data from <i>all objects</i> , and • develop a multinomial model for the type of malformation using data only from <i>subjects with CNS malformation</i>	$- p_{\mathbf{x}1}^{y_{\mathbf{x}1}} p_{\mathbf{x}2}^{y_{\mathbf{x}3}} p_{\mathbf{x}4}^{y_{\mathbf{x}4}}$
 where p_{xc}=p_{x2}+p_{x3}+p_{x4}=1-p_{x1} (= prob. of a birth with CNS malform.) > The 1st part is a binomial likelihood for CNS vs. NoCNS > The 2nd part is a multinomial likelihood for the three CNS categories <i>conditional</i> on the presence of CNS • e.g., p_{x2}/p_{xc} is the conditional probability of an anencephalus birth given that a malformation has occurred at x > We can separately • develop a binomial model for whether malformation occurs using data from <i>all objects</i>, and • develop a multinomial model for the type of malformation using data only from <i>subjects with CNS malformation</i> 	$= \left[p_{\mathbf{x}1}^{y_{\mathbf{x}1}} (p_{\mathbf{x}c})^{y_{\mathbf{x}2}+y_{\mathbf{x}3}+y_{\mathbf{x}4}} \right] \times \left[\left(\frac{p_{\mathbf{x}2}}{p_{\mathbf{x}c}} \right)^{y_{\mathbf{x}2}} \left(\frac{p_{\mathbf{x}3}}{p_{\mathbf{x}c}} \right)^{y_{\mathbf{x}3}} \left(\frac{p_{\mathbf{x}4}}{p_{\mathbf{x}c}} \right)^{y_{\mathbf{x}4}} \right]$
 The 1st part is a binomial likelihood for CNS vs. NoCNS The 2nd part is a multinomial likelihood for the three CNS categories <i>conditional</i> on the presence of CNS e.g., p_{x2}/p_{xc} is the conditional probability of an anencephalus birth given that a malformation has occurred at x We can separately develop a binomial model for whether malformation occurs using data from <i>all objects</i>, and develop a multinomial model for the type of malformation using data only from <i>subjects with CNS malformation</i> 	where $p_{\mathbf{x}c} = p_{\mathbf{x}2} + p_{\mathbf{x}3} + p_{\mathbf{x}4} = 1 - p_{\mathbf{x}1}$ (= prob. of a birth with CNS malform.)
 The 2nd part is a multinomial likelihood for the three CNS categories <i>conditional</i> on the presence of CNS e.g., p_{x2}/p_{xc} is the conditional probability of an anencephalus birth given that a malformation has occurred at x We can separately develop a binomial model for whether malformation occurs using data from <i>all objects</i>, and develop a multinomial model for the type of malformation using data only from <i>subjects with CNS malformation</i> 	The 1 st part is a binomial likelihood for CNS vs. NoCNS
 e.g., p_{x2}/p_{xc} is the conditional probability of an anencephalus birth given that a malformation has occurred at x > We can separately develop a binomial model for whether malformation occurs using data from <i>all objects</i>, and develop a multinomial model for the type of malformation using data only from <i>subjects with CNS malformation</i> 	The 2 nd part is a multinomial likelihood for the three CNS categories <i>conditional</i> on the presence of CNS
 We can separately develop a binomial model for whether malformation occurs using data from <i>all objects</i>, and develop a multinomial model for the type of malformation using data only from <i>subjects with CNS malformation</i> 	• e.g., p_{x2}/p_{xc} is the conditional probability of an anencephalus birth given that a malformation has occurred at x
 develop a binomial model for whether malformation occurs using data from <i>all objects</i>, and develop a multinomial model for the type of malformation using data only from <i>subjects with CNS malformation</i> 	➤ We can separately
 using data from <i>all objects</i>, and develop a multinomial model for the type of malformation using data only from <i>subjects with CNS malformation</i> 	 develop a binomial model for whether malformation occurs
 develop a multinomial model for the type of malformation using data only from <i>subjects with CNS malformation</i> 	using data from all objects, and
using data only from subjects with CNS malformation	 develop a multinomial model for the type of malformation
	using data only from subjects with CNS malformation
Reading: Faraway (2006, 1 st ed.), 5.2 NTHU STAT 5230, 2025, Lecture Notes	Reading: Faraway (2006, 1 st ed.), 5.2 NTHU STAT 5230, 2025, Lecture Notes