Multinomial Data
» Recall: in binomial GLM, observe data

(xilaxﬂ) s 7xim7yi)7 1= 1727 . '7I ~ (Xivyi) <~ (X7 yx)

where y, 1s bounded by n,=number of total trials

 Data: now observe a response with J categories, where J> 2:

(xilaxi27°"7xim7yilayi27"'7yiJ)7 1= 1727"'7-[
~ (Xiayvi) <~ (X7 Yx)7 where (1) Y; — (yilaysz e 7yiJ)7

(i1) y;,= # of observations falling into category j at x;,
(111) Z;le y;; = n; (or denoted by n,), and n,’s are fixed
» Y, ~ multinomial(n,, D,y Pys ---» Pys)s Where Z;.Izl pxj =1
»we may encounter grouped or ungrouped data
= For ungrouped data, n,=1 fori=1, 2, ..., I
» The 1dea of covariate classes can be similarly applied to
generate grouped data from ungrouped data (Q: what benefit?)
»The J categories can be
= nominal or ordinal, or
» have a hierarchical or nested structure

Nominal Multinomial Responses
* Q: how to link p.=(py;, Pyr» ---» Pyy) With X?

» Recall: binomial logit model.

lo
(l_pxa px) - (19 px/(l_px)) - px/(l_px) —g’”x = Xﬂ
* Multinomial logit model. ©xp
(px,b px,29 se px,J) — (19 px,2/px,19 cer px,J/px,l)
XB; = i‘ij( );ﬁlj . logﬂexp log”exp e log”exp
hp—1(X)Bp—1,; I7x,1:0 ,7x,2 :XIBZ T ”X,J:XIBJ

» The link obeys the constraints 0<p, <1, j=1,...,J, and Z p, =1
» Category 1 declared as the baseline (note that we add 77,,=0)

> Ppxj = exp(7x;) / [1 +30, eXP(ﬁxj)}
» Inferences

= Estimation of the parameters: can use maximum likelithood
= Other inferences: can use standard likelthood-based approach
= Concepts and methods in GLM can be similarly applied

(Q: why?)




p. 6-3

» Interpretation of S,
» The log-odds in favor of category j over category j’ is

log (px; /pxj’) = x" (B, — By)
(= the contrasts among the vectors S, are of interest)

= The interpretation of B; depends on the choice of
baseline category = the k™ component of B;
represents the change in log-odds of moving from the
baseline category to the 5™ category for a unit change
in the k" predictor of x (other predictors held constant)

= Intercepts of B, represent probabilities of J categories at x=0

* Multinomial log-linear model. z
> Recall: the connection between Poissonand _~ | ! | ... | J
multinomial = it is possible to fit a model —_*1 ¥ |- [ 7] ™
for multinomial response using a Poisson
X1 VY | .. | Y|

» Procedure:
= Arrange the data in a two-way tables

= Declare a nominal variable that has a level for each
multinomial response category, called it response factor, z

= Fit a log-linear model Y, ~ x + z+ 2: X, where

b A (Yi1s oo Y1 Ya1s ooos Yoo ooos Yris -oor YT
x,: anominal factor which treats each covariate class as a
level (i.e., x, has I levels)
z: X :the interaction term with the same X (without
the intercept term)in the multinomial logit model
o The parameters associated with x_, will represent the total
for the cases (= ny, n,, ..., Ny)
othe parameters associated with » will represent the
category totals (< intercepts in multinomial logit model)
o The interaction terms z: X tell us how the probability of
falling in the different categories changes with z (=
coefficients of X in the multinomial logit model)

o This multinomial log-linear model would have same
deviance as its corresponding multinomial logit model

= Q: what information in the log-linear model not valid?

» Multinomial logit can be viewed as a GLM-type model, which
allows us to apply all the methodology developed for GLM
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* : why can multinomial log-linear model be connected to
multinomial logit model?

Suppose that

inde
Ny ~ b Poisson(Ax)
indep ) .
(Yx1s-- > Yxg|nx) ~ multinomial(ny, pxi,-- -, Pxs)

inde
Then, Yxj ~ P POiSSOIl(,Lij — )\xpxj)

If we fit a log-linear model for y, ;, then:

X7 )\x X7 X7
,uxl xPx1 DPx1

= log(uxj) = log(ux1)+ XB;
= log (Axpx1) + X3,

Boj + h1(x)B1j + -+ hp-1(x)Bp-1,5

% Reading: Faraway (2006, 15t ed.), 5.1

Ordinal Multinomial Responses
* Suppose that

» We have a multinomial response withJ ordered categories, and
»For individual x, observe ordinal response (y,, ---, Yy )

* For an ordered multinomial response, it is often easier to work with
the cumulative probabilities

Vxj :pxl+"'+pxj7j:17“'7<]
> pxlzyxl; pxj:yX,j_ yx,j—la j:29' © J_la ny:1
» Q: why cumulative probabilities are better?

» the cumulative probabilities are increasing and invariant to
combining adjacent categories

= Y,/~1, so we need only model J—1 probability
* Q: how to link Y, = (Y,1> Yxa» ---» yX,J_l) with x?

(Yy15 cee s Yes1) XB;, = foj—
gl gl hi(x)B1 — -+ —
Na=XB - N 1=XBr hp—1(%)Bp—1
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»some choices of g: (1) logit (2) probit (3) complementary log-log
= Notice that the intercepts, £, are different for the J categories

= (B, ..., B,-1) do not depend on j = we assume that the
predictors have a uniform effect on the probabilities of
response categories in a sense that we will shortly make clear

» Negative sign before
* Latent variable approach for ordinal variables:
> let z, be some unobserved continuous
variable that might be thought of as the real
underlying latent response
»we only observe a discretized version of z,
in the form of y, where y,=7 is observed if

Bo.j-1<2x < By

> suppose that z —f'x"has a distribution F:
Plyx <j) = P(zx < Boj)
— P(Zx — IBTX* S BOj — ,BTX*) :
— F(BOJ - TX*) ) 1=2 r=4
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»>If F follows the logistic distribution, i.c., F(z)=e?/(1+e?), then
__exp(fo; — B'xY)
1+ exp(fo; — B
* so, we would have a logit model for the cumulative
probabilities Y, ;

xJ

» Choosing Normal for latent variable (i.e, F) leads to probit model
» F=Extreme value distribution leads to complementary log-log
»Notice that if 8> 0, as x increases, P(y,=J) will also increase

—> this explain the use of the minus sign in the definition of the
model because it allows for the more intuitive interpretation of the

sign of [
* Proportional odds model
* Let Y, = Y{(x) = P(y,<j|x), then the proportional odds model,
which use the logit link, is:

o (2470 ) = w87
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> It 1s so called because the relative odds for the event y . <j
comparing X=X, and x=x, are:

(3 jjifé)cl)) /(5 fjiffiz)) — exp (—87 (x{ — x3))

= This does not depend on j

» Of course, this assumption of proportional odds does need to
be checked for a given dataset

= It can be checked by computing the sample (observed) odds
proportions with respect to x

»Some advantages

» The model use fewer parameters than the multinomial logit
model (Q: the former nested in the latter?)

» Typically, the output from the proportional odds model is
easier to interpret

» Inferences follows the usual GLM likelihood-based approach

» Interpretation of the fitted coefficients: odds of moving from
one category to another increase by a factor of exp(f) as x
increases by one unit (check lab)
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* ordered probit model
> If the latent variable z, has a standard normal distribution, then
3" (15(x)) = foj — B
» Coefficients estimates could be very different from proportional
odds model, but predicted values usually are very similar
e proportional hazards model
» Concept of hazard

» Developed in insurance application: when issuing a life
insurance policy, the insurer is interested in the prob. That the
person will die during the term of the policy given that they
are alive now

= This is not the same as the unconditional probability of death

» Suppose we use the complementary log-log link, i.e.,

log(—log (1 — 7;(x))) = Bo; — B x*

Then, the hazard of category j is the probability of falling in
category j given that your category is greater than j:
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hazardx(j) = P(yx = jlyx > j) = P(yx = 7)/P(yx > j)
Pxj X T Ux,—-1 1 1— Vxj

L=xj-1 =% 1 —7x,j-1
» These hazards are then proportional across categories as x varies

= The corresponding latent variable distribution is the extreme
value distribution:

F(z) =1 — exp(—exp(z))
» The extreme value distribution is not symmetric like the logistic
and normal
* Generalization:

» The proportional hazards and odds models can be generalized
by allowing beta to vary, i.e.,

10g (M) — /BOj . /fo*

1 —7;(x)
» But, this loses the proportionality property

% Reading: Faraway (2006, 1%ted.), 5.3

Hierarchical or Nested Multinomial Responses """
* Consider a multinomial response with the 4 categories:

» NoCNS: no central nervous system malformation (y, ;)
AN: anencephalus (y, ,)
Sp: spina bifida (y, 3)

Other: other malformations (y, 4) AN
: CNS * Sp
Birth <
NoCNS Other

» There exists a hierarchical structure between the 4 categories

» : what are the problems if we ignore the hierarchical structure
and just treat them as 4 nominal categories in the analysis?

= In the data, most births suffer no malformation and so NoCNS
dominates the other 3 categories (Q: why is this a problem?)

= Q: what happen if x has significant effects on the prob. of
NoCNS but not on the other 3 categories, and NoCNS 1is
chosen to be the baseline? (check lab)
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 The likelihood of (yy;, Yxo> Yx3> Yxa) 1S Proportional to (note: most

inference methods in GLM are based on the likelihood approach):

Yx1, Yx2 Yx3 _ Yx4
Px1 Px2 px3 Px4

Yx2 Yx3 Yx4a
x x x x ]) 2 ]) 3 Z) 4

= {piﬁf () V2o Y 4} x K X ) ( x > ( * ) ]
pXC pXC pXC

where p, . =p,, D3+ s=1-P,; (= prob. of a birth with CNS malform.)

» The 1%t part is a binomial likelihood for CNS vs. NoCNS

» The 2" part is a multinomial likelihood for the three CNS
categories conditional on the presence of CNS

= €.2., Py/Dy. 18 the conditional probability of an anencephalus
birth given that a malformation has occurred at x
» We can separately
= develop a binomial model for whether malformation occurs
using data from all objects, and
= develop a multinomial model for the type of malformation
using data only from subjects with CNS malformation

* Reading: Faraway (2006, 15t ed.), 5.2




