NTHU STAT 5230, 2025

p. 5-22 **1** dummy var. \Box Generate a vector with I^2 components for an \blacksquare $\mathbf{V}l_0$ $\mathbf{V}l_0$ | | l_2 iable, each for $\mathbf{V}l_0$ (*I*+1)-level nominal factor with the structure: V_{l_0} 1 diagonal com- Δl_3 $\underbrace{\mathbf{QI-factor}}_{\textbf{not}} = \underbrace{(l_1, l_0, l_0, l_0, l_2, l_0, l_0, l_0, l_3)^T}_{\textbf{lst}} \underbrace{(l_1, l_2, l_0, l_0, l_0, l_3)^T}_{\textbf{and}}$ ponent, e.g., -not Y' · lo: reference $\Box Y \sim X_1 + X_2 + \underline{\text{QI-factor}} \equiv \underline{S_{\text{qindep2}}} \ \textcircled{\textbf{D}} \quad \boxed{\textbf{I}_{\text{LL}}} = \underbrace{\forall ii}_{\text{Summer}} & \underbrace{\textbf{Q}_{\text{LL}}}_{\text{LL}} = \underbrace{\forall ii}_{\text{Summer}} & \underbrace{\forall ii}_{\text{Summer}} & \underbrace{\textbf{Q}_{\text{LL}}}_{\text{LL}} = \underbrace{\forall ii}_{\text{Summer}} & \underbrace{\forall ii}_{\text{Summe$ · L1, Q2, Q3: each coded > diagonals Yii's have no Deviance-based/Pearson X^2 as 1 in 1 contribution to deviance or dummy goodness-of-fit test for Sqindep2 add I more counts in Y. but variable also add I \underline{X}_3 more parameters in 2=xB $(1 \le \overline{k \le K})$ **♦** Reading: Faraway (2006, 1st ed.), 4.3 ⇒ canceltra out & same d.f. 3 crossing **Three-Way Contingency Table** covariates $(1 \le i \le I)$ • The π 's and Y's are defined in the Til marginal probabilities X2X3 5/5 same manner as in the 2-way table X_2 • marginal Yijs- $(1 \le j \le J)$ Poisson GLM approach to inves-(LNp. 5-4) Recall Poisson GLM can be applied to SS1~4 tigate how X_1, X_2, X_3 interact but some information could be meaningless (LNp. 5-13) > Mutual independence $(X_1, X_2, X_3 \text{ are independent})$ $\underbrace{\mathbf{joint}}_{\pi \text{ marginals}} = \underbrace{\pi_{ijk}}_{\pi_{i+1}} = \pi_{i+1} \\ \pi_{i+1} \\$ 109 1 function Hill= of X only ETise XB=Zise $\underline{\pi} \operatorname{marginals}_{\mathbf{Q}} \operatorname{\underline{log}}(\pi_{\underline{ijk}}) = \underline{\log}(\pi_{\underline{i++}} \pi_{\underline{+j+}} \pi_{\underline{++k}}) = \underline{\log}(\pi_{\underline{i++}}) + \underline{\log}(\pi_{\underline{i++})}) + \underline{\log}(\pi_{\underline{i++}}) + \underline{\log}(\pi_{\underline{i++}}) + \underline{\log}(\pi_{\underline{i++}}) + \underline{\log}(\pi_{\underline{i++})}) + \underline{\log}(\pi_{\underline{i++}}) + \underline{\log}(\pi_{\underline{i++}}) + \underline{\log}(\pi_{\underline{i++})}) + \underline{\log}(\pi_{\underline{i++}}) + \underline{\log}(\pi_{\underline{i++}}) + \underline{\log}(\pi_{\underline{i++}}) + \underline{\log}(\pi_{\underline{i++}}) + \underline{\log}(\pi_{\underline{i++})}) + \underline{\log}(\pi_{\underline{i++}}) + \underline{\log}(\pi_{\underline{i++})}) + \underline{\log}(\pi_{\underline{i++}}) + \underline{\log}(\pi_{\underline{i++})}) +$ L=Zijk-Bo $+\log(\pi_{++k})$ Xa Xa $X\hat{\beta} = \hat{2} \log X^T \hat{\mu} = X^T Y$ nical link $\bullet Y \sim X_1 + X_2 + X_3 \equiv S_1$ X_1 The estimates of parameters in this model Y+++ X_3 X_2 correspond only to the marginal totals $y_{i++}, \underline{y}_{+j+}, \overline{and}, \underline{y}_{++k}$ e.g., treatment. □ The coding we use will determine exactly how the para-T = 0 T = 0 T = 0sum, ..., coding e.g., if l B= 2A - 2A+2B+2C meters relate to the margin totals, $\underline{\mathcal{C}}^{\underline{B}} = \underline{\Pi}_{i} \underbrace{\mathcal{U}_{i}}_{i} \underbrace{$ e.g., let β be an main effect of X_1 e^B== XI BI B2 that codes i_1 and i_2 categories as 2 <u> и (~ П)</u> reference B 1 0 ± B x e $\mathbf{x} \mathbf{e}^{\mathbf{q}} = 1$ $\underline{0}$ (reference) and $\underline{1}$ when x_2, x_3 are fixed $3\pi_A\pi_B\pi_C$ 0 1 + B2 × eB2 if B= 28-24. $\underline{C}^{B} = \frac{\mathcal{U}_{B}}{\mathcal{U}_{A}} = \frac{\pi_{B}}{\pi_{A}}$ all it main effects are Insignificant $\square \underline{\text{Insignificant factor, say } X_1 \Rightarrow \underline{\pi}_{1++} = \underline{\pi}_{2++} = \dots = \underline{\pi}_{I++}$ as in ANOVA > Joint independence $(\{X_1, X_2\})$ and X_3 are independent) uniform mar- $\overline{\underline{\pi}} \underline{\underline{\pi}}_{ijk} = \underline{\underline{\pi}}_{ij+} \times \underline{\underline{\pi}}_{\underline{++}k} \Leftrightarrow \underline{\underline{\pi}}_{\underline{ij}|\underline{k}} = \underline{\underline{\pi}}_{\underline{ij}+}$ no need to be independent. $\frac{\pi_{ijk}}{\pi_{ijk}} = \frac{P(X_1 = \hat{i}, X_2 = \hat{j}, X_3 = \hat{k})}{P(X_2 = \hat{j})} = P(X_1 = \hat{i}, X_2 = \hat{j} | X_3 = \hat{k}) = \pi_{ijk}$ $X_3=1$ $X_3 = \underline{2}$ $X_3 = 3$

made by S.-W. Cheng (NTHU, Taiwan)

NTHU STAT 5230, 2025

Lecture Notes

