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• Scheme 3:

X1

X2

1 2

1 Y11 Y12 Y1+

2 Y21 Y22 Y2+

y+1 y+2 y++

Model: for a random sample, can assume 

where πi=1|j is linked to the covariate X2 (=j)
only according to the model we choose

The inferences in the multinomial model would 

coincide with that in Poisson model, i.e., 

 same estimates (MLE)

 same test statistics and p-values

The Poisson model is easier to execute in 

R, so we can fit a Poisson GLM for data

from a multinomial sampling scheme

Can be generalized to I×J table in the same manner

 Q: compared to schemes 1 and 2, what information

has been gone/questionable in this scheme?

Suppose fit the data with a Binomial GLM with logit link:

Y1j ~ binomial(y+j, πi=1|j=π1j/π+j), j=1, 2
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 corresponds to a constant-effect model, i.e., Y1j ~ 1 ≡ S

 Y1j ~ X2 ≡ L (saturated model)

To test whether πij=πi+π+j (H0)  H0: S vs. H1: L\S

 Deviance based: DS – DL = DS

 Perason X2 under S

Can be generalized to X2 with J

(>2) levels in the same manner

For the case that X1 has I (>2) levels

 called product multinomial model (cf., unrestricted

 multinomial model in scheme 2)

 When πij=πi+π+j (X1 and X2 independent),

 When πij≠πi+π+j (X1 and X2 not independent) 

(Y1j , …, YIj)~multinomial(y+j, πi=1|j, …, πi=I|j), j=1,…,J
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X1

X2

1 2

1 Y11 Y12 y1+

2 Y21 Y22 y2+

y+1 y+2 y++

• Scheme 4:

Model: if πij=πi+π+j (H0), for a random sample, 

 Under Scheme 3 and 

H0, the joint pmf of 

(Y11, Y12, Y21, Y22) is:

 Under Scheme 3 and H0, the 

sufficient statistics of π1+ and π2+

are Y1+ and Y2+, respectively, 

and their joint pmf is:

Y11 ~ hypergeometric(y1+, y+1, y+2), i.e.,

y11≤ min{y+1, y1+}

When πij≠πi+π+j (H1), the probability a black ball is drawn

is different from the probability a white ball is drawn
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 Because Y11 can only take a limited number of values, can 

compute the probability of all these outcomes under H0

 can compute the total probability (p-value) of all 

 outcomes that are more extreme than the one observed

 Q: what outcomes are more extreme? Some options:

 The outcomes with probability ≤ P(Y11=y11)

 Others (see Agresti, 2013, 3.5)

To test whether πij=πi+π+j (Fisher’s exact test)

 Outcomes y11
’s.t. | y11

’−E(Y11) | ≥ | y11−E(Y11) | 

Some notes:

 The situation that both marginal totals are fixed is rather 

less common in practical sampling applications

Generalization to I×J table for testing H0: πij=πi+π+j

 use multiple hypergeometric as null distribution, 

 whose probability mass function is:
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 Reading: Faraway (2006, 1st ed.), 4.1, 4.2

 It suggests a more accurate test for independence

 Fisher’s exact test is attractive because the null 
distribution for deviance-based and Pearson’s X2

test statistics is only approximately χ2 distributed.

 For tables with small counts, this χ2 approximation is 
suspicious, which makes the exact method valuable.

 Fisher’s exact test becomes more difficult to compute
for larger tables. However, the χ2 approximation will 
tend to be accurate for larger tables.

 Example: the lady tasting tea

Correspondence Analysis (CA)

• Q: when independence of a 2-way contingency table is 

rejected, how to know where the dependence is coming from?

 Interaction terms in a Poisson GLM contain dependence 

information; however, interpretation of them could be difficult.

 It can arise when classifying objects into one of 2 types

when the true proportions of each type are known
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CA: a visual residual analysis

for contingency table

• Singular value decomposition

D=diag(d1, …, dc), d1 ≥ … ≥ dc > 0, called singular values

Some properties

 Columns of Ur×c are eigenvectors of (RRT)r×r

 Columns of Vc×c are eigenvectors of (RTR)c×c

 {d1
2, …, dc

2} are eigenvalues of RRT and RTR

• Procedure of correspondence analysis on Pearson residuals

R=[Rij]: an r×c matrix. W.l.o.g, assume r≥c and rank(R)=c, then

R = Ur×cDc×cVc×c
T = Σk dkUkVkT , i.e.,

U =[Uij]=[U1, …, Uc]: an r×c column orthonormal matrix, 

i.e., UTU=Ic×c; its columns are called left singular vectors

 V=[Vij]=[V1, …, Vc]: a c×c column orthonormal matrix, 

i.e., VTV=Ic×c; its columns called right singular vectors

, where
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