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• Scheme 3:

X1

X2

1 2

1 Y11 Y12 Y1+

2 Y21 Y22 Y2+

y+1 y+2 y++

Model: for a random sample, can assume 

where πi=1|j is linked to the covariate X2 (=j)
only according to the model we choose

The inferences in the multinomial model would 

coincide with that in Poisson model, i.e., 

 same estimates (MLE)

 same test statistics and p-values

The Poisson model is easier to execute in 

R, so we can fit a Poisson GLM for data

from a multinomial sampling scheme

Can be generalized to I×J table in the same manner

 Q: compared to schemes 1 and 2, what information

has been gone/questionable in this scheme?

Suppose fit the data with a Binomial GLM with logit link:

Y1j ~ binomial(y+j, πi=1|j=π1j/π+j), j=1, 2
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 corresponds to a constant-effect model, i.e., Y1j ~ 1 ≡ S

 Y1j ~ X2 ≡ L (saturated model)

To test whether πij=πi+π+j (H0)  H0: S vs. H1: L\S

 Deviance based: DS – DL = DS

 Perason X2 under S

Can be generalized to X2 with J

(>2) levels in the same manner

For the case that X1 has I (>2) levels

 called product multinomial model (cf., unrestricted

 multinomial model in scheme 2)

 When πij=πi+π+j (X1 and X2 independent),

 When πij≠πi+π+j (X1 and X2 not independent) 

(Y1j , …, YIj)~multinomial(y+j, πi=1|j, …, πi=I|j), j=1,…,J
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X1

X2

1 2

1 Y11 Y12 y1+

2 Y21 Y22 y2+

y+1 y+2 y++

• Scheme 4:

Model: if πij=πi+π+j (H0), for a random sample, 

 Under Scheme 3 and 

H0, the joint pmf of 

(Y11, Y12, Y21, Y22) is:

 Under Scheme 3 and H0, the 

sufficient statistics of π1+ and π2+

are Y1+ and Y2+, respectively, 

and their joint pmf is:

Y11 ~ hypergeometric(y1+, y+1, y+2), i.e.,

y11≤ min{y+1, y1+}

When πij≠πi+π+j (H1), the probability a black ball is drawn

is different from the probability a white ball is drawn
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 Because Y11 can only take a limited number of values, can 

compute the probability of all these outcomes under H0

 can compute the total probability (p-value) of all 

 outcomes that are more extreme than the one observed

 Q: what outcomes are more extreme? Some options:

 The outcomes with probability ≤ P(Y11=y11)

 Others (see Agresti, 2013, 3.5)

To test whether πij=πi+π+j (Fisher’s exact test)

 Outcomes y11
’s.t. | y11

’−E(Y11) | ≥ | y11−E(Y11) | 

Some notes:

 The situation that both marginal totals are fixed is rather 

less common in practical sampling applications

Generalization to I×J table for testing H0: πij=πi+π+j

 use multiple hypergeometric as null distribution, 

 whose probability mass function is:
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 Reading: Faraway (2006, 1st ed.), 4.1, 4.2

 It suggests a more accurate test for independence

 Fisher’s exact test is attractive because the null 
distribution for deviance-based and Pearson’s X2

test statistics is only approximately χ2 distributed.

 For tables with small counts, this χ2 approximation is 
suspicious, which makes the exact method valuable.

 Fisher’s exact test becomes more difficult to compute
for larger tables. However, the χ2 approximation will 
tend to be accurate for larger tables.

 Example: the lady tasting tea

Correspondence Analysis (CA)

• Q: when independence of a 2-way contingency table is 

rejected, how to know where the dependence is coming from?

 Interaction terms in a Poisson GLM contain dependence 

information; however, interpretation of them could be difficult.

 It can arise when classifying objects into one of 2 types

when the true proportions of each type are known
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CA: a visual residual analysis

for contingency table

• Singular value decomposition

D=diag(d1, …, dc), d1 ≥ … ≥ dc > 0, called singular values

Some properties

 Columns of Ur×c are eigenvectors of (RRT)r×r

 Columns of Vc×c are eigenvectors of (RTR)c×c

 {d1
2, …, dc

2} are eigenvalues of RRT and RTR

• Procedure of correspondence analysis on Pearson residuals

R=[Rij]: an r×c matrix. W.l.o.g, assume r≥c and rank(R)=c, then

R = Ur×cDc×cVc×c
T = Σk dkUkVkT , i.e.,

U =[Uij]=[U1, …, Uc]: an r×c column orthonormal matrix, 

i.e., UTU=Ic×c; its columns are called left singular vectors

 V=[Vij]=[V1, …, Vc]: a c×c column orthonormal matrix, 

i.e., VTV=Ic×c; its columns called right singular vectors

, where
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