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€ o Scheme 4:4-LNp5-&k SRS fom the yﬁsub;‘ed:sﬁ X, P- o1
» Model: if T4, =T, T, (H,), for a random sample, Xl |2
i i it 20

o 2-27 Y, ~ hypergeometric(y,., ¥y, Y1), 1.€., 1Y) Y
p2-27, | — & N 2 |V | Y

sampling (y+1> <y+2>/(y++> =
withat | P(Yu=yu1)=|"— )| — — tack | ¥+ | Y2
replacement O =ym) Y11/ \Y12 Yi+ aﬁ&%_

# Y S minfy,, | YLetUer Y Yo igﬁﬁbﬂi-] balls
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» When TG, #T1,T; (H,), the probability a black ball is drawn
is different from the probability a white ball is drawn

=

€ » To test whether T =TG, T (Fisher s exact testyr - eadt null dist. vz

. check # in LNp.5~l
use = Because Y, can only take a limited number of values, can

'-M’g—," briclCOmpute the probability of all these outcomes under H,

= can compute the total probability (p-value) of all
outcomes that are more extreme than the one observed

The outcomes with probability < A(Y},=y,,)
o Outcomes y,,'s.t. [y, —E(I_/H)J 2 |y —E(Y)) |
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o Others (see Agresti, 2013, 3.5) |=du 911/ Yss under Ho
» Generalization to [xJ table for testing H,: T, =T(,TT,

— use multiple hypergeometric as null distribution,
whose probability mass function is: simjlar derivation as

i &,70 Wp.5-l. but:
(ﬂi yi—l—!) <HJ y—i—j!) / (yﬁ' X ﬂz’j yﬁ' exerci in LNp

s ) into multinomial
: boll - jth-type :
» Some nqtes. . % tﬁmﬁh% b.a,;’f,.i the urn, (Cfieck (DY in LNp.5=10)
» The situation that both marginal totals are fixed is rather

less common 1n practical sampling applications
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ﬂiﬂﬂg = [t can arise when classifying objects into one of 2 types
PP when the true proportions of each type are known-ba close situation:

Yot ] know T4, M2y
T — Example: the lady tasting teae 7&b'|e3‘imLNp 2 g Ues o ane
PR 5 = It suggests a more accurate test for independence Sixed (scheme3)

$ra=% o Fisher’s exact test is attractive because the null

Ratn  Modeling distribution for deviance-based and Pearson’s X? ST

S5 Bﬁm test statistics is only approximately L distributed. & Np3-Ug-u6

SS2 % o For tables with small counts, this X? approximation is

$Sa Sf& Binomial  suspicious, which makes the exact method valuable f>1.J lage

§§“ - o Fisher’s exact test becomes more difficult to compute w
for larger tables. However, the X? approximation will outcomes

losf tend to be accurate for larger tables-susually. 44+ large

(some) Recall. In DOE .if ANOVA
Rl

PP

% Reading: Faraway (2006, 15ted.), 4.1, 4.2 (iFdifferen ﬂ!.itﬁ’) : ! .
Correspondence Analysis (C : Wﬁﬁ” o ¢

* : when independence of a 2-way contingency table is
rejected, how to know where the dependence is coming from?

#—® Interaction terms in a Poisson GLM contain dependence <« association
information; however, interpretation of them could be difficult.

\C . - - [Ta corresp. o ePaissor: = p.514
_ » CA: a visual residual ifﬁlysw Iamndd! : (;T'fiseﬂg.lf.j) WM,
IWe) for contingency table mm,e,,dm,s it residuals contain W model

 Singular value decompos1t10n¢\,wfw%gm wmde,
> R—[R ;- an rxc matrix. W.Lo.g, assume r2c and rank(R)=c, then

> R=U, Do Vo' =2, UV ic. Eﬁ @(
- l_—-l")'xg matnc ;x;

Zkz 1 Ugﬁ k Vlﬁ , where _,,_ - xs cve
. U—[ iiJ=LU}, .., U.]: an rxc column orthonormal matrix,

ie., UTU— o

1 x5 18 columns are called left singular vectors

(di. U Vic): '- V=IV,]= [Vl, ..., V,]: a ¢Xc column orthonormal matrix,
| a triplet

ie., WV 1 x5 its columns called right singular vectors

-Q—dﬁg(@l, . d) dyz...2d, >0, called singular values

» Some properties RR"= (Tov XUOY' = UDV'EDL = UDSUT Similarly,
Columns of U,,, are eigenvectors of (RR') =L [ e R'R=YO'V"

rXr

= Columns of chc are eigenvectors of (RTR) (LNp.3-34)

¢\ Q-Ey Y-y
@{d% ...,d2} are eigenvalues of RR" and R'R %_—ﬁ_
* Procedure of correspondence analysis on Pearson residuals—3
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