



- When $\pi_{ij} \neq \pi_{i+} \pi_{+j}$ (X_1 and X_2 not independent) check LNp.5-3 p. 5-6
at least one
- ⇒ add interaction $X_1 : X_2$ $\hat{\mu}_{ij} = Y_{ij}$ $\Delta_{ij} \neq 1$ for a pair of (i, j)
- ⇒ may consider $Y_{ij} \sim X_1 + X_2 + X_1 : X_2 \equiv L$ (saturated model)
- Q: what type of π 's corresponds to the following models?
 - without or with interactions ⇔ independent or dependent
 - without or with main effects ⇔ uniform or non-uniform marginal dist.

$$Y_{ij} = Y + \alpha_i + \beta_j + (\alpha\beta)_{ij}$$

$$\alpha_{i+} = 0$$

$$\beta_{j+} = 0$$

$$(\alpha\beta)_{ij} = 0, \forall i$$

$$(\alpha\beta)_{Ij} = 0, \forall j$$

$$\Rightarrow IJ - I - J + 1$$

$$Y_{ij} \sim 1$$

$$Y_{ij} \sim X_1 + X_1 : X_2$$

$$Y_{ij} \sim X_2 + X_1 : X_2$$

- Recall. For a Poisson GLM with log link, $X^T Y = X^T \hat{\mu}$
- For models without interactions, canonical link e.g. 2x2 table
- ⇒ $X^T Y$ is only related to marginal totals $X = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, Y = \begin{bmatrix} Y_{11} \\ Y_{12} \\ Y_{21} \\ Y_{22} \end{bmatrix}, X^T Y = \begin{bmatrix} Y_{1+} \\ Y_{2+} \\ Y_{+1} \\ Y_{++} \end{bmatrix}$
- ⇒ the fitted values $\hat{\mu}$ is a function of marginal totals $\Rightarrow \hat{\mu}_{ij} = \exp(\hat{\eta}_{ij}) = \exp(\hat{\mu}_{i+} + \hat{\mu}_{+j})$ In general, consider 2-way ANOVA model in DOE
- $Y_{ij} = t \pi_{ij}$ using Poisson GLM
- $= t \pi_{i+} \pi_{+j}$ ⇒ for example, for main-effect model $Y_{ij} \sim X_1 + X_2$
- $= t \frac{U_{i+}}{U_{++}}, \frac{U_{+j}}{U_{++}} = \frac{U_{i+} \times U_{+j}}{U_{++}} \Rightarrow \hat{\mu}_{ij} = Y_{++} \hat{\pi}_{i+} \hat{\pi}_{+j} = Y_{i+} Y_{+j} / Y_{++}$ $\hat{\pi}_{L+} = Y_{i+} / Y_{++}$
- To test whether $\pi_{ij} = \pi_{i+} \pi_{+j}$ (H_0) $\Rightarrow H_0: S$ vs. $H_1: L \setminus S$ It's the goodness-of-fit test for S
- also called G^2
- Deviance based: $D_S - D_L \stackrel{a}{\sim} \chi^2_{(I-1)(J-1)}$ $\because L$ is saturated $\Rightarrow D_L = 0$

- Pearson's χ^2 (goodness-of-fit measure) under S : estimate of expected count under S (independent)

continuous pdf true pmf

$$X_S^2 = \sum_{ij} \frac{(Y_{ij} - \hat{\mu}_{ij})^2}{\hat{\mu}_{ij}} = \sum_{ij} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

0.5 0.5 Δ in LNp.5-6

$\chi^2_{(I-1)(J-1)}$

$Y_{ij} \pm 0.5$ often closer to $\hat{\mu}_{ij}$

- Yate's continuity correction: (better for)
 - Subtracts 0.5 from $Y_{ij} - \hat{\mu}_{ij}$ when it is positive
 - Add 0.5 to $Y_{ij} - \hat{\mu}_{ij}$ when it is negative
- often suggest if some $Y_{ij} < 5$

often reduce χ^2 $\because |Y - \hat{\mu}| - 0.5 < |Y - \hat{\mu}|$

\Rightarrow increase p-value

more conservative (sometimes, too conservative)

► To test $H_0: \pi_{1+} = \dots = \pi_{I+}$ (or $\pi_{+1} = \dots = \pi_{+J}$),

compare models S^* and L^* ($H_0: S^*$ vs. $H_1: L^* \setminus S^*$), where

- $S^*: Y_{ij} \sim X_2 + X_1 : X_2$ and $L^*: Y_{ij} \sim X_1 + X_2 + X_1 : X_2$ analysis strategy
- $S^*: Y_{ij} \sim X_1 : X_2$ and $L^*: Y_{ij} \sim X_1 + X_1 : X_2$ Find a Poisson fitted GLM that
- $S^*: Y_{ij} \sim X_2$ and $L^*: Y_{ij} \sim X_1 + X_2$ 1. pass goodness-of-fit
- $S^*: Y_{ij} \sim 1$ and $L^*: Y_{ij} \sim X_1$ 2. pass diagnostics
- 3. effects are significant.

they might have different test results, be wise to choose a right one.

Then, explain the type of π 's according to this Poisson fit.

- Deviance-based test: $D_{S^*} - D_{L^*} \stackrel{a}{\sim} \chi^2_{df_{S^*} - df_{L^*}}$

$$Y_{ij} \sim \text{Poisson}(\mu_{ij})$$

$$i = 1, \dots, I$$

$$j = 1, \dots, J$$

- Can be generalized to X_1 with I levels and X_2 with J levels

• Scheme 2: $\leftarrow LNp.5-4$

SRS

Consider 1 draw from the population. It follows multinomial(1, $\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}$). For y_{++} independent draws, it then follows (LNp. 2-23)

p. 5-8

Model: for a random sample, we can assume

$\sum_{ij} Y_{ij} = y_{++}$ fixed $\leftarrow (Y_{11}, Y_{12}, Y_{21}, Y_{22}) \xrightarrow{LNp.2-22-23} \frac{\lambda_{ij}}{\sum_i \lambda_i} \leftrightarrow \frac{u_{ij}}{t} = \frac{\pi_{ij}}{t}$

The y_{ij} 's under different settings of $\underline{x} = (x_1, x_2)$ are not independent \sim multinomial($y_{++}, \pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}$) as a function g^{-1} of $\underline{\lambda}_{ij}$, $\underline{\lambda}_{x_1, x_2} = \underline{XB}$

where π_{ij} ($i=1, 2; j=1, 2$) is linked to X_1 and X_2 according to the model we choose

	X_2	
X_1	1	2
1	Y_{11}	Y_{12}
2	Y_{21}	Y_{22}
y_{++}	Y_{+1}	Y_{+2}

★ Connection between Poisson and multinomial: \rightarrow

LNp.2-26 Let $\underline{Y}_i \sim \text{Poisson}(\lambda_i)$, $i=1, \dots, k$, and independent, $\sim \text{Poisson}(\Sigma_i \lambda_i)$

$(Y_1, \dots, Y_k | \sum_i Y_i = n) \sim \text{multinomial}(n, \lambda_1 / \sum_i \lambda_i, \dots, \lambda_k / \sum_i \lambda_i) \leftrightarrow \pi_{ij}$'s

check Δ in LNp.5-5 Note. Analysis methods for Scheme 2 can be regarded as conditional approaches for data of Scheme 1 \rightarrow the parameter t (value of size variable) in Poisson is removed, but π_{ij} 's are not affected would expect there is a lot of similarity between the inferences for Poisson and multinomial models

After conditional on y_{++} the information of t is gone (i.e., the fixed y_{++} not carry information of t)

Log-likelihood of the multinomial $\sum_{ij} \pi_{ij} [\log(t) + \log(\pi_{ij})]$

DMF $\propto \prod_{i,j} \pi_{ij}^{Y_{ij}} \rightarrow \ell = \log(\mathcal{L}) \propto \sum_{ij} Y_{ij} \log(\pi_{ij})$ (cf., log-likelihood for Poisson $\propto \sum_{ij} Y_{ij} \log(\mu_{ij}) - \mu_{ij}$) $\rightarrow LNp.4-4$

In Poisson GLM for scheme 1

- intercept $\leftrightarrow t$
- other effects $\leftrightarrow \pi_{ij}$'s

Pretend y_{++} is random. But note that intercept not carry information of t

The inferences in the multinomial model would coincide with that in Poisson model, i.e.,

- same estimates (MLE)
- same test statistics and p-values

The Poisson model is easier to execute in R, so we can fit a Poisson GLM for data from a multinomial sampling scheme

Can be generalized to $I \times J$ table in the same manner

4/3 Scheme 3: binomial GLM $\leftarrow \begin{bmatrix} X_2 & Y_x & n_x \\ 1 & Y_{11} & y_{+1} \\ 2 & Y_{12} & y_{+2} \end{bmatrix}$

$Y_{ij} \sim \text{multinomial}(y_{++}, \pi_{ij})$

$\sum_{ij} \pi_{ij} = 1$

$\sum_{ij} Y_{ij} = y_{++}$

$\sum_{ij} \pi_{ij} Y_{ij} = y_{+1}$

$\sum_{ij} \pi_{ij} Y_{ij} = y_{+2}$

$\sum_{ij} \pi_{ij} Y_{ij} = y_{++}$

3. deviance of S: $\sum_{ij} Y_{ij} \log(\frac{Y_{ij}}{\pi_{ij}})$

$\sum_{ij} Y_{ij} \log(\frac{Y_{ij}}{\hat{\pi}_{ij}})$

$= 0$ if S contain intercept

By in LNp.5-8.

$\pi_{ij} = \frac{u_{ij}}{u_{1j} + u_{2j}}$

$Y_{1j} \sim \text{binomial}(y_{+j}, \pi_{i=1|j} = \pi_{1j} / \pi_{+j})$, $j=1, 2$

indep. as a function g^{-1} of $\underline{\lambda}_j$, $\underline{\lambda}_{x_2} = \underline{XB}$

where $\pi_{i=1|j}$ is linked to the covariate $X_2 (=j)$ only according to the model we choose

X_i hidden in response (响应) \rightarrow X_i not a covariate (变量)

Q: compared to schemes 1 and 2, what information has been gone/questionable in this scheme? $\rightarrow t, \pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}$

Suppose fit the data with a Binomial GLM with logit link: