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Two-way Contingency Table
* Two cross-classified categorical variables X, and X,

. _ population
» X, has [ categories, denoted by i =1, 2, ..., I
» X, has J categories, denoted by j=1,2, ..., J X@XXX < XX
L B N ® X @ X
 Classifications of subjects in some population R
on X, and X, have IJ possible combinations.
Define the population parameters:
> T, = the proportlot} of the .sub]ects 1n.the
~— population with X,=7 and X,=j X,
= arrange TT.’s in the cells ofa =1
= — 1 | ms| T

rectangular table having I rows for —
categories of X, and J columns for
categories of g; to display the e
population distribution -

|~
E
2 :
=

J I : :
b T— 27:1 mi; and Ty j =) ;.4 mij = marginal proportion

_ L J L < _
BTy =32 i T i T = )i Ty = L N

o, o p. 52
> Tij = Wii/ﬂii and 7j|; = Wil‘/ﬂ'l'i = conditional proportion

= Y m; = LVj and Y5y = LV

* Q: For the population, what questions
might be of interest?

>7Tli:"’:7rli? Orﬂ-il:"':ﬂ-il?

» Are X, and X, observed from a randomly sampled subject
independent, i.e., does X, affect X, and vice versa?
If X, and X, are independent, then

oy = P(Xh =1, X9 =j) = P(Xy =)P(Xs = j) = iy Ty
vy = P(Xy =i Xp =) = P(Xy =i) =7,V

Ml =P(Xe = j| X1 =i) = P(Xy = j) =74,V
=711 2T — 721 & =T2g — — Tr1:- :T1J

11 271 — T12: T2 = — T1Jg: " T1J
= For 2X2 table, odd ratio

A - Fii/miz | maa/ma1 | miiXmea 4 | T, o |
= 71'2&/71’22 o 71'&2/71'22 o T12 X721 = Th1 | T2




For IxJ table and any 1<i<I and 1<5<J, —
- — - T = - - TGj | TGJ
et | T
Bij = g 1 —
* For a sample drawn from the population, let X,
» y,; = total number of subjects in Xl J
the sample with X ;=i and X,=j L1 |9} b
» marginal totals (row totals or column totals) 7T [y, | ... v | i,
_ i d — l Y Yeg | Yss
Yir = 25 Yy and ypy = 3 vy .
| F L L
Fgrandtotal yiy =D 0 D7 Wi = Qi Yik = 2 5o Y4

* When the cells of the rectangular_ table contain
Y;;8, it 1s called a IXJ contingency table

» The above treatments for T's and y’s can be
generalized to more than two categorical variables

* Q: how to model the data (i.e., what’s the joint distribution of y,,’s)?
» The statistical modeling of the data

depends on the sampling schemes. N
¢ > consider an example of wafer data: e
» Consider the sampling schemes % parcies | partictes
1.Observe the manufacturing process = Good | 320 14 | 334
for a certain period of time Bad | 80 36 ] 116
: 400 50 | 450
2.Decide to sample 450 wafers
3.Decide to sample 400 wafers without
particles and 50 wafers with particles
4.Scheme 3 and the 450 wafers must also include,
by design, 334 good wafers and 116 bad ones
= Note 1: the first three schemes are all plausible
= Note 2: scheme 4 seems less likely in this
example; such a scheme is more attractive
when one level of each variable is relatively X,
rare and we choose to over-sample both X1 |2
levels to ensure some representation BEAFARR
e Scheme 1 2 Yo | Yo Yz:
y: fixed; Y: random; red square: free Yo | Yo | Viu

> Model: AL N
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= Response: Y- ~P01sson(,gw) =1, 2; 5=1,2

« For a random sample, can assume Y, = tXTt,
where t 1s an unknown value of a size variable

= X, (=¢) and X, (=j) are covariates

- » Suppose the data (from an IxJ table) is

fitted with a Poisson GLM with log link
» When TG, =T, TG, (X, and X, independent),
mij = log(pij) = log(tmi;) = log(tmiy myj)
= log(t) + log(mi+) + log(my,)

= corresponds to a main-effect model, i.e., Y, ~ X\+X, =5

« When T, =T, T, and my 4 = --- = w4 (or mpq = -+ = 1)

nij = log(t) +log(my ) (or 7 = log(t) + log(mi))

= corresponds to the model Y~ X, (or Y~ X))
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= When T, TG T (X, and X, not independent)

— add interaction X X

— may consider Y X+ X,+X,: X, =L (saturated model)

= Q: what type of TUs corresponds
to the following models?

Y, i~ 1 Zg - &H_ﬁﬁz

> Recall. For a Poisson GLM with log link, XY = X" b
For models without interactions,

= XTY'is only related to marginal totals

—> the fitted values [ is a
function of marginal totals
— for example, for main-effect model Y;, ~ X, + X,

fij = Yoq Mg T4y = Yiy Y+3/Y++
» To test whether T, =Tt TT, (HO) = Hy: Svs. H L\S

= Deviance based: Dg — DL ~ x(l_l)(J_l)
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= Pearson’s X? (goodness-of-fit measure) under S:

=0 )2 2
- (¥ Hij> B (O,; — E;;)* L
ST L > =Ty . A=) (D)
= Hi - Lij
o Yate s continuity correction:
+ Subtracts 0.5 from Xij — Ez‘j when it is positive

2

I\g

+Add0.5t0 Y;; — Eij when it is negative
this give superior results for small samples

>TO test EQ 7Tl_|_ — R — 71!4_ (OI’ 7T‘|‘l = e = 7T_|_l),

mpare models S”and LY (H,: SYvs. H,: LA\S"), where
SDY ~ X, +X: X, and LB Y, ~ X+ X+ X X,

- _Z]

SBY ~ ~X;:X, and L2Y, ~ X +X:X,

i ¥

SEY,~ X, andLDY )_(+X
SDY-~1andLDY X,

M — =y

= Deviance-based test: Dg« — DL* ~ des*—de*

» Can be generalized to X, with I levels and X, with J levels

* Scheme 2: P58
» Model: for a random sample, we can assume
(Y11, Yip, Y1, ¥2)) 42
~ multinomial(y,, TG, T, Th,, Thy) — 1112
- Yo | Yy | Yy

o |i—
5
2
o

where TG (2=1, 2; j=1, 2) is linked to X,
and X, according to the model we choose Yo | Yo | vss

> Connectlon between Poisson and multinomial:
Let Y, ~ Poisson(A -) 1=1,...,k, and independent,

(Yp Y|z, Yi=n) ~ multmomlal(n AIZA;, - MJZN)

= the parameter t (value of size variable) in
Poisson is removed, but Tt,;’s are not affected

= would expect there is a lot of similarity between
the inferences for Poisson and multinomial models

» Log-likelihood of the multinomial:
log(L ) x Z Y’LJ log(m])
(cf., log-likelihood for P01sson x ;.j Yij log(pij) — pij )




&

> The inferences in the multinomial model would P59
coincide with that in Poisson model, 1.e.,

= same estimates (MLE)
= same test statistics and p-values

The Poisson model is easier to execute in

R, so we can fit a Poisson GLM for data
from a multinomial sampling scheme

» Can be generalized to IxJ table in the same manner

* Scheme 3:

» Model: for a random sample, can assume x
2
Yj~ binomial(y, , T I‘J—HIJ/TL]) J=1,2 )

| 2

=[-
B
=

where Ti,_, ; is linked to the covariate X, (=)
only according to the model we choose

» Q: compared to schemes 1 and 2, what information
has been gone/questionable in this scheme?

» Suppose fit the data with a Binomial GLM with logit link:

DN || =
[
S

oS

S
+
S

&%
S
+
+

= When T,=T1,, T, (X, and X, independent), P. 5-10
logit(mi=1|;) = log|(m1;/7+,)/ (i /7+5)]

= log|(m14745)/(ma471j)] = log(miy /m2y)
= corresponds to a constant-effect model, i.e.,Y,.~1 =5
= When 1, #1110, (X, and X, not independent) o B
= Y}, ~ X, = L (saturated model)
» To test whether T4,=T, T4 (H,) = Hy: S'vs. Hy: L\S
= Deviance based: Dg— D = Dy
= Perason X?under S
» Can be generalized to X, with J
(>2) levels in the same manner
» For the case that X, has I (>2) levels

Yy, -wor Yy)~multinomial(y, ;, Tooyj, -, Thopy), j=1,..00J

= called product multinomial model (cf., unrestricted
multinomial model in scheme 2)




&

 Scheme 4: X, p- 511

» Model: if T, =5, T, (H,), for a random sample, Xl |2

Y, ~ hypergeometric(y,., Y., Ys,), 1.€., 1Y | Y| e

N yl_y_z_y 2 | Yo Yo 0

P(Y; _911)—<+—><+—>/(ﬁ> Ui | Ya2 | U
Y= MY, Ve Yi+! Yo+l ypal y4o!

Y11l y12! yorlyoo!yy !
Under Scheme 3 and Y1) Y11l Y21 Yyo2\ Y12 Y22
) — (yf) M Ton X <yE) 12 T2)2
H,, the joint pmf of = =

Yy, Yy, Yy, V) is: = y+1 y+2 Yiityie _v21+yz2
(—H’ —12> =2b _2) y11! y21! y12! y22! 7T1+ 7T2_+
= Under M and H()a the y++ yl+ y2+
. . . S 1+ 2+
sufficient statistics of T, and T, Yit! Y2+

are Y}, and Y,,, respectively,

and their joint pmf is:

» When TG, #T1,T; (H,), the probability a black ball is drawn
is different from the probability a white ball is drawn

p. 5-12

» To test whether TG =TG, T (Fisher s exact test)

= Because Y, can only take a limited number of values, can
compute the probability of all these outcomes under H,

= can compute the total probability (p-value) of all :
outcomes that are more extreme than the one observed

= Q: what outcomes are more extreme? Some options:
o The outcomes with probability < (Y ,=y,,)

o Outcomes yy;'s.t. [y, —E(Y) | 2|y, —E(Y)) |

o Others (see Agresti, 2013, 3.5)
» Generalization to [xJ table for testing H,: T, =T(,TT,

— use multiple hypergeometric as null distribution,
whose probability mass function is:

(IL, i) (L 931) / (et > 1L, wig")

» Some notes:
» The situation that both marginal totals are fixed is rather
less common 1n practical sampling applications
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= [t can arise when classifying objects into one of 2 types
when the true proportions of each type are known
o Example: the lady tasting tea

= [t suggests a more accurate test for independence

o Fisher’s exact test is attractive because the null
distribution for deviance-based and Pearson’s X?
test statistics is only approximately X? distributed.

o For tables with small counts, this X? approximation is
suspicious, which makes the exact method valuable.

o Fisher’s exact test becomes more difficult to compute
for larger tables. However, the X? approximation will
tend to be accurate for larger tables.

% Reading: Faraway (2006, 15ted.), 4.1, 4.2
Correspondence Analysis (CA)

* : when independence of a 2-way contingency table is
rejected, how to know where the dependence is coming from?

» Interaction terms in a Poisson GLM contain dependence
information; however, interpretation of them could be difficult.

&
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» CA: a visual residual analysis
for contingency table

 Singular value decomposition

> E:[R- ]: an rXc matrix. W.Lo.g, assume r=c and rank(R)=c, then
R=U,xDoxcVexe =% dUkaT,ie

Zk o K]k, where
. U—[ 1 L2 T U] an rXc column orthonormal matrix,
ie., UTU— L v

= V=V, I=1V5, .., Vo] @ eXe column orthonormal matrix,

ie., V[VI

CXC’

its columns are called left singular vectors

its columns called right singular vectors

- Q—dﬁg@y s dy), @l_ ... 2d,> 0, called singular values

» Some properties
= Columns of U, are eigenvectors of (RRY)

rXr

= Columns of V. are eigenvectors of (RTR)
= {d}?, ..., d?} are eigenvalues of RR"and R'R

* Procedure of correspondence analysis on Pearson residuals

CXC
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a) Fit a GLM corresponding to independence on the
contingency table and compute its Pearson residuals,
rp's (Q: what information contained in the r,’s?)

b)Write rp’s in the matrix form [R,;,]=R . as in contingency table

¢)Perform the singular value decomposition on R=UD VT

d)It is common for the first few singular values of R to be much
larger than the rest. Suppose that the first 2 dominate. Then,

] E =~ Uzld1V1+U22d2V32

) = UaVd)( .71\/_ Uiz /d2)( .72\/_

______________________________________________

1
[ ] 1 / ’ / ! ’ / /
Ve Vi Ve Ve e Viz o Vea_ |
1 J c 1 J c
:-U, ! 1 ! - ! ! ! ! ! 1 ! ! - !
: 11: R LS U11Vj1 Ui \VA : 12' 1 ULV, U12Vj2 UioVeo
U . o .. .
1 , I 1 , :
R = :Uzl: N L2 UnVj upvi |+ :U7,2I v ULV, UiV, UiaVes
1 1
: 1 : 1
' . Peee
1yr ! lyr |
:_U_Tl: T VUV ULV ULV :y_rg: T ULV o | UV o | UV N
<:| ~ / / p. 5-16
« R UV’ —|—U2V , where for £ =1, 2,
/I ( / / ) / ( / / )T
Uy = U g U )T and Vi = (Vs V0 )T

e) The 2- dimensional correspondence plot displays

Ul vs. U/;4 and VJQVS le on same graph

(Note: because the distance between points will be
of interest, it is important that the plot is scaled so
that the visual distance is proportionately correct)
* Some notes:
» Q: what does a large positive R, mean? a large negative R,?

> 2,,d)? = Pearson’s X?, because Zw rp = trace(R'R) = %, dk—
(Q: What does a large X, d,? indicate?)

* Q: what should we look for
in a correspondence plot? .

BROWN

> Large values in |U7,| (and [V",]) - o

BLACK

= the profiles of the rows (or the
columns) corresp. to the large values SR E—
are different from the marginal dist. e N




s .g.: BLOND hair = the distribution of P 517
eye colors within this group is not typical

ne.g2.. BROWN /hair = the distribution of eye colors within
this group close to the marginal distribution of columns

» Row and column levels close together and far from the origin

= a large positive R,;; would be associated with the combination

ne.g2.: BLOND /air « blue eye = strong association

» Row and column levels situate apart on either side of the origin

= a large negative R,; would be associated with the combination

ne.g2.: BLOND hair ~ brown eye = relatively fewer people

» Points of two row (or two column) levels are close together

» The two rows/columns have a similar pattern of association
— might consider to combine the two categories

x €.g.: hazel eye ~ green eye = similar hair color distribution

* Other versions of CA: see Venables and Ripley (2002, corresp
in the MASS package of R), or Blasius and Greenacre (1998)

% Reading: Faraway (2006, 15t ed.), 4.2

“ Matched Pairs Design (MPD) "o
* Design

» A block factor: y,, levels, each level
represents a block, each block of size 2, i.e.,
2 experimental units (EUs) in one block

> A treatment factor: 2 levels A and B,
randomly assigned to the 2 EUs in each blocks

» A response variable: categorical

» 2 formats of representing data
» Comparison 1: MPD ~ MCCD
» Comparison 2: MPD  Paired sample ¢-test

« Data for contingency table: observe one type of

: , X,
categorical measure on two matched objects (EUs) X | | |7 ;
» In contrast, in the typical 2-way contingency L RS ERN R TE T
tgble, observe two (different) types of catego- e
rical measures (X, and X,) on one object T | | T | L

» e.g., left (X)) and right (X,) eye performance of a person




€ « Contingency table for matched pair data is a square matrix and ~ ***

» no marginal totals are fixed in advance

» grand total Y, , could be random or fixed

* (Q: what questions are of interest for matched pair data?
» row and column marginals are homogeneous, i.e., T, ,=Tt,.?

» [T,] s 1s @ symmetric matrix, i.e., T4, =TC,?

» symmetry implies marginal homogeneity
(MH), but, the reverse statement not
necessarily true (except for 2x2 table)

= Q: how to interpret symmetry?

» When row and column marginal totals are quite different,
might be interested in whether @

TG ~TGIL Y, Where Vi =Y;7
n It 1s called gquasi-symmetry (QS)
« MH + QS < symmetry
» X, and X, are independent, 1.e., T, =T(, T, for all i and j?

B

&

» If not independent, whether T, ;=a,xb, for i#5? It is called p. 520
quasi-independent (QU). -

N
= Q: how to \/N

interpret QI? e TN

 Tests for these hypotheses based on log-linear x| 52% :
mOdel’ e'g.’ 1 y_ll y_12 y_13 Yy

model. - o e
Y = (yllvyzlvyﬁlvyl27y227y§27yl§7y2§7y§§7 ) 2 | Y2 | Y| Y | %
3 | s | Yso | Y33 | Use
» Test for symmetry (H) hypothesis: You | Y2 | Yz | Ve

= Generate a vector with I? components for an L]k [k
(I(I+1)/2)-level nominal factor with the structure:
Sym'faCtOT — (l17 127 l37 l27 l47 l57 l37 l57 lﬁ)T

=Y~ sym-factor = S,

= Deviance-based/Pearson X* goodness-of-fit test for S,
» Test for QS (H,) hypothesis

=log(mij) = log(mit 74 vij) = log(miy) + log(m4;) + log(vis)

-




p. 521

=Y~ X, + X, + sym-factor =S .,

= Deviance-based/Pearson X? goodness-of-fit test for Sgsym

» Test for MH () hypothesis

= No log-linear models that
directly corresponds to MH

= An indirect test using log-linear
models when S ., already holds

o Deviance- based test for H: S m VS. H 15 \S§Lm
= Other approaches, see Agresti (2013), 11.3

> Test for QI (H,) hypothesis
= Approach 1
o Omit the diagonal data, i.e., let
Y’ = (y21,Y31, Y12, Y32, Y13, Y23)
O Y’ X + X S gindepl

o Deviance-based/Pearson X? goodness-of-fit test for S;,gep1

= Approach 2 N

p. 5-22

o Generate a vector with J> components foran [ 4 [ & [
(I+1)-level nominal factor with the structure:

':'XN Kl + X, + QlI-factor = 5 4epn

o Deviance-based/Pearson X?
goodness-of-fit test for S qindep?

< Reading: Faraway (2006, 1% ed.), 4.3 (1sk<K)

Three-Way Contingency Table  x
* The 1Ts and Y’s are defined in the i
same manner as in the 2-way table 15

* Poisson GLM approach to inves-
tigate how X, X,, X; interact

» Mutual independence (X, X,, X; are independent)
" Thga= T Tl Tl
= lo_g(ﬂﬂ) = log (it 4 T4 j 4 T41k)= 108“(7Tg‘++) + 10_%(7T+l'+)

+log(m4+k)




[\

YOX, + X, + X
_ 1 s D

o The estimates of parameters in this model

S p. 5-23

(98]

X X .
correspond only to the marginal totals y;,,, v

Yaje> AN Yo

o The coding we use will deter-
mine exactly how the para-
meters relate to the margin totals,
e.g., let Sbe an main effect of X,
that codes 7, and i, categories as

0 (reference) and 1

= £/(L+ef) = Tyt / (Fiy 1 + Ty y)

= Uiyt Wiy T80y
oInsignificant factor, say X, = m,, =T, =... =T,

» Joint independence ({X,, X,} and X are independent)
"Ik = TG XMy = Ty~ Thj.

= log(mije) = log(mij 711 k)

X, = log(mij+) + log(my4k)

YUX, + X, + X1 X+ X525, 95)

» Conditional independence (X, X, are independent given X)

]

X| | T g = Th=Thn G T
| x| = log(mijk) = log(Mitk T4 jk/T44k)

— = log(mitx) + 1O_g(7T+ﬁ) — log(m1+k)

X
S WYOX XX X X XGRS B s e
= 1 1:23 3 2 2223 =3 ; ; s
= 5 " Note that S3 % Sy , but X, is jointly independent of
1 03 {X,, X;} implies that X, X, are independent given X,
E " Q:_Cﬂl_this conditional i_ndeﬁendence Xl X2 X
X)X, imply independence between X, and X, + +

1.e., TG;,=TG, . T, ;,? (Ans: No. Check
singular value decomposition in LNp.5-15)




p. 525

. » Uniform association (UA)

= Consider a model with all two-factor interactions
YUX + X, + X5+ XX + XX+ X X525, S5)

= S, has no s1mple 1nterpretat10n in terms of 1ndependence

" S asserts that for every level of one variable, say X,
we have the same association between X, and X,

YDX+X+X+XX+XX+XX

L | 2=

o For each levels of X, the reduced models of S, have
different coefficients for the main effects of X, ‘and X X5,
but have the same coefficients for the interaction XX,

oe.g., I=J=2, same fitted odds-ratio between
X, and X, for each category of X;. Note that

. UuikY22k  T11kT22k B
fitted odd-ratio = ZT==2 = =" =" — 28
Y12kY21k T12kT21k

where f3,,, is the coefficient of the X,: X, term (under
a coding [J {+1, —1}) in the reduced model of X;=£.

S B B
AR

=

= Q: What does uniform association mean? How to interpret ™ **°
the association? How does it connect with interaction terms?

interaction and
association
(odds ratio)

=
—
in 2x2 table 7‘
7

]|

)|

uniform

association
in 2x2xK table < ™~
X=1 X3=2 X;=3 X=1 X5=2 X3=3
uniform % ?< — @
association
in IxJxK table —~ @ @ @
—r X;=1 X;=2 X3 X=1 X=2 X3=3

| wS41s not saturated = some degrees of
il freedoms left for goodness-of-fit test
> A saturated model corresponds to a 3-way table with different

association between, say X, and X,, across K levels of X

whereas Y~ 1 corresponds to a 3-way table with constant Tt




@ » Q: how to examine whether X, X, X; in a 3-way table are »**
mutually independent (S)), jointly mdependent (5,), condition-
ally independent (5;), or -uniformly associated (S i) individually?

» Ans: Perform deviance-based/Pearson’s X? goodness-
of-fit (GoF) tests for S, S,, 53, S, (as H,), respectively.
= However, be careful of zero or small yjjk,_(rule of thumb: 20%
of cells less than 5) in the table = there will be some doubt
about the accuracy of chi-square approximation in GoF test
= The chi-square approximation is better in
comparing models than assessing GoF
» Analysis strategy: start with complex Poisson GLM (e.g.,
saturated one) and see how far the model can be reduced
(e.g., using model selection or sequential deviance-
based tests as in ANOVA to compare models).
* Binomial (or multinomial)
GLM approach for 3-way table

»1f y;;,’s regarded as fixed, can treat Yy,
as response and X, X, as covariates

&
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» Q,: what information been gone? Q,: what still attainable?
= Ans for Q,: information about 1T, ,,

= Ans for Q,: information about TT,
» Statistical Modeling

L] YX = le ~ binomial(giji, Ek:yzj) when KZZ
.YX _( Zagle s @]K)
~ multinomial(y,;, Tz ij ---» Th=g ;) When K >2

» Q: how is a binomial GLM connected
to a Poisson GLM in 3-way tables?
=Yy, ~1 <= 5, (joint independence)

=

DWM: WQ-F X T4k p— ﬂ-ﬁ’ﬂ = T4++k

o The binomial GLM implicitly assumes an
association between X, and X, (Q: why?)

o Poisson GLM allows us to
drop the X,:X, term, but
binomial GLM does not N




~1+ X, = X,, X;are independent given X, p. 529

sl

X =
__é ot

OTijk = T j4+ Witk / Tit+ < Tgjij = Tklit
2 uQ'howaboutY ~1+X‘?

sl

o Q: Can we exam Whether
X, X, X, are independent given X,?

sl

'ZX3~1+)_(1+§Q <
Sy (uniform association)
= The saturated binomial GLM, XX3 ~1+ X+ X, + XX,

s

[ O]

s

corresponds to a Poisson GLM for different association

= Using binomial GLM loses little when we are

interested in the relationship between the response
X5 and the two covariates X, X,, and not
interested in the association between X, and X,

* Q: Poisson or binomial GLM approach? Which to use? S

» Binomial if one variable is clearly identified as the response

» Poisson if relationship between 3 variables is more symmetric N

&

» Correspondence analysis

p. 5-30

» Cannot directly apply to 3-way table

» Can combine two of the factors, say X, and X, into
a factor with IxJ levels and apply correspondence analysis
on the 2-way table formed by the new factor and X,

» Q: which two factors should be chosen to merge?
Ans: pick up the two whose association is least interesting to us

Simpson’s paradox

> w@ smoker | dead | alive smoker | dead | alive
= X, (1): age —— _—
= X, (j): smoker age=35-44 yes H % @ (ﬂ) — yes E ﬁ l
= X5 (k): dead no 7 114 121 (.53) no .06 .94 1
or alive — — — — — — — —
smoker | dead | alive smoker | dead | alive
age=65-74_ ¥ | 29 | 7 36 (22) _ _yes | 81 ] .19 1
o [101] 28 | 129 (78) o [ 78] 22 i
) smoker | dead | alive smoker | dead | alive
L 109/145 marginal
=15 total over  Y€S 43 1102 | 145 (37) — yes S0 .70 1
121250 age no | 108 | 142 | 250 (.63) no | 4] 57 |
= D
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= marginal association added over X, 1s different from the
conditional association observed within each category of X

» Q: Why it occurs? Why the table of y, ;. gives a

contradictory result to the tables of ijﬁ?
[f Yz _ _ vma o w12z Y122

Yii+  Yarityiiz — Yi2ityizz Y1z
Y212 Y212 Y222 Y222
n —_— p— e —_— p— —_—
and Y21+ Y211+Y212 = Y221+Y222 Y22 +

Yi12+y212 g Yi22+¥222
Yr11t+y112+yY211+Y212 == Y121+Y122+Y221+Y222

Y1j2+Y2;5 2 Y152 Y15 + Y252
s Note. ——=== = == —_— + = (l—

VigHtYzi4 Yt YuidtUni+ o Y24

vt )
Yli+ 1Yz +

= Note that smoker are more
concentrated in the younger

age group and younger people
are more likely to live longer

* Mantel-Haenszel (MH) test for 2x2x K table

» Designed to test independence in 2x2 tables across K categories

N
¢ » Recall. association of a 2x2 table can be completely P
characterized/measured by its odds-ratio A %l%

=« A =1 < independence =« A >1 < positive association

« A<l < negative association

» Null and alternative hypotheses of MH test
s Hy Ay =0= ... = A = 1 (conditional independence)

n H H,~: at least one Ak # 1 (different association) or

H;:A =4,=... =Ag # 1 (uniform association)

= The test works better when the odds ratios of the K 2x2
tables do not vary greatly, e.g., the null of the @ test for
uniform association, A,=A,=...=A,., does not rejected

» Procedure of the MH test .

= Suppose the marginal totals of each 2X2 table carry no

information (e.g., fixed in advance) or are conditioned.
ounder H, can assume a hyper-geometric
distribution for y,,, in each 2x2 table

= Y11 18 sufficient for testing independence of kth table




= MH statistic combine information of y;,’s from K tables: ~ e
2
(|&[yllkz — E(y11k)]| - 1/2)7 )
= — g
2 Yar(yi)

2
1

where E(y,,;) and Var(y,,,) are calculated under the H,
o can calculate an exact p-value for smaller
dataset using hypergeometric distribution
— useful when data is sparse, under which the X? approx-
imations based on asymptotic thm is questionable
» MH test is sometimes called Cochran-Mantel-Haenszel test because

a version without the 1/2 is published earlier by Cochran (1954).
* Reading: Faraway (2006, 15t ed.), 4.4

Ordinal Variables

« Some variables have a nature ordering

between categories
» ¢.g., education: HS, BA, MA;

political ideology: VL, SL, M, SC, VC

B

« » The ordinal structure not matter when # of categories = 2 P-5-34

» For ordinal variables, can use the methods for nominal variable
= But, more information can be extracted by
taking advantage of the ordinal structure
» Treatments for ordinal response (future
lecture) and ordinal covariates are different
» Treatment for ordinal predictors: assign each category a score
» It kind of turns an ordinal variable into a continuous variable
» The choice of scores requires some judgment
= If no particular preference, even spacing
allows for the simplest interpretation
= For interval scales, midpoints of the intervals are often used

» Should check whether the inference is robust to different
assignments of scores

= If qualitative conclusions are changed, this is an indication
that you cannot make any strong finding based on scores
* Poisson GLM with linear-by-linear association for 2-way tables:
» Consider table with ordinal row

(X,) and column (X,) variables

B
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= assign scores u; S u, < ... < u;to rows, denoted by u(X,)
= assign scores v; £ v, £ ... £ v;to columns, denoted by v(X,)

» Linear-by-linear association model:
n,; = log(p, ) = log(tm;;) = log(t) + log(mit ) 4 log(my)

—L] L
where u,’s, v.’s are known scores, TY XUy XYy

and yis an unknown parameter
YV~ X+ X)X )u(X,) = Soxo
» Some notes about Y: o
= values of Y represents the amount of association
» V=0 < independence
= positive and negative Y
= Interpretation of y by log-odds-ratio:

1 LigTit1,5+1 ] B lit1,41
Og\ = - — 1og\ &

—igtl—itl,J —i,j+1—i41,j

— (ﬂlal +Qi+1,&) o (ﬂi,j+1 —l_ﬂfH_l’i) — l(uﬂ - Ei)(ﬂjil - Qj)

ofor evenly spaced scores, these log-odds-ratios are equal
= called uniform association in Goodman (1979) N

= Latent (continuous) variable Z motivation for y:

o Assume Ti,’s are obtained by putting
a grid on an approximately bi-variate
Normal (Z,, Z,) for latent variables
and u,’s and v ;_s are cutpoints

oV can then be identified with the
correlation coefficient p of the latent

variables (cf., positive and negative p)
» Q: for the tests of independence or goodness-

of-fit, what is the benefit of using S, over
the nominal approach, i.e., fitting a nominal-
by-nominal model Sy, : Y~ X, +X,+X,:X,?
As shown in a lab example,
= in the NV approach, interaction effects reduce a|
deviance of 40.743 on 36 degrees of freedom, but
» the OXO interaction effect reduces a deviance of
10.175 on one degrees of freedom, 1.e., the other 35
interaction effects only reduce a deviance of 30.568 5

,,,,,,,,,,,,,,,,,,,
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@, Ordinal-by-nominal model (or nominal-by-ordinal model)

» Rows (or columns) assigned scores, but column
(or row) variable treated as a nominal variable

» called column (or row) effects model because the columns (or
rows) are not assigned scores; instead, their effects are estimated

= alternative viewpoint: the scores of the ordinal
columns (or rows) regarded as parameters

» Column effects model:

n,; = log(p, ;) = log(tm;;)

= log(t) + log(miy ) + log(my) + w; * 7,

where w;’s, 1=1,..., I, are known scores, and

yj’s, j=1,..., J, are unknown parameters (over-
parameterlzed only requires J—1 parameters),

Y~ K +X +U(X)X2_SO><N(D SOXO)

» Some notes about y,’s, called the column effects:

p. 5-38

= Equality of the y,’s (then, u,Xy=u,Xy) corresponds to

the hypothesis of independence between X, and X,

= For ordinal column variable, if the model S, were a
good fit, we would expect the estimates of tﬁe_yj’s n
SOX N 1o be roughly proportional to v,’s (e.g., for evenly
paced v;’s, estimates of y;’s should - follow a linear trend)

= We can use the estimates of yj s in Spuy (1) to
examine whether the chosen scores for columns in
SOxO (i.e., v;’s) are appropriate, or (2) to possibly
suggest better scores (see an example in lab)

» Some advantages of using scores for ordinal variables

» helpful in reducing the complexity of models
for categorical data with ordinal variables

» especially useful in higher dimensional table
where a reduction in the # of parameters is particularly welcome

» can also sharpen our ability to detect associations
% Reading: Faraway (2006, 1%t ed.), 4.5




