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• Two cross-classified categorical variables X1 and X2

Two-way Contingency Table

 arrange πij’s in the cells of a 

rectangular table having I rows for 

categories of X1 and J columns for 

categories of X2 to display the 

population distribution

X1

X2

1 … J

1 π11 … π1J π1+

… … … … …

I πI1 … πIJ πI+

π+1 … π+J π++=1

• Classifications of subjects in some population

on X1 and X2 have IJ possible combinations. 

Define the population parameters:

X1 has I categories, denoted by i = 1, 2, …, I

X2 has J categories, denoted by j = 1, 2, …, J

population

 and  marginal proportion



πij = the proportion of the subjects in the 

πij = population with X1=i and X2=j
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Are X1 and X2 observed from a randomly sampled subject

independent, i.e., does X1 affect X2 and vice versa? 

If X1 and X2 are independent, then

• Q: For the population, what questions
Q: might be of interest?

 and

 and  conditional proportion

 For 2×2 table, odd ratio
π11 π12

π21 π22








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X1

X2

1 … J

1 y11 … y1J y1+

… … … … …

I yI1 … yIJ yI+
y+1 … y+J y++

• For a sample drawn from the population, let

marginal totals (row totals or column totals) 

For I×J table and any 1≤i<I and 1≤j<J, 
πi j πi J

πI j πI J

• The above treatments for π’s and y’s can be 

generalized to more than two categorical variables

• Q: how to model the data (i.e., what’s the joint distribution of yij’s)?

The statistical modeling of the data
depends on the sampling schemes.

yij = total number of subjects in 

the sample with X1=i and X2=j

grand total

• When the cells of the rectangular table contain 

yij’s, it is called a I×J contingency table
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consider an example of wafer data:
Qua-

lity
No 

Particles Particles

Good 320 14 334

Bad 80 36 116

400 50 450

Consider the sampling schemes

 Note 1: the first three schemes are all plausible

 Note 2: scheme 4 seems less likely in this 
example; such a scheme is more attractive
when one level of each variable is relatively 
rare and we choose to over-sample both 
levels to ensure some representation

1.Observe the manufacturing process

for a certain period of time

2.Decide to sample 450 wafers

3.Decide to sample 400 wafers without 

particles and 50 wafers with particles

4.Scheme 3 and the 450 wafers must also include, 

by design, 334 good wafers and 116 bad ones

• Scheme 1
y: fixed; Y: random; red square: free

Model:

X1

X2

1 2

1 Y11 Y12 Y1+

2 Y21 Y22 Y2+

Y+1 Y+2 Y++
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Suppose the data (from an I×J table) is 

fitted with a Poisson GLM with log link

 When πij=πi+ π+j (X1 and X2 independent),

 For a random sample, can assume µij= t×πij, 

where t is an unknown value of a size variable

 X1 (=i) and X2 (=j) are covariates

 corresponds to a main-effect model, i.e., Yij ~ X1+X2 ≡ S

 corresponds to the model Yij ~ X2 (or Yij ~ X1)

 Response: Yij ~ Poisson(µij), i=1, 2; j=1, 2

 When πij=πi+ π+j and

p. 5-6

 Q: what type of π’s corresponds 

Q: to the following models?

� Yij ~ 1 � Yij ~ X1+X1:X2 � Yij ~ X2+X1:X2

 When πij≠πi+ π+j (X1 and X2 not independent) 

 may consider Yij ~ X1+X2+X1:X2 ≡ L (saturated model)

 add interaction X1:X2

 XTY is only related to marginal totals

 for example, for main-effect model Yij ~ X1 + X2

For models without interactions, 

Recall. For a Poisson GLM with log link, 

 the fitted values is a 

 function of marginal totals

To test whether πij=πi+ π+j (H0)  H0: S vs. H1: L\S

 Deviance based: 
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 Pearson’s X2 (goodness-of-fit measure) under S: 

 Yate’s continuity correction: 

this give superior results for small samples

S∗: Yij ~ X2 +X1:X2 and L∗: Yij ~ X1+X2+X1:X2

S∗: Yij ~ X1:X2 and L∗: Yij ~ X1+X1:X2

S∗: Yij ~ X2 and L∗: Yij ~ X1+X2

S∗: Yij ~ 1 and L∗: Yij ~ X1

Can be generalized to X1 with I levels and X2 with J levels

Subtracts 0.5 from                   when it is positive

Add 0.5 to                  when it is negative

To test H0: 

compare models S ∗ and L ∗ (H0: S 
∗ vs. H1: L 

∗\S ∗), where 

 Deviance-based test: 

p. 5-8

where πij (i=1, 2; j=1, 2) is linked to X1

and X2 according to the model we choose

X1

X2

1 2

1 Y11 Y12 Y1+

2 Y21 Y22 Y2+

Y+1 Y+2 y++

• Scheme 2:

(Y1,…,Yk|ΣiYi=n) ~ multinomial(n, λ1/Σiλi, …, λk/Σiλi)

Model: for a random sample, we can assume 

(Y11, Y12, Y21, Y22) 

~ multinomial(y++, π11, π12, π21, π22) 

Connection between Poisson and multinomial:

 the parameter t (value of size variable) in 

 Poisson is removed, but πij’s are not affected

 would expect there is a lot of similarity between 

 the inferences for Poisson and multinomial models

Log-likelihood of the multinomial:

Let Yi ~ Poisson(λi), i=1,…,k, and independent, 

(cf., log-likelihood for Poisson ) 
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• Scheme 3:

X1

X2

1 2

1 Y11 Y12 Y1+

2 Y21 Y22 Y2+

y+1 y+2 y++

Model: for a random sample, can assume 

where πi=1|j is linked to the covariate X2 (=j)
only according to the model we choose

The inferences in the multinomial model would 

coincide with that in Poisson model, i.e., 

 same estimates (MLE)

 same test statistics and p-values

The Poisson model is easier to execute in 

R, so we can fit a Poisson GLM for data

from a multinomial sampling scheme

Can be generalized to I×J table in the same manner

 Q: compared to schemes 1 and 2, what information

has been gone/questionable in this scheme?

Suppose fit the data with a Binomial GLM with logit link:

Y1j ~ binomial(y+j, πi=1|j=π1j/π+j), j=1, 2
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 corresponds to a constant-effect model, i.e., Y1j ~ 1 ≡ S

 Y1j ~ X2 ≡ L (saturated model)

To test whether πij=πi+π+j (H0)  H0: S vs. H1: L\S

 Deviance based: DS – DL = DS

 Perason X2 under S

Can be generalized to X2 with J

(>2) levels in the same manner

For the case that X1 has I (>2) levels

 called product multinomial model (cf., unrestricted

 multinomial model in scheme 2)

 When πij=πi+π+j (X1 and X2 independent),

 When πij≠πi+π+j (X1 and X2 not independent) 

(Y1j , …, YIj)~multinomial(y+j, πi=1|j, …, πi=I|j), j=1,…,J
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X1

X2

1 2

1 Y11 Y12 y1+

2 Y21 Y22 y2+

y+1 y+2 y++

• Scheme 4:

Model: if πij=πi+π+j (H0), for a random sample, 

 Under Scheme 3 and 

H0, the joint pmf of 

(Y11, Y12, Y21, Y22) is:

 Under Scheme 3 and H0, the 

sufficient statistics of π1+ and π2+

are Y1+ and Y2+, respectively, 

and their joint pmf is:

Y11 ~ hypergeometric(y1+, y+1, y+2), i.e.,

y11≤ min{y+1, y1+}

When πij≠πi+π+j (H1), the probability a black ball is drawn

is different from the probability a white ball is drawn
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 Because Y11 can only take a limited number of values, can 

compute the probability of all these outcomes under H0

 can compute the total probability (p-value) of all 

 outcomes that are more extreme than the one observed

 Q: what outcomes are more extreme? Some options:

 The outcomes with probability ≤ P(Y11=y11)

 Others (see Agresti, 2013, 3.5)

To test whether πij=πi+π+j (Fisher’s exact test)

 Outcomes y11
’s.t. | y11

’−E(Y11) | ≥ | y11−E(Y11) | 

Some notes:

 The situation that both marginal totals are fixed is rather 

less common in practical sampling applications

Generalization to I×J table for testing H0: πij=πi+π+j

 use multiple hypergeometric as null distribution, 

 whose probability mass function is:
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 Reading: Faraway (2006, 1st ed.), 4.1, 4.2

 It suggests a more accurate test for independence

 Fisher’s exact test is attractive because the null 
distribution for deviance-based and Pearson’s X2

test statistics is only approximately χ2 distributed.

 For tables with small counts, this χ2 approximation is 
suspicious, which makes the exact method valuable.

 Fisher’s exact test becomes more difficult to compute
for larger tables. However, the χ2 approximation will 
tend to be accurate for larger tables.

 It can arise when classifying objects into one of 2 types

when the true proportions of each type are known

 Example: the lady tasting tea

Correspondence Analysis (CA)

• Q: when independence of a 2-way contingency table is 

rejected, how to know where the dependence is coming from?

 Interaction terms in a Poisson GLM contain dependence 

information; however, interpretation of them could be difficult.

p. 5-14

CA: a visual residual analysis

for contingency table

• Singular value decomposition

R=[Rij]: an r×c matrix. W.l.o.g, assume r≥c and rank(R)=c, then

R = Ur×cDc×cVc×c
T = Σk dkUkVk

T , i.e.,

U =[Uij]=[U1, …, Uc]: an r×c column orthonormal matrix, 

i.e., UTU=Ic×c; its columns are called left singular vectors

 V=[Vij]=[V1, …, Vc]: a c×c column orthonormal matrix, 

i.e., VTV=Ic×c; its columns called right singular vectors

D=diag(d1, …, dc), d1 ≥ … ≥ dc > 0, called singular values

Some properties

 Columns of Ur×c are eigenvectors of (RRT)r×r

 Columns of Vc×c are eigenvectors of (RTR)c×c

 {d1
2, …, dc

2} are eigenvalues of RRT and RTR

• Procedure of correspondence analysis on Pearson residuals

, where
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b)Write rP’s in the matrix form [Rij]≡Rr×c as in contingency table

c)Perform the singular value decomposition on R=UDV T

d)It is common for the first few singular values of R to be much 

larger than the rest. Suppose that the first 2 dominate. Then,

a) Fit a GLM corresponding to independence on the 

contingency table and compute its Pearson residuals, 

rP’s (Q: what information contained in the rP’s?)

… …

1 … j … c

1 … …

… … … … … … …

i … …

… … … … … … …

r … …

U ′

11
V ′

11
U ′
11

V ′

11
V ′j1 V ′c1

U ′i1

U ′r1

U ′

i1V
′

11

U ′

11
V ′

j1

U ′

i1V
′

j1

U ′

r1V
′

11
U ′r1V

′

j1

U ′
11
V ′

c1

U ′i1V
′

c1

U ′

r1V
′

c1

… …

1 … j … c

1 … …

… … … … … … …

i … …

… … … … … … …

r … …

U ′

12
V ′

12
U ′
12

V ′

12
V ′j2 V ′

c2

U ′i2

U ′r2

U ′

i2V
′

12

U ′

12
V ′

j2

U ′i2V
′

j2

U ′r2V
′

12
U ′

r2V
′

j2

U ′
12
V ′

c2

U ′

i2V
′

c2

U ′r2V
′

c2

+R ≈




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• Some notes:

• Q: what should we look for
Q: in a correspondence plot?

 Q: what does a large positive Rij mean? a large negative Rij?

Σkdk
2 = Pearson’s X2, because Σij rP

2 = trace(RTR) = Σkdk
2

Large values in |U′k| (and |V ′k|)
 the profiles of the rows (or the 

columns) corresp. to the large values
are different from the marginal dist.



e) The 2-dimensional correspondence plot displays 

vs.          and          vs.          on same graph

(Note: because the distance between points will be 

of interest, it is important that the plot is scaled so 

that the visual distance is proportionately correct)

(Q: What does a large Σkdk
2 indicate?)
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 e.g.: BLOND hair  the distribution of 

eye colors within this group is not typical

 e.g.: BROWN hair  the distribution of eye colors within 

this group close to the marginal distribution of columns

 a large positive Rij would be associated with the combination

Row and column levels close together and far from the origin

 e.g.: BLOND hair ↔ blue eye  strong association

Row and column levels situate apart on either side of the origin

 a large negative Rij would be associated with the combination

 e.g.: BLOND hair ↔ brown eye  relatively fewer people 

Points of two row (or two column) levels are close together

 The two rows/columns have a similar pattern of association

 might consider to combine the two categories

 e.g.: hazel eye ↔ green eye  similar hair color distribution

 Reading: Faraway (2006, 1st ed.), 4.2

• Other versions of CA: see Venables and Ripley (2002, corresp

in the MASS package of R), or Blasius and Greenacre (1998)
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Matched Pairs Design (MPD)

• Data for contingency table: observe one type of 

categorical measure on two matched objects (EUs)

e.g., left (X1) and right (X2) eye performance of a person

 In contrast, in the typical 2-way contingency 

table, observe two (different) types of catego-

rical measures (X1 and X2) on one object

X1

X2

1 … I

1 π11 … π1I π1+

… … … … …

I πI1 … πII πI+

π+1 … π+I 1

Comparison 1: MPD ↔ MCCD

Comparison 2: MPD ↔ Paired sample t-test

• Design

A block factor: y++ levels, each level

represents a block, each block of size 2, i.e., 

2 experimental units (EUs) in one block

A treatment factor: 2 levels A and B, 

randomly assigned to the 2 EUs in each blocks

A response variable: categorical

2 formats of representing data
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• Q: what questions are of interest for matched pair data?

 [πij]I×I is a symmetric matrix, i.e., πij=πji?

X1 and X2 are independent, i.e., πij=πi+π+j for all i and j?

 row and column marginals are homogeneous, i.e., πi+=π+i?

 symmetry implies marginal homogeneity

(MH), but, the reverse statement not 

necessarily true (except for 2×2 table)

When row and column marginal totals are quite different, 

might be interested in whether 

πij=πi+π+jγij,   where γij=γji?
 It is called quasi-symmetry (QS)

 MH + QS ⇔ symmetry

 Q: how to interpret symmetry?

• Contingency table for matched pair data is a square matrix and

no marginal totals are fixed in advance

grand total Y++ could be random or fixed

p. 5-20
 If not independent, whether πij=ai×bj for i≠j? It is called 

quasi-independent (QI).

 Q: how to 
interpret QI?

• Tests for these hypotheses based on log-linear 
model, e.g., 

X1

X2

1 2 3

1 y11 y12 y13 y1+

2 y21 y22 y23 y2+

3 y31 y32 y33 y3+

y+1 y+2 y+3 y++

l1 l2 l3

l2 l4 l5

l3 l5 l6

Test for symmetry (H0) hypothesis:

 Generate a vector with I2 components for an

(I(I+1)/2)-level nominal factor with the structure:

 Y ~ sym-factor ≡ Ssym

 Deviance-based/Pearson X2 goodness-of-fit test for Ssym

sym-factor =

Test for QS (H0) hypothesis


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 Y ~ X1 + X2 + sym-factor ≡ Sqsym

 Deviance-based/Pearson X2 goodness-of-fit test for Sqsym

Test for MH (H0) hypothesis 

 Deviance-based test for H0: Ssym vs. H1:Sqsym\Ssym

 An indirect test using log-linear

models when Sqsym already holds

 No log-linear models that 

directly corresponds to MH

 Other approaches, see Agresti (2013), 11.3

Test for QI (H0) hypothesis

 Omit the diagonal data, i.e., let 

Y’ ~ X1 + X2 ≡ Sqindep1

 Deviance-based/Pearson X2 goodness-of-fit test for Sqindep1

 Approach 1

 Approach 2
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 Reading: Faraway (2006, 1st ed.), 4.3

l1 l0 l0

l0 l2 l0

l0 l0 l3

 Generate a vector with I2 components for an 
(I+1)-level nominal factor with the structure:

Y ~ X1 + X2 + QI-factor ≡ Sqindep2

 Deviance-based/Pearson X2

goodness-of-fit test for Sqindep2

QI-factor =

Three-Way Contingency Table
• The π’s and Y’s are defined in the 

same manner as in the 2-way table

• Poisson GLM approach to inves-

tigate how X1, X2, X3 interact

Mutual independence (X1, X2, X3 are independent)

X2

(1≤j≤J)

X1

(1≤i≤I)

X3

(1≤k≤K)

 πijk=πi++π+j+π++k


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 Y ∼ X1 + X2 + X3 ≡ S1

 The estimates of parameters in this model

correspond only to the marginal totals yi++, y+j+, and y++k

 The coding we use will deter-

mine exactly how the para-

meters relate to the margin totals, 

e.g., let β be an main effect of X1

that codes i1 and i2 categories as 

0 (reference) and 1

 Insignificant factor, say X1  π1++ = π2++ = … = πI++

 Joint independence ({X1, X2} and X3 are independent)

 πij k = πij+×π++k ⇔ πij|k= πij+

X2 X3

X1

X3=3X3=2X3=1


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Conditional independence (X1, X2 are independent given X3)

 πij|k=πi+|kπ+j|k ⇔ πijk=πi+kπ+jk/π++k

 Y ∼ X1 + X1:X3 + X3 + X2 + X2:X3 ≡ S3

 Q: can this conditional independence

imply independence between X1 and X2, 

i.e., πij+=πi++π+j+? (Ans: No. Check 

singular value decomposition in LNp.5-15)

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X3=3X3=2X3=1

 Y ∼ X1 + X2 + X1:X2 + X3 ≡ S2 (⊃ S1)



 Note that               , but X2 is jointly independent of 

{X1, X3} implies that X1, X2 are independent given X3

X3=2X3=1 X3=3

+ +

=


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Uniform association (UA)

 Consider a model with all two-factor interactions

 S4 has no simple interpretation in terms of independence
X2 X3

X1

 S4 has no simple interpretation in terms of independence

 S4 asserts that for every level of one variable, say X3, 

we have the same association between X1 and X2

Y ∼ X1 + X2 + X3 + X1:X2 + X1:X3 + X2:X3 ≡ S4 (⊃ S3)

Y ∼ X1 + X2 + X3 + X1:X2 + X1:X3 + X2:X3

 For each levels of X3, the reduced models of S4 have 

different coefficients for the main effects of X1 and X2, 

but have the same coefficients for the interaction X1:X2

 e.g., I=J=2, same fitted odds-ratio between 

X1 and X2 for each category of X3. Note that

fitted odd-ratio =

where β12k is the coefficient of the X1:X2 term (under 

a coding ∝ {+1, −1}) in the reduced model of X3=k.
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 Q: What does uniform association mean? How to interpret

the association? How does it connect with interaction terms? 

 S4 is not saturated  some degrees of 

freedoms left for goodness-of-fit test

X3=2X3=1 X3=3 X3=2X3=1 X3=3

uniform 

association 

in 2×2×K table

interaction and 

association 

(odds ratio) 

in 2×2 table

X3=2X3=1 X3=3

uniform 

association 

in I×J×K table
X3=2X3=1 X3=3

π

π

πη

η

η

A saturated model corresponds to a 3-way table with different 

association between, say X1 and X2, across K levels of X3

whereas Y ~ 1 corresponds to a 3-way table with constant πX2 X3

X1



p. 5-27 Q: how to examine whether X1, X2, X3 in a 3-way table are 

mutually independent (S1), jointly independent (S2), condition-

ally independent (S3), or uniformly associated (S4), individually? 

 Ans: Perform deviance-based/Pearson’s X2 goodness-

of-fit (GoF) tests for S1, S2, S3, S4 (as H0), respectively.

 However, be careful of zero or small yijk (rule of thumb: 20%

of cells less than 5) in the table  there will be some doubt

about the accuracy of chi-square approximation in GoF test

 The chi-square approximation is better in 

comparing models than assessing GoF

Analysis strategy: start with complex Poisson GLM (e.g., 

saturated one) and see how far the model can be reduced

(e.g., using model selection or sequential deviance-

based tests as in ANOVA to compare models).

• Binomial (or multinomial) 

GLM approach for 3-way table

 If yij+’s regarded as fixed, can treat YX3
as response and X1, X2 as covariates

X2 (j)

X1 (i)
X3 (k)
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 Q1: what information been gone? Q2: what still attainable?

 Ans for Q1: information about πij+

 Ans for Q2 : information about πk|ij

Statistical Modeling

 YX3
= Yij1 ~ binomial(yij+, πk=1 | ij) when K=2

 Q: how is a binomial GLM connected

Q: to a Poisson GLM in 3-way tables?

 YX3 
= (Yij1, …, YijK) 

~ multinomial(yij+, πk=1 | ij, …, πk=K | ij) when K > 2

 YX3
~ 1 ⇔ S2 (joint independence)

 The binomial GLM implicitly assumes an 

association between X1 and X2 (Q: why?)

X2 X3

X1



 Poisson GLM allows us to 

drop the X1:X2 term, but 

binomial GLM does not
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 Using binomial GLM loses little when we are 

interested in the relationship between the response 

X3 and the two covariates X1, X2, and not 

interested in the association between X1 and X2

 YX3
~ 1 + X1 ⇔ X2, X3 are independent given X1

 YX3
~ 1 + X1 + X2 ⇔

S4 (uniform association)

 The saturated binomial GLM, YX3
~ 1 + X1 + X2 + X1:X2, 

corresponds to a Poisson GLM for different association

• Q: Poisson or binomial GLM approach? Which to use?

Binomial if one variable is clearly identified as the response

Poisson if relationship between 3 variables is more symmetric

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

 Q: how about YX3 
~ 1 + X2?



 Q: Can we exam whether

Q: X1, X2 are independent given X3?

X3=1 (k=1)

X3=2 (k=2)

•••

p. 5-30• Correspondence analysis

• Simpson’s paradox

smoker dead alive

yes 14 95 109 (.47)

no 7 114 121 (.53)

smoker dead alive

yes 29 7 36 (.22)

no 101 28 129 (.78)

smoker dead alive

yes .13 .87 1

no .06 .94 1

smoker dead alive

yes .81 .19 1

no .78 .22 1

smoker dead alive

yes 43 102 145 (.37)

no 108 142 250 (.63)

smoker dead alive

yes .30 .70 1

no .43 .57 1

age=35-44

age=65-74

marginal 
total over 

age







Cannot directly apply to 3-way table

Can combine two of the factors, say X1 and X2, into 

a factor with I×J levels and apply correspondence analysis

on the 2-way table formed by the new factor and X3

 Q: which two factors should be chosen to merge? 

Ans: pick up the two whose association is least interesting to us

example: 

 109/145 

=.75

 121/250

=.48

X1 (i): age

X2 (j): smoker

X3 (k): dead 

or alive
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 marginal association added over X1 is different from the 

conditional association observed within each category of X1

 Q: Why it occurs? Why the table of y+jk gives a 

Q: contradictory result to the tables of yjk|i?

 Note that smoker are more 

concentrated in the younger

age group and younger people 

are more likely to live longer



?

 Note.

• Mantel-Haenszel (MH) test for 2×2×K table

Designed to test independence in 2×2 tables across K categories

p. 5-32

Recall. association of a 2×2 table can be completely 

characterized/measured by its odds-ratio ∆

■ ∆ <1 ⇔ negative association

■ ∆ =1 ⇔ independence ■ ∆ >1 ⇔ positive association

Null and alternative hypotheses of MH test 

 The test works better when the odds ratios of the K 2×2

tables do not vary greatly, e.g., the null of the GoF test for 

uniform association, ∆1=∆2=…=∆K, does not rejected

H0: ∆1 = ∆2 = … = ∆K = 1 (conditional independence)

H1: ∆1 = ∆2 = … = ∆K ≠ 1 (uniform association)

H1
*: at least one ∆k ≠ 1 (different association) or

Procedure of the MH test

 Suppose the marginal totals of each 2×2 table carry no 

information (e.g., fixed in advance) or are conditioned.

 under H0, can assume a hyper-geometric

distribution for y11k in each 2×2 table

 y11k is sufficient for testing independence of kth table
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 Reading: Faraway (2006, 1st ed.), 4.4

 MH statistic combine information of y11k’s from K tables:

where E(y11k) and Var(y11k) are calculated under the H0

 can calculate an exact p-value for smaller 

dataset using hypergeometric distribution

 useful when data is sparse, under which the χ2 approx-

 imations based on asymptotic thm is questionable

MH test is sometimes called Cochran-Mantel-Haenszel test because 

a version without the 1/2 is published earlier by Cochran (1954). 

Ordinal Variables

• Some variables have a nature ordering

between categories

e.g., education: HS, BA, MA; 

political ideology: VL, SL, M, SC, VC

p. 5-34

 But, more information can be extracted by 

taking advantage of the ordinal structure 

For ordinal variables, can use the methods for nominal variable

The ordinal structure not matter when # of categories = 2

Treatments for ordinal response (future 

lecture) and ordinal covariates are different

• Treatment for ordinal predictors: assign each category a score

 It kind of turns an ordinal variable into a continuous variable

The choice of scores requires some judgment

 If no particular preference, even spacing

allows for the simplest interpretation

 For interval scales, midpoints of the intervals are often used

Should check whether the inference is robust to different 

assignments of scores

 If qualitative conclusions are changed, this is an indication

that you cannot make any strong finding based on scores

• Poisson GLM with linear-by-linear association for 2-way tables:

Consider table with ordinal row (X1) and column (X2) variables
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Some notes about γ:

 assign scores u1 ≤ u2 ≤ … ≤ uI to rows, denoted by u(X1)

 assign scores v1 ≤ v2 ≤ … ≤ vJ to columns, denoted by v(X2)

Linear-by-linear association model:

where ui’s, vj’s are known scores, 

and γ is an unknown parameter

 values of γ represents the amount of association

 γ=0 ⇔ independence 

 Interpretation of γ by log-odds-ratio:

 positive and negative γ

 for evenly spaced scores, these log-odds-ratios are equal

 called uniform association in Goodman (1979)

 Y ~ X1 + X2 + u(X1)v(X2) ≡ SO×O

p. 5-36
 Latent (continuous) variable Z motivation for γ: 

 Assume πij’s are obtained by putting 

a grid on an approximately bi-variate

Normal (Z1, Z2) for latent variables

and ui’s and vj’s are cutpoints

 γ can then be identified with the 

correlation coefficient ρ of the latent 

variables (cf., positive and negative ρ)

 Q: for the tests of independence or goodness-

of-fit, what is the benefit of using SO×O over 

the nominal approach, i.e., fitting a nominal-

by-nominal model SN×N: Y ~ X1+X2+X1:X2? 

As shown in a lab example, 

 the O×O interaction effect reduces a deviance of 

10.175 on one degrees of freedom, i.e., the other 35

interaction effects only reduce a deviance of 30.568

 in the N×N approach, interaction effects reduce a 

deviance of 40.743 on 36 degrees of freedom, but



p. 5-37• Ordinal-by-nominal model (or nominal-by-ordinal model)

where ui’s, i=1,…, I, are known scores, and 

Rows (or columns) assigned scores, but column

(or row) variable treated as a nominal variable 

called column (or row) effects model because the columns (or 

rows) are not assigned scores; instead, their effects are estimated

 alternative viewpoint: the scores of the ordinal

columns (or rows) regarded as parameters

Column effects model: 

γj’s, j=1,…, J, are unknown parameters (over-

parameterized; only requires J−1 parameters), 

Some notes about γj’s, called the column effects:

 Y ~ X1 + X2 + u(X1):X2 ≡ SO×N (⊃ SO×O)

p. 5-38

• Some advantages of using scores for ordinal variables

 Reading: Faraway (2006, 1st ed.), 4.5

 We can use the estimates of γj’s in SO×N (1) to 

examine whether the chosen scores for columns in 

SO×O (i.e., vj’s) are appropriate, or (2) to possibly 

suggest better scores (see an example in lab)

helpful in reducing the complexity of models

for categorical data with ordinal variables

especially useful in higher dimensional table

where a reduction in the # of parameters is particularly welcome

can also sharpen our ability to detect associations

 For ordinal column variable, if the model SO×O were a 

good fit, we would expect the estimates of the γj’s in 

SO×N to be roughly proportional to vj’s (e.g., for evenly 

spaced vj’s, estimates of γj’s should follow a linear trend)

 Equality of the γj’s (then, ui×γj=ui×γ) corresponds to 

the hypothesis of independence between X1 and X2


