

Two-way Contingency Table

- Two cross-classified categorical variables X_1 and X_2 population

➤ X_1 has I categories, denoted by $i = 1, 2, \dots, I$

➤ X_2 has J categories, denoted by $j = 1, 2, \dots, J$

- Classifications of subjects in some *population* on X_1 and X_2 have IJ possible combinations.

Define the population parameters:

➤ $\pi_{i,j}$ = the proportion of the subjects in the population with $X_1=i$ and $X_2=j$

- arrange π_{ij} 's in the cells of a rectangular table having I rows for categories of X_1 and J columns for categories of X_2 to display the population distribution

<u>X_1</u>	<u>1</u>	<u>\dots</u>	<u>J</u>	<u>π_{1+}</u>
<u>1</u>	π_{11}	\dots	<u>π_{1J}</u>	π_{1+}
\dots	\dots	\dots	\dots	\dots
<u>I</u>	π_{I1}	\dots	<u>π_{IJ}</u>	π_{I+}
	π_{+1}	\dots	π_{+J}	$\pi_{++} = 1$

➤ $\underline{\pi_{i+}} \equiv \sum_{j=1}^J \pi_{i,j}$ and $\underline{\pi_{+j}} \equiv \sum_{i=1}^I \pi_{i,j} \Rightarrow \underline{\text{marginal proportion}}$

$$\cancel{\cancel{\pi_{++}}} \equiv \sum_{i=1}^I \sum_{j=1}^J \cancel{\pi_{ij}} = \sum_{i=1}^I \cancel{\pi_{i+}} = \sum_{j=1}^J \cancel{\pi_{+j}} = 1$$

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

➤ $\pi_{i|j} \equiv \frac{\pi_{i,j}}{\pi_{+,j}}$ and $\pi_{j|i} \equiv \frac{\pi_{i,j}}{\pi_{i,+}}$ ⇒ conditional proportion p. 5

$$\Rightarrow \sum_{i=1}^I \pi_{i|\underline{j}} = 1, \forall \underline{j} \text{ and } \sum_{j=1}^J \pi_{\underline{j}|i} = 1, \forall i$$

- Q: For the population, what questions might be of interest?

► $\pi_{1+} = \dots = \pi_{I+}$? or $\pi_{+1} = \dots = \pi_{+J}$?

- Are X_1 and X_2 observed from a randomly sampled subject independent, i.e., does X_1 affect X_2 and vice versa?

If X_1 and X_2 are independent, then

$$\blacksquare \pi_{\underline{i}\underline{j}} = \underline{P}(\underline{X}_1 = \underline{i}, \underline{X}_2 = \underline{j}) = \underline{P}(\underline{X}_1 = \underline{i}) \underline{P}(\underline{X}_2 = \underline{j}) = \pi_{\underline{i}+} \pi_{+ \underline{j}}$$

$$\blacksquare \overline{\pi_{i|j}} = \underline{P}(\underline{X_1} = i | \underline{X_2} = j) = \underline{P}(\underline{X_1} = i) = \overline{\pi_{i+}}, \forall j$$

$$\overline{\pi_j|_i} = \underline{P}(X_2 = j | X_1 = i) = \underline{P}(X_2 = j) = \overline{\pi_{+j}}, \forall i$$

$$\pi_{11} \vdash \cdots \vdash \pi_{1J} = \pi_{21} \vdash \cdots \vdash \pi_{2J} = \cdots = \pi_{I1} \vdash \cdots \vdash \pi_{IJ}$$

$$\pi_{\underline{1}1} \dot{=} \cdots \dot{=} \pi_{\underline{I}1} = \pi_{\underline{1}2} \dot{=} \cdots \dot{=} \pi_{\underline{I}2} = \cdots = \pi_{\underline{1}J} \dot{=} \cdots \dot{=} \pi_{\underline{I}J}$$

- For 2×2 table, odd ratio

$$\Delta = \frac{\pi_{11}/\pi_{12}}{\pi_{21}/\pi_{22}} = \frac{\pi_{11}/\pi_{21}}{\pi_{12}/\pi_{22}} = \frac{\pi_{11} \times \pi_{22}}{\pi_{12} \times \pi_{21}} = 1$$

$$\begin{array}{|c|c|} \hline \pi_{11} & \pi_{12} \\ \hline \pi_{21} & \pi_{22} \\ \hline \end{array}$$

For $I \times J$ table and any $1 \leq i < I$ and $1 \leq j < J$,

p. 5-3

$$\Delta_{ij} = \frac{\pi_{ij} \times \pi_{Ij}}{\pi_{iJ} \times \pi_{Ij}} = 1$$

π_{ij}	π_{iJ}
π_{Ij}	π_{IJ}

- For a sample drawn from the population, let

➤ y_{ij} = total number of subjects in the sample with $X_1=i$ and $X_2=j$

➤ marginal totals (row totals or column totals)

$$y_{i+} \equiv \sum_{j=1}^J y_{ij} \text{ and } y_{+j} \equiv \sum_{i=1}^I y_{ij}$$

$$\text{➤ } \text{grand total } y_{++} \equiv \sum_{i=1}^I \sum_{j=1}^J y_{ij} = \sum_{i=1}^I y_{i+} = \sum_{j=1}^J y_{+j}$$

- When the cells of the rectangular table contain

y_{ij} 's, it is called a $I \times J$ contingency table

- The above treatments for π 's and y 's can be generalized to more than two categorical variables

- Q: how to model the data (i.e., what's the joint distribution of y_{ij} 's)?

➤ The statistical modeling of the data depends on the sampling schemes.

X_1	X_2		
1	y_{11}	y_{1J}	y_{1+}
\dots	\dots	\dots	\dots
I	y_{I1}	y_{IJ}	y_{I+}
$\underline{y_{+1}}$	\dots	\dots	$\underline{y_{+J}}$
			y_{++}

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

➤ consider an example of wafer data:

➤ Consider the sampling schemes

1. Observe the manufacturing process for a certain period of time

2. Decide to sample 450 wafers

3. Decide to sample 400 wafers without particles and 50 wafers with particles

4. Scheme 3 and the 450 wafers must also include, by design, 334 good wafers and 116 bad ones

▪ Note 1: the first three schemes are all plausible

▪ Note 2: scheme 4 seems less likely in this example; such a scheme is more attractive when one level of each variable is relatively rare and we choose to over-sample both levels to ensure some representation

- Scheme 1

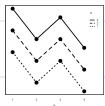
➤ Model: y : fixed; Y : random; red square: free

Qua- lity	No Particles	Particles	
Good	320	14	334
Bad	80	36	116
	400	50	450

X_1	X_2		
1	Y_{11}	Y_{12}	Y_{1+}
2	Y_{21}	Y_{22}	Y_{2+}
	Y_{+1}	Y_{+2}	Y_{++}

- Response: $\underline{Y}_{ij} \sim \text{Poisson}(\underline{\mu}_{ij})$, $i=1, 2$; $j=1, 2$
- For a random sample, can assume $\underline{\mu}_{ij} = \underline{t} \times \underline{\pi}_{ij}$, where \underline{t} is an unknown value of a size variable

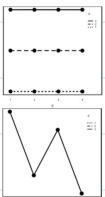
- $\underline{X}_1 (=i)$ and $\underline{X}_2 (=j)$ are covariates



➤ Suppose the data (from an $I \times J$ table) is fitted with a Poisson GLM with log link

- When $\underline{\pi}_{ij} = \underline{\pi}_{i+} \underline{\pi}_{+j}$ (\underline{X}_1 and \underline{X}_2 independent),

$$\begin{aligned}\underline{\eta}_{ij} = \underline{\log}(\underline{\mu}_{ij}) &= \underline{\log}(\underline{t} \underline{\pi}_{ij}) = \underline{\log}(\underline{t} \underline{\pi}_{i+} \underline{\pi}_{+j}) \\ &= \underline{\log}(\underline{t}) + \underline{\log}(\underline{\pi}_{i+}) + \underline{\log}(\underline{\pi}_{+j})\end{aligned}$$



⇒ corresponds to a main-effect model, i.e., $\underline{Y}_{ij} \sim \underline{X}_1 + \underline{X}_2 \equiv \underline{S}$

- When $\underline{\pi}_{ij} = \underline{\pi}_{i+} \underline{\pi}_{+j}$ and $\underline{\pi}_{1+} = \dots = \underline{\pi}_{I+}$ (or $\underline{\pi}_{+1} = \dots = \underline{\pi}_{+J}$)

$$\underline{\eta}_{ij} = \underline{\log}(\underline{t}) + \underline{\log}(\underline{\pi}_{+j}) \quad (\text{or } \underline{\eta}_{ij} = \underline{\log}(\underline{t}) + \underline{\log}(\underline{\pi}_{i+}))$$

⇒ corresponds to the model $\underline{Y}_{ij} \sim \underline{X}_2$ (or $\underline{Y}_{ij} \sim \underline{X}_1$)

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- When $\underline{\pi}_{ij} \neq \underline{\pi}_{i+} \underline{\pi}_{+j}$ (\underline{X}_1 and \underline{X}_2 not independent)

⇒ add interaction $\underline{X}_1 : \underline{X}_2$

⇒ may consider $\underline{Y}_{ij} \sim \underline{X}_1 + \underline{X}_2 + \underline{X}_1 : \underline{X}_2 \equiv \underline{L}$ (saturated model)

- **Q:** what type of $\underline{\pi}$'s corresponds to the following models?

$$\underline{Y}_{ij} \sim 1 \quad \underline{Y}_{ij} \sim \underline{X}_1 + \underline{X}_1 : \underline{X}_2 \quad \underline{Y}_{ij} \sim \underline{X}_2 + \underline{X}_1 : \underline{X}_2$$

➤ Recall. For a Poisson GLM with log link, $\underline{X}^T \underline{Y} = \underline{X}^T \hat{\underline{\mu}}$

For models without interactions,

⇒ $\underline{X}^T \underline{Y}$ is only related to marginal totals

⇒ the fitted values $\hat{\underline{\mu}}$ is a function of marginal totals

⇒ for example, for main-effect model $\underline{Y}_{ij} \sim \underline{X}_1 + \underline{X}_2$

$$\hat{\underline{\mu}}_{ij} = \underline{Y}_{++} \underline{\pi}_{i+} \underline{\pi}_{+j} = \underline{Y}_{i+} \underline{Y}_{+j} / \underline{Y}_{++}$$

➤ To test whether $\underline{\pi}_{ij} = \underline{\pi}_{i+} \underline{\pi}_{+j}$ (H_0) $\Rightarrow H_0: \underline{S}$ vs. $H_1: \underline{L} \setminus \underline{S}$

- Deviance based: $\underline{D}_S - \underline{D}_L \stackrel{a}{\sim} \chi^2_{(I-1)(J-1)}$

- Pearson's \underline{X}^2 (goodness-of-fit measure) under \underline{S} :

$$\underline{X}_S^2 = \sum_{ij} \frac{(\underline{Y}_{ij} - \hat{\mu}_{ij})^2}{\hat{\mu}_{ij}} = \sum_{ij} \frac{(\underline{O}_{ij} - \underline{E}_{ij})^2}{\underline{E}_{ij}} \stackrel{a}{\approx} \chi^2_{(I-1)(J-1)}$$

- Yate's continuity correction:

- Subtracts 0.5 from $\underline{Y}_{ij} - \hat{\mu}_{ij}$ when it is positive

- Add 0.5 to $\underline{Y}_{ij} - \hat{\mu}_{ij}$ when it is negative

this give superior results for small samples

- To test $\underline{H}_0: \underline{\pi}_{1+} = \cdots = \underline{\pi}_{I+}$ (or $\underline{\pi}_{+1} = \cdots = \underline{\pi}_{+J}$),

compare models \underline{S}^* and \underline{L}^* ($\underline{H}_0: \underline{S}^*$ vs. $\underline{H}_1: \underline{L}^* \setminus \underline{S}^*$), where

$$\underline{S}^*: \underline{Y}_{ij} \sim \underline{X}_2 + \underline{X}_1 : \underline{X}_2 \text{ and } \underline{L}^*: \underline{Y}_{ij} \sim \underline{X}_1 + \underline{X}_2 + \underline{X}_1 : \underline{X}_2$$

$$\underline{S}^*: \underline{Y}_{ij} \sim \underline{X}_1 : \underline{X}_2 \text{ and } \underline{L}^*: \underline{Y}_{ij} \sim \underline{X}_1 + \underline{X}_1 : \underline{X}_2$$

$$\underline{S}^*: \underline{Y}_{ij} \sim \underline{X}_2 \text{ and } \underline{L}^*: \underline{Y}_{ij} \sim \underline{X}_1 + \underline{X}_2$$

$$\underline{S}^*: \underline{Y}_{ij} \sim 1 \text{ and } \underline{L}^*: \underline{Y}_{ij} \sim \underline{X}_1$$

- Deviance-based test: $\underline{D}_{S^*} - \underline{D}_{L^*} \stackrel{a}{\approx} \chi^2_{df_{S^*} - df_{L^*}}$

- Can be generalized to \underline{X}_1 with I levels and \underline{X}_2 with J levels

NTHU STAT 5230, 2025, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

- Scheme 2:

- Model: for a random sample, we can assume

$$(\underline{Y}_{11}, \underline{Y}_{12}, \underline{Y}_{21}, \underline{Y}_{22})$$

$$\sim \text{multinomial}(\underline{y}_{++}, \underline{\pi}_{11}, \underline{\pi}_{12}, \underline{\pi}_{21}, \underline{\pi}_{22})$$

where π_{ij} ($i=1, 2; j=1, 2$) is linked to \underline{X}_1 and \underline{X}_2 according to the model we choose

		\underline{X}_2		\underline{Y}_{++}
		1	2	
\underline{X}_1	1	\underline{Y}_{11}	\underline{Y}_{12}	
	2	\underline{Y}_{21}	\underline{Y}_{22}	\underline{Y}_{++}
		\underline{Y}_{+1}	\underline{Y}_{+2}	\underline{y}_{++}

- Connection between Poisson and multinomial:

Let $\underline{Y}_i \sim \text{Poisson}(\lambda_i)$, $i=1, \dots, k$, and independent,

$$(\underline{Y}_1, \dots, \underline{Y}_k | \sum_i \underline{Y}_i = n) \sim \text{multinomial}(n, \lambda_1 / \sum_i \lambda_i, \dots, \lambda_k / \sum_i \lambda_i)$$

⇒ the parameter t (value of size variable) in

Poisson is removed, but π_{ij} 's are not affected

⇒ would expect there is a lot of similarity between the inferences for Poisson and multinomial models

- Log-likelihood of the multinomial:

$$\log(\mathcal{L}) \propto \sum_{ij} \underline{Y}_{ij} \log(\underline{\pi}_{ij})$$

(cf., log-likelihood for Poisson $\propto \sum_{ij} \underline{Y}_{ij} \log(\underline{\mu}_{ij}) - \underline{\mu}_{ij}$)

► The inferences in the multinomial model would coincide with that in Poisson model, i.e.,

- same estimates (MLE)
- same test statistics and p-values

The Poisson model is easier to execute in R, so we can fit a Poisson GLM for data from a multinomial sampling scheme

► Can be generalized to $I \times J$ table in the same manner

• Scheme 3:

► Model: for a random sample, can assume

$$Y_{1j} \sim \text{binomial}(y_{+j}, \pi_{i=1|j} = \pi_{1j}/\pi_{+j}), j=1, 2$$

where $\pi_{i=1|j}$ is linked to the covariate $X_2 (=j)$ only according to the model we choose

		X_2		
		1	2	
X_1	1	Y_{11}	Y_{12}	Y_{1+}
	2	Y_{21}	Y_{22}	Y_{2+}
y_{+1}	y_{+2}	y_{+1}	y_{+2}	y_{++}

► Q: compared to schemes 1 and 2, what information has been gone/questionable in this scheme?

► Suppose fit the data with a Binomial GLM with logit link:

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- When $\pi_{ij} = \pi_{i+} \pi_{+j}$ (X_1 and X_2 independent),

$$\text{logit}(\pi_{i=1|j}) = \log \left[(\pi_{1j}/\pi_{+j}) / (\pi_{2j}/\pi_{+j}) \right]$$

$$= \log \left[(\pi_{1+} \pi_{+j}) / (\pi_{2+} \pi_{+j}) \right] = \log \left(\pi_{1+} / \pi_{2+} \right)$$

⇒ corresponds to a constant-effect model, i.e., $Y_{1j} \sim 1 \equiv S$

- When $\pi_{ij} \neq \pi_{i+} \pi_{+j}$ (X_1 and X_2 not independent)

⇒ $Y_{1j} \sim X_2 \equiv L$ (saturated model)

► To test whether $\pi_{ij} = \pi_{i+} \pi_{+j}$ (H_0) ⇒ $H_0: S$ vs. $H_1: L \setminus S$

- Deviance based: $D_S - D_L = D_S$

- Perason X^2 under S

► Can be generalized to X_2 with J

(>2) levels in the same manner

► For the case that X_1 has $I (>2)$ levels

$$(Y_{1j}, \dots, Y_{Ij}) \sim \text{multinomial}(y_{+j}, \pi_{i=1|j}, \dots, \pi_{i=I|j}), j=1, \dots, J$$

⇒ called product multinomial model (cf., unrestricted multinomial model in scheme 2)

• Scheme 4:

➤ Model: if $\pi_{ij} = \pi_{i+}\pi_{+j}$ (H_0), for a random sample,

$\underline{Y}_{11} \sim \text{hypergeometric}(\underline{y}_{1+}, \underline{y}_{+1}, \underline{y}_{++})$, i.e.,

$$P(\underline{Y}_{11} = \underline{y}_{11}) = \binom{\underline{y}_{+1}}{\underline{y}_{11}} \binom{\underline{y}_{++}}{\underline{y}_{12}} / \binom{\underline{y}_{++}}{\underline{y}_{1+}}$$

$$\underline{y}_{11} \leq \min\{\underline{y}_{+1}, \underline{y}_{1+}\}$$

$$= \frac{\underline{y}_{+1}! \underline{y}_{2+}! \underline{y}_{+1}! \underline{y}_{+2}!}{\underline{y}_{11}! \underline{y}_{12}! \underline{y}_{21}! \underline{y}_{22}! \underline{y}_{++}!}$$

		\underline{X}_2
\underline{X}_1	1	2
1	\underline{Y}_{11}	\underline{Y}_{12}
2	\underline{Y}_{21}	\underline{Y}_{22}
	\underline{y}_{+1}	\underline{y}_{+2}
		\underline{y}_{++}

▪ Under Scheme 3 and H_0 , the joint pmf of $(\underline{Y}_{11}, \underline{Y}_{12}, \underline{Y}_{21}, \underline{Y}_{22})$ is:

$$\begin{aligned} & \binom{\underline{y}_{+1}}{\underline{y}_{11}} \pi_{1|1}^{\underline{y}_{11}} \pi_{2|1}^{\underline{y}_{21}} \times \binom{\underline{y}_{+2}}{\underline{y}_{12}} \pi_{1|2}^{\underline{y}_{12}} \pi_{2|2}^{\underline{y}_{22}} \\ &= \frac{\underline{y}_{+1}! \underline{y}_{+2}!}{\underline{y}_{11}! \underline{y}_{21}! \underline{y}_{12}! \underline{y}_{22}!} \pi_{1+}^{\underline{y}_{11} + \underline{y}_{12}} \pi_{2+}^{\underline{y}_{21} + \underline{y}_{22}} \end{aligned}$$

▪ Under Scheme 3 and H_0 , the sufficient statistics of π_{1+} and π_{2+} are \underline{Y}_{1+} and \underline{Y}_{2+} , respectively, and their joint pmf is:

$$\frac{\underline{y}_{++}!}{\underline{y}_{1+}! \underline{y}_{2+}!} \pi_{1+}^{\underline{y}_{1+}} \pi_{2+}^{\underline{y}_{2+}}$$

➤ When $\pi_{ij} \neq \pi_{i+}\pi_{+j}$ (H_1), the probability a black ball is drawn is different from the probability a white ball is drawn

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

➤ To test whether $\pi_{ij} = \pi_{i+}\pi_{+j}$ (Fisher's exact test)

▪ Because \underline{Y}_{11} can only take a limited number of values, can compute the probability of all these outcomes under H_0
 \Rightarrow can compute the total probability (p-value) of all outcomes that are more extreme than the one observed

▪ Q: what outcomes are more extreme? Some options:

▫ The outcomes with probability $\leq P(\underline{Y}_{11} = \underline{y}_{11})$

▫ Outcomes \underline{y}_{11}' s.t. $|\underline{y}_{11}' - E(\underline{Y}_{11})| \geq |\underline{y}_{11} - E(\underline{Y}_{11})|$

▫ Others (see Agresti, 2013, 3.5)

➤ Generalization to $I \times J$ table for testing $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}$

\Rightarrow use multiple hypergeometric as null distribution, whose probability mass function is:

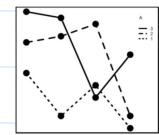
$$(\prod_i \underline{y}_{i+}!) (\prod_j \underline{y}_{+j}!) / (\underline{y}_{++}! \times \prod_{ij} \underline{y}_{ij}!)$$

➤ Some notes:

▪ The situation that both marginal totals are fixed is rather less common in practical sampling applications

- It can arise when classifying objects into one of 2 types when the true proportions of each type are known
 - ▣ Example: the lady tasting tea
- It suggests a more accurate test for independence
 - ▣ Fisher's exact test is attractive because the null distribution for deviance-based and Pearson's χ^2 test statistics is only approximately χ^2 distributed.
 - ▣ For tables with small counts, this χ^2 approximation is suspicious, which makes the exact method valuable.
 - ▣ Fisher's exact test becomes more difficult to compute for larger tables. However, the χ^2 approximation will tend to be accurate for larger tables.

❖ Reading: Faraway (2006, 1st ed.), 4.1, 4.2



Correspondence Analysis (CA)

- Q: when independence of a 2-way contingency table is rejected, how to know where the dependence is coming from?
 - Interaction terms in a Poisson GLM contain dependence information; however, interpretation of them could be difficult.

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- CA: a visual residual analysis for contingency table
- Singular value decomposition
 - $R = [R_{ij}]$: an $r \times c$ matrix. W.l.o.g, assume $r \geq c$ and $\text{rank}(R) = c$, then

$$R = U_{r \times c} D_{c \times c} V_{c \times c}^T = \sum_k d_k U_k V_k^T$$
, i.e.,

$$R_{ij} = \sum_{k=1}^c U_{i,k} d_k V_{j,k}$$
, where
 - $U = [U_{ij}] = [U_1, \dots, U_c]$: an $r \times c$ column orthonormal matrix, i.e., $U^T U = I_{c \times c}$; its columns are called left singular vectors
 - $V = [V_{ij}] = [V_1, \dots, V_c]$: a $c \times c$ column orthonormal matrix, i.e., $V^T V = I_{c \times c}$; its columns called right singular vectors
 - $D = \text{diag}(d_1, \dots, d_c)$, $d_1 \geq \dots \geq d_c > 0$, called singular values
- Some properties
 - Columns of $U_{r \times c}$ are eigenvectors of $(RR^T)_{r \times r}$
 - Columns of $V_{c \times c}$ are eigenvectors of $(R^T R)_{c \times c}$
 - $\{d_1^2, \dots, d_c^2\}$ are eigenvalues of RR^T and $R^T R$
- Procedure of correspondence analysis on Pearson residuals

a) Fit a GLM corresponding to independence on the contingency table and compute its Pearson residuals, r_P 's (Q: what information contained in the r_P 's?)

b) Write r_P 's in the matrix form $[R_{ij}] \equiv R_{r \times c}$ as in contingency table

c) Perform the singular value decomposition on $R = UDV^T$

d) It is common for the first few singular values of R to be much larger than the rest. Suppose that the first 2 dominate. Then,

- $$\begin{aligned}
 R_{ij} &\approx U_{i1} \underline{d_1} V_{j1} + U_{i2} \underline{d_2} V_{j2} \\
 &= (\underline{U_{i1}} \sqrt{\underline{d_1}}) (\underline{V_{j1}} \sqrt{\underline{d_1}}) + (\underline{U_{i2}} \sqrt{\underline{d_2}}) (\underline{V_{j2}} \sqrt{\underline{d_2}}) \\
 &\equiv U'_{i1} V'_{j1} + U'_{i2} V'_{j2}
 \end{aligned}$$

- $$R \approx \begin{matrix} & \boxed{V'_{11} \dots V'_{j1} \dots V'_{c1}} & & \boxed{V'_{12} \dots V'_{j2} \dots V'_{c2}} & \\ \boxed{U'_{11}} & \begin{matrix} 1 & \dots & j & \dots & c \end{matrix} & + & \begin{matrix} 1 & \dots & j & \dots & c \end{matrix} & \\ \dots & \dots & \dots & \dots & \dots & \\ \boxed{U'_{i1}} & \begin{matrix} i & \dots & U'_{i1}V'_{11} & \dots & U'_{i1}V'_{j1} & \dots & U'_{i1}V'_{c1} \end{matrix} & + & \begin{matrix} i & \dots & U'_{i2}V'_{12} & \dots & U'_{i2}V'_{j2} & \dots & U'_{i2}V'_{c2} \end{matrix} & \\ \dots & \\ \boxed{U'_{r1}} & \begin{matrix} r & \dots & U'_{r1}V'_{11} & \dots & U'_{r1}V'_{j1} & \dots & U'_{r1}V'_{c1} \end{matrix} & & \begin{matrix} r & \dots & U'_{r2}V'_{12} & \dots & U'_{r2}V'_{j2} & \dots & U'_{r2}V'_{c2} \end{matrix} & \end{matrix}$$

NTHU STAT 5230, 2025, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

- $$R \approx U'_{11} V'_{11}^T + U'_{12} V'_{12}^T, \text{ where for } k = 1, 2,$$

$$U'_k = (U'_{1k}, \dots, U'_{rk})^T \text{ and } V'_k = (V'_{1k}, \dots, V'_{ck})^T.$$

e) The 2-dimensional correspondence plot displays

U'_{i2} vs. U'_{i1} and V'_{j2} vs. V'_{j1} on same graph

(Note: because the distance between points will be of interest, it is important that the plot is scaled so that the visual distance is proportionately correct)

- Some notes:

➤ Q: what does a large positive R_{ij} mean? a large negative R_{ij} ?

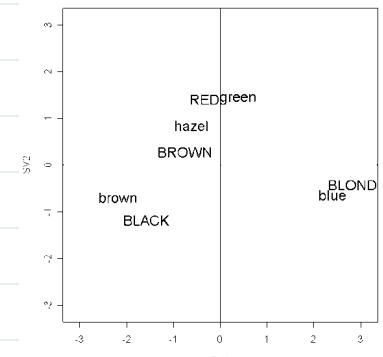
➤ $\sum_k d_k^2 = \text{Pearson's } X^2$, because $\sum_{ij} r_P^2 = \text{trace}(R^T R) = \sum_k d_k^2$

(Q: What does a large $\sum_k d_k^2$ indicate?)

- Q: what should we look for in a correspondence plot?

➤ Large values in $|U'_k|$ (and $|V'_k|$)

- the profiles of the rows (or the columns) corresp. to the large values are different from the marginal dist.



- e.g.: BLOND hair \Rightarrow the distribution of eye colors within this group is not typical
- e.g.: BROWN hair \Rightarrow the distribution of eye colors within this group close to the marginal distribution of columns
- Row and column levels close together and far from the origin
 - a large positive R_{ij} would be associated with the combination
 - e.g.: BLOND hair \leftrightarrow blue eye \Rightarrow strong association
- Row and column levels situate apart on either side of the origin
 - a large negative R_{ij} would be associated with the combination
 - e.g.: BLOND hair \leftrightarrow brown eye \Rightarrow relatively fewer people
- Points of two row (or two column) levels are close together
 - The two rows/columns have a similar pattern of association
 \Rightarrow might consider to combine the two categories
 - e.g.: hazel eye \leftrightarrow green eye \Rightarrow similar hair color distribution

- Other versions of CA: see Venables and Ripley (2002, corresp in the MASS package of R), or Blasius and Greenacre (1998)

❖ Reading: Faraway (2006, 1st ed.), 4.2

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

Matched Pairs Design (MPD)

- Design

- A block factor: y_{++} levels, each level represents a block, each block of size 2, i.e., 2 experimental units (EUs) in one block
- A treatment factor: 2 levels A and B , randomly assigned to the 2 EUs in each blocks
- A response variable: categorical
- 2 formats of representing data
- Comparison 1: MPD \leftrightarrow MCCD
- Comparison 2: MPD \leftrightarrow Paired sample t -test

- Data for contingency table: observe one type of categorical measure on two matched objects (EUs)

- In contrast, in the typical 2-way contingency table, observe two (different) types of categorical measures (X_1 and X_2) on one object

- e.g., left (X_1) and right (X_2) eye performance of a person

X_1	X_2	I
1	π_{11}	π_{1I}
I	π_{I1}	π_{II}
	π_{+1}	π_{+I}
		1

- Contingency table for matched pair data is a square matrix and
 - no marginal totals are fixed in advance
 - grand total Y_{++} could be random or fixed
- **Q:** what questions are of interest for matched pair data?
 - row and column marginals are homogeneous, i.e., $\underline{\pi}_{i+} = \underline{\pi}_{+i}$?
 - $[\underline{\pi}_{ij}]_{I \times I}$ is a symmetric matrix, i.e., $\underline{\pi}_{ij} = \underline{\pi}_{ji}$
 - symmetry implies marginal homogeneity (MH), but, the reverse statement not necessarily true (except for 2×2 table)
 - **Q:** how to interpret symmetry?

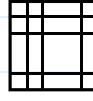
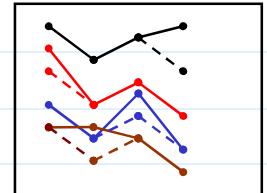
- When row and column marginal totals are quite different, might be interested in whether

$$\underline{\pi}_{ij} = \underline{\pi}_{i+} \underline{\pi}_{+j} \underline{\gamma}_{ij}, \text{ where } \underline{\gamma}_{ij} = \underline{\gamma}_{ji}$$

- It is called quasi-symmetry (QS)
- MH + QS \Leftrightarrow symmetry
- X_1 and X_2 are independent, i.e., $\underline{\pi}_{ij} = \underline{\pi}_{i+} \underline{\pi}_{+j}$ for all i and j ?

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- If not independent, whether $\underline{\pi}_{ij} = \underline{a}_i \times \underline{b}_j$ for $i \neq j$? It is called quasi-independent (QI).
- **Q:** how to interpret QI?



- Tests for these hypotheses based on log-linear model, e.g.,

$$\underline{Y} = (y_{11}, y_{21}, y_{31}, y_{12}, y_{22}, y_{32}, y_{13}, y_{23}, y_{33})^T$$

X_1	X_2			
	1	2	3	
1	y_{11}	y_{12}	y_{13}	y_{1+}
2	y_{21}	y_{22}	y_{23}	y_{2+}
3	y_{31}	y_{32}	y_{33}	y_{3+}
	y_{+1}	y_{+2}	y_{+3}	y_{++}

- Test for symmetry (H_0) hypothesis:

- Generate a vector with I^2 components for an $(I(I+1)/2)$ -level nominal factor with the structure:
 $\text{sym-factor} = (l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8)^T$

l_1	l_2	l_3
l_2	l_4	l_5
l_3	l_5	l_6

- $\underline{Y} \sim \text{sym-factor} \equiv S_{\text{sym}}$

- Deviance-based/Pearson X^2 goodness-of-fit test for S_{sym}

- Test for QS (H_0) hypothesis

- $\underline{\log(\pi_{ij})} = \underline{\log(\pi_{i+} \pi_{+j} \gamma_{ij})} = \underline{\log(\pi_{i+})} + \underline{\log(\pi_{+j})} + \underline{\log(\gamma_{ij})}$

- $\underline{Y} \sim \underline{X}_1 + \underline{X}_2 + \text{sym-factor} \equiv \underline{S}_{\text{qsym}}$

- Deviance-based/Pearson χ^2 goodness-of-fit test for $\underline{S}_{\text{qsym}}$

➤ Test for MH (H_0) hypothesis

- No log-linear models that directly corresponds to MH

- An indirect test using log-linear models **when $\underline{S}_{\text{qsym}}$ already holds**

- Deviance-based test for $H_0: \underline{S}_{\text{sym}}$ vs. $H_1: \underline{S}_{\text{qsym}} \setminus \underline{S}_{\text{sym}}$

- Other approaches, see Agresti (2013), 11.3

➤ Test for QI (H_0) hypothesis

- Approach 1

- Omit the diagonal data, i.e., let

$$\underline{Y}' = (y_{2\underline{1}}, y_{3\underline{1}}, y_{\underline{1}2}, y_{3\underline{2}}, y_{\underline{1}3}, y_{\underline{2}3})^T$$

- $\underline{Y}' \sim \underline{X}_1 + \underline{X}_2 \equiv \underline{S}_{\text{qindep1}}$

- Deviance-based/Pearson χ^2 goodness-of-fit test for $\underline{S}_{\text{qindep1}}$

- Approach 2

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- Generate a vector with I^2 components for an $(I+1)$ -level nominal factor with the structure:

l_1	l_0	l_0
l_0	l_2	l_0
l_0	l_0	l_3

$$\text{QI-factor} = (l_1, l_0, l_0, l_0, l_2, l_0, l_0, l_0, l_3)^T$$

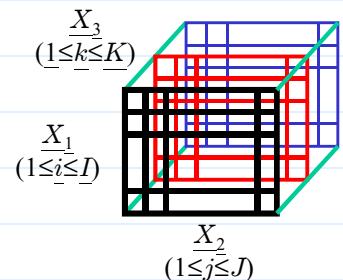
- $\underline{Y} \sim \underline{X}_1 + \underline{X}_2 + \text{QI-factor} \equiv \underline{S}_{\text{qindep2}}$

- Deviance-based/Pearson χ^2 goodness-of-fit test for $\underline{S}_{\text{qindep2}}$

❖ Reading: Faraway (2006, 1st ed.), 4.3

Three-Way Contingency Table

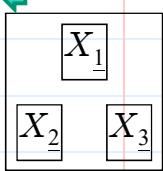
- The π 's and Y 's are defined in the same manner as in the 2-way table
- Poisson GLM approach to investigate how $\underline{X}_1, \underline{X}_2, \underline{X}_3$ interact



➤ Mutual independence ($\underline{X}_1, \underline{X}_2, \underline{X}_3$ are independent)

- $\pi_{ijk} = \pi_{i++} \pi_{+j+} \pi_{++k}$

- $\log(\pi_{ijk}) = \log(\pi_{i++} \pi_{+j+} \pi_{++k}) = \log(\pi_{i++}) + \log(\pi_{+j+}) + \log(\pi_{++k})$



- $Y \sim \underline{X_1} + \underline{X_2} + \underline{X_3} \equiv \underline{S_1}$

- The estimates of parameters in this model correspond only to the marginal totals $\underline{y_{i++}}$, $\underline{y_{+j+}}$, and $\underline{y_{++k}}$

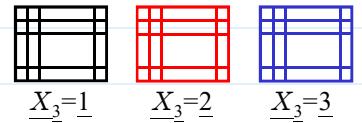
- The coding we use will determine exactly how the parameters relate to the margin totals, e.g., let β be a main effect of $\underline{X_1}$ that codes $\underline{i_1}$ and $\underline{i_2}$ categories as $\underline{0}$ (reference) and $\underline{1}$

$$\begin{aligned} \Rightarrow \underline{e^{\hat{\beta}}}/(\underline{1} + \underline{e^{\hat{\beta}}}) &= \underline{\hat{\pi}_{i_2++}}/(\underline{\hat{\pi}_{i_1++}} + \underline{\hat{\pi}_{i_2++}}) \\ &= \underline{y_{i_2++}}/(\underline{y_{i_1++}} + \underline{y_{i_2++}}) \end{aligned}$$

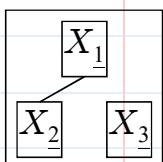
- Insignificant factor, say $\underline{X_1} \Rightarrow \underline{\pi_{1++}} = \underline{\pi_{2++}} = \dots = \underline{\pi_{I++}}$

➤ Joint independence ($\{\underline{X_1}, \underline{X_2}\}$ and $\underline{X_3}$ are independent)

- $\underline{\pi_{ijk}} = \underline{\pi_{ij+}} \times \underline{\pi_{++k}} \Leftrightarrow \underline{\pi_{ij|k}} = \underline{\pi_{ij+}}$



NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

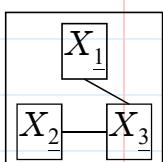


- $\underline{\log(\pi_{ijk})} = \underline{\log(\pi_{ij+} \pi_{++k})}$

$$= \underline{\log(\pi_{ij+})} + \underline{\log(\pi_{++k})}$$

- $Y \sim \underline{X_1} + \underline{X_2} + \underline{X_1:X_2} + \underline{X_3} \equiv \underline{S_2} (\supseteq \underline{S_1})$

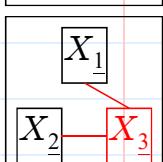
➤ Conditional independence ($\underline{X_1}$, $\underline{X_2}$ are independent given $\underline{X_3}$)



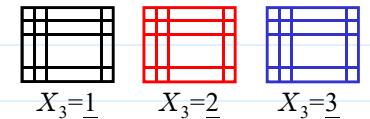
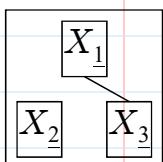
- $\underline{\pi_{ij|k}} = \underline{\pi_{i+k}} \underline{\pi_{+jk}} \Leftrightarrow \underline{\pi_{ijk}} = \underline{\pi_{i+k}} \underline{\pi_{+jk}} / \underline{\pi_{++k}}$

- $\underline{\log(\pi_{ijk})} = \underline{\log(\pi_{i+k} \pi_{+jk} / \pi_{++k})}$

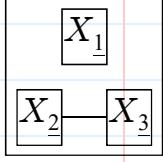
$$= \underline{\log(\pi_{i+k})} + \underline{\log(\pi_{+jk})} - \underline{\log(\pi_{++k})}$$



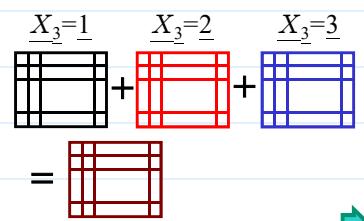
- $Y \sim \underline{X_1} + \underline{X_1:X_3} + \underline{X_3} + \underline{X_2} + \underline{X_2:X_3} \equiv \underline{S_3}$



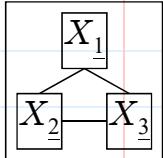
- Note that $\underline{S_3} \not\supseteq \underline{S_2}$, but $\underline{X_2}$ is jointly independent of $\{\underline{X_1}, \underline{X_3}\}$ implies that $\underline{X_1}, \underline{X_2}$ are independent given $\underline{X_3}$



- Q: can this conditional independence imply independence between $\underline{X_1}$ and $\underline{X_2}$, i.e., $\underline{\pi_{ij+}} = \underline{\pi_{i++}} \underline{\pi_{+j+}}$? (Ans: No. Check singular value decomposition in LNP.5-15)



► Uniform association (UA)



- Consider a model with all two-factor interactions

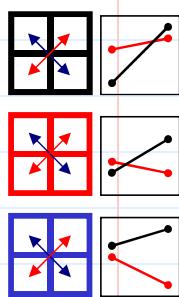
$$Y \sim X_1 + X_2 + X_3 + X_1:X_2 + X_1:X_3 + X_2:X_3 \equiv S_4 (\supseteq S_3)$$

- S_4 has no simple interpretation in terms of independence
- S_4 asserts that for every level of one variable, say X_3 , we have the same association between X_1 and X_2

$$Y \sim X_1 + X_2 + X_3 + X_1:X_2 + X_1:X_3 + X_2:X_3$$

- For each levels of X_3 , the reduced models of S_4 have different coefficients for the main effects of X_1 and X_2 , but have the same coefficients for the interaction $X_1:X_2$

- e.g., $I=J=2$, same fitted odds-ratio between X_1 and X_2 for each category of X_3 . Note that



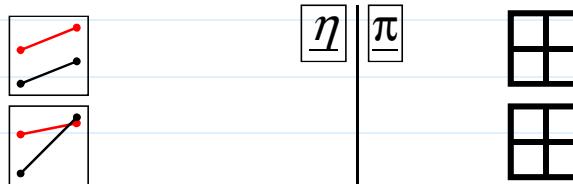
$$\text{fitted odd-ratio} = \frac{\hat{y}_{11k}\hat{y}_{22k}}{\hat{y}_{12k}\hat{y}_{21k}} = \frac{\hat{\pi}_{11k}\hat{\pi}_{22k}}{\hat{\pi}_{12k}\hat{\pi}_{21k}} = e^{\hat{\beta}_{12k}}$$

where $\hat{\beta}_{12k}$ is the coefficient of the $X_1:X_2$ term (under a coding $\propto \{+1, -1\}$) in the reduced model of $X_3=k$.

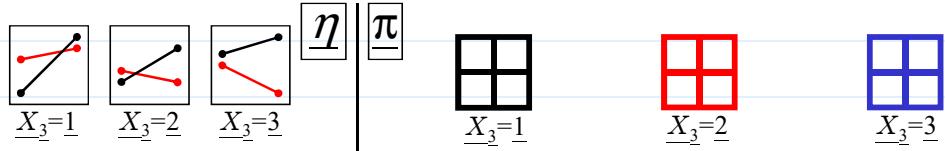
NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- **Q:** What does uniform association mean? How to interpret ^{p. 5-26} the association? How does it connect with interaction terms?

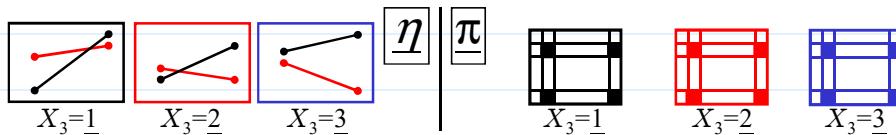
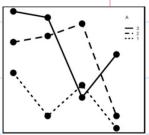
interaction and association (odds ratio) in 2×2 table



uniform association in $2 \times 2 \times K$ table

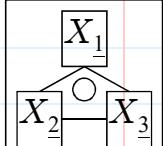


uniform association in $I \times J \times K$ table



- S_4 is not saturated \Rightarrow some degrees of freedoms left for goodness-of-fit test

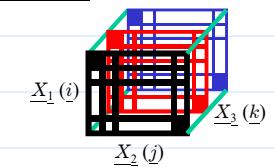
- A saturated model corresponds to a 3-way table with different association between, say X_1 and X_2 , across K levels of X_3 whereas $Y \sim 1$ corresponds to a 3-way table with constant π



► **Q:** how to examine whether $\underline{X}_1, \underline{X}_2, \underline{X}_3$ in a 3-way table are mutually independent (\underline{S}_1), jointly independent (\underline{S}_2), conditionally independent (\underline{S}_3), or uniformly associated (\underline{S}_4), individually? p. 5-27

- **Ans:** Perform deviance-based/Pearson's χ^2 goodness-of-fit (GoF) tests for $\underline{S}_1, \underline{S}_2, \underline{S}_3, \underline{S}_4$ (as \underline{H}_0), respectively.
- However, be careful of zero or small y_{ijk} (rule of thumb: 20% of cells less than 5) in the table \Rightarrow there will be some doubt about the accuracy of chi-square approximation in GoF test
- The chi-square approximation is better in comparing models than assessing GoF

► Analysis strategy: start with complex Poisson GLM (e.g., saturated one) and see how far the model can be reduced (e.g., using model selection or sequential deviance-based tests as in ANOVA to compare models).



- Binomial (or multinomial) GLM approach for 3-way table

► If y_{ij+} 's regarded as fixed, can treat $\underline{Y}_{\underline{X}_3}$ as response and $\underline{X}_1, \underline{X}_2$ as covariates

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

p. 5-28

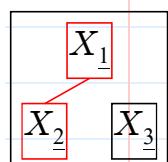
► **Q₁:** what information been gone? **Q₂:** what still attainable?

- **Ans** for **Q₁**: information about π_{ij+}
- **Ans** for **Q₂**: information about $\pi_{k|ij}$

► Statistical Modeling

- $\underline{Y}_{\underline{X}_3} = \underline{Y}_{ij1} \sim \text{binomial}(y_{ij+}, \pi_{k=1|ij})$ when $K=2$
- $\underline{Y}_{\underline{X}_3} = (\underline{Y}_{ij1}, \dots, \underline{Y}_{ijK}) \sim \text{multinomial}(y_{ij+}, \pi_{k=1|ij}, \dots, \pi_{k=K|ij})$ when $K > 2$

► **Q:** how is a binomial GLM connected to a Poisson GLM in 3-way tables?

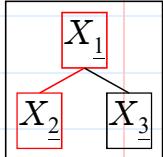


- $\underline{Y}_{\underline{X}_3} \sim \underline{1} \Leftrightarrow \underline{S}_2$ (joint independence)

$$\square \pi_{ijk} = \pi_{ij+} \times \pi_{++k} \Leftrightarrow \pi_{k|ij} = \pi_{++k}$$

- The binomial GLM implicitly assumes an association between \underline{X}_1 and \underline{X}_2 (Q: why?)

- Poisson GLM allows us to drop the $\underline{X}_1:\underline{X}_2$ term, but binomial GLM does not



- $Y_{X_3} \sim 1 + X_1 \Leftrightarrow X_2, X_3$ are independent given X_1

$$\square \pi_{ijk} = \pi_{i+j} + \pi_{i+k} / \pi_{i++} \Leftrightarrow \pi_{k|ij} = \pi_{k|i+}$$

- **Q:** how about $Y_{X_3} \sim 1 + X_2$?

- **Q:** Can we exam whether X_1, X_2 are independent given X_3 ?

- $Y_{X_3} \sim 1 + X_1 + X_2 \Leftrightarrow$

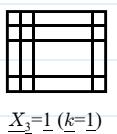
S_4 (uniform association)

- The saturated binomial GLM, $Y_{X_3} \sim 1 + X_1 + X_2 + X_1:X_2$, corresponds to a Poisson GLM for different association

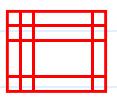
- Using binomial GLM loses little when we are interested in the relationship between the response X_3 and the two covariates X_1, X_2 , and not interested in the association between X_1 and X_2

- **Q:** Poisson or binomial GLM approach? Which to use?

- Binomial if one variable is clearly identified as the response
- Poisson if relationship between 3 variables is more symmetric



$X_2=1 (k=1)$



$X_2=2 (k=2)$

⋮

NTHU STAT 5230, 2025, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

- Correspondence analysis

- Cannot directly apply to 3-way table
- Can combine two of the factors, say X_1 and X_2 , into a factor with $I \times J$ levels and apply correspondence analysis on the 2-way table formed by the new factor and X_3
- **Q:** which two factors should be chosen to merge?

Ans: pick up the two whose association is least interesting to us

- Simpson's paradox

- example:

		smoker	dead	alive		smoker	dead	alive	
$X_1(i)$: age		yes	14	95	109 (.47)	yes	.13	.87	1
$X_2(j)$: smoker	age=35-44	no	7	114	121 (.53)	no	.06	.94	1
$X_3(k)$: dead or alive		smoker	dead	alive		smoker	dead	alive	
	age=65-74	yes	29	7	36 (.22)	yes	.81	.19	1
		no	101	28	129 (.78)	no	.78	.22	1

$$\begin{aligned} & \begin{aligned} X_1(i): \text{age} \\ X_2(j): \text{smoker} \\ X_3(k): \text{dead or alive} \end{aligned} \\ & \begin{aligned} \text{age}=35-44 \\ \text{age}=65-74 \end{aligned} \end{aligned}$$

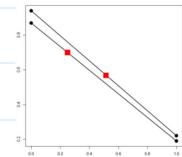
marginal total over	smoker	dead	alive	
age	yes	43	102	145 (.37)
age	no	108	142	250 (.63)

	smoker	dead	alive	
yes	.30	.70	1	
no	.43	.57	1	

- marginal association added over X_1 is different from the conditional association observed within each category of X_1

- Q: Why it occurs? Why the table of y_{+jk} gives a contradictory result to the tables of $y_{jk|i}$?

- If $\frac{y_{112}}{y_{11+}} = \frac{y_{112}}{y_{111}+y_{112}} \leq \frac{y_{122}}{y_{121}+y_{122}} = \frac{y_{122}}{y_{12+}}$



- and $\frac{y_{212}}{y_{21+}} = \frac{y_{212}}{y_{211}+y_{212}} \leq \frac{y_{222}}{y_{221}+y_{222}} = \frac{y_{222}}{y_{22+}}$

$$\Rightarrow \frac{y_{112}+y_{212}}{y_{111}+y_{112}+y_{211}+y_{212}} \stackrel{?}{<} \frac{y_{122}+y_{222}}{y_{121}+y_{122}+y_{221}+y_{222}}$$

- Note. $\frac{y_{1j2}+y_{2j2}}{y_{1j+}+y_{2j+}} = \frac{y_{1j2}}{y_{1j+}} \frac{y_{1j+}}{y_{1j+}+y_{2j+}} + \frac{y_{2j2}}{y_{2j+}} \left(1 - \frac{y_{1j+}}{y_{1j+}+y_{2j+}}\right)$

- Note that smoker are more concentrated in the younger age group and younger people are more likely to live longer

- Mantel-Haenszel (MH) test for $2 \times 2 \times K$ table

- Designed to test independence in 2×2 tables across K categories

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- Recall. association of a 2×2 table can be completely characterized/measured by its odds-ratio Δ

- $\Delta = 1 \Leftrightarrow$ independence
- $\Delta > 1 \Leftrightarrow$ positive association
- $\Delta < 1 \Leftrightarrow$ negative association

- Null and alternative hypotheses of MH test

- $H_0: \underline{\Delta}_1 = \underline{\Delta}_2 = \dots = \underline{\Delta}_K = 1$ (conditional independence)

- $H_1^*: \text{at least one } \underline{\Delta}_k \neq 1$ (different association) or

- $H_1: \underline{\Delta}_1 = \underline{\Delta}_2 = \dots = \underline{\Delta}_K \neq 1$ (uniform association)

- The test works better when the odds ratios of the K 2×2 tables do not vary greatly, e.g., the null of the GoF test for uniform association, $\underline{\Delta}_1 = \underline{\Delta}_2 = \dots = \underline{\Delta}_K$, does not rejected

- Procedure of the MH test

- Suppose the marginal totals of each 2×2 table carry no information (e.g., fixed in advance) or are conditioned.

- under H_0 , can assume a hyper-geometric distribution for y_{11k} in each 2×2 table

$\Rightarrow y_{11k}$ is sufficient for testing independence of k th table

- MH statistic combine information of y_{11k} 's from K tables:

$$\frac{\left(\left| \sum_k \underline{y}_{11k} - \underline{E(y}_{11k}) \right| - 1/2 \right)^2}{\sum_k \underline{Var(y}_{11k})} \stackrel{a}{\sim} \chi^2_1$$

p. 5-33

where $\underline{E(y}_{11k})$ and $\underline{Var(y}_{11k})$ are calculated under the H_0

- can calculate an exact p-value for smaller dataset using hypergeometric distribution

⇒ useful when data is sparse, under which the χ^2 approximations based on asymptotic thm is questionable

➤ MH test is sometimes called Cochran-Mantel-Haenszel test because a version without the 1/2 is published earlier by Cochran (1954).

❖ Reading: Faraway (2006, 1st ed.), 4.4

Ordinal Variables

- Some variables have a nature ordering between categories

➤ e.g., education: HS, BA, MA; political ideology: VL, SL, M, SC, VC

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- The ordinal structure not matter when # of categories = 2
- For ordinal variables, can use the methods for nominal variable
 - But, more information can be extracted by taking advantage of the ordinal structure
- Treatments for ordinal response (future lecture) and ordinal covariates are different
- Treatment for ordinal predictors: assign each category a score
 - It kind of turns an ordinal variable into a continuous variable
 - The choice of scores requires some judgment
 - If no particular preference, even spacing allows for the simplest interpretation
 - For interval scales, midpoints of the intervals are often used
 - Should check whether the inference is robust to different assignments of scores
 - If qualitative conclusions are changed, this is an indication that you cannot make any strong finding based on scores
- Poisson GLM with linear-by-linear association for 2-way tables:
 - Consider table with ordinal row (X_1) and column (X_2) variables

p. 5-34

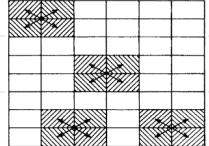
- assign scores $u_1 \leq u_2 \leq \dots \leq u_I$ to rows, denoted by $u(X_1)$ p. 5-35
- assign scores $v_1 \leq v_2 \leq \dots \leq v_J$ to columns, denoted by $v(X_2)$

➤ Linear-by-linear association model:

$$\eta_{ij} = \log(\mu_{ij}) = \log(t \pi_{ij}) = \log(t) + \log(\pi_{i+}) + \log(\pi_{+j})$$

where u_i 's, v_j 's are known scores, and γ is an unknown parameter

$$\blacksquare Y \sim X_1 + X_2 + u(X_1)v(X_2) \equiv S_{O \times O}$$



➤ Some notes about γ :

- values of γ represents the amount of association

- $\gamma=0 \Leftrightarrow$ independence

- positive and negative γ

- Interpretation of γ by log-odds-ratio:

$$\log\left(\frac{\pi_{i,j} \pi_{i+1,j+1}}{\pi_{i,j+1} \pi_{i+1,j}}\right) = \log\left(\frac{\mu_{i,j} \mu_{i+1,j+1}}{\mu_{i,j+1} \mu_{i+1,j}}\right)$$

$$= (\eta_{i,j} + \eta_{i+1,j+1}) - (\eta_{i,j+1} + \eta_{i+1,j}) = \gamma(u_{i+1} - u_i)(v_{j+1} - v_j)$$

- for evenly spaced scores, these log-odds-ratios are equal

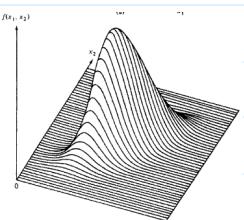
⇒ called uniform association in Goodman (1979)

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- Latent (continuous) variable Z motivation for γ :

p. 5-36

- Assume π_{ij} 's are obtained by putting a grid on an approximately bi-variate Normal (Z_1, Z_2) for latent variables and u_i 's and v_j 's are cutpoints

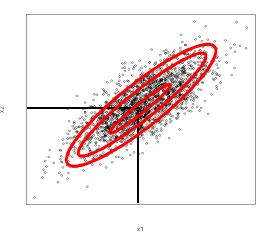
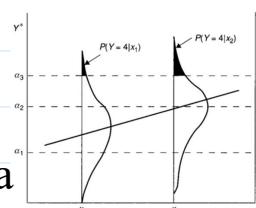


- γ can then be identified with the correlation coefficient ρ of the latent variables (cf., positive and negative ρ)

➤ Q: for the tests of independence or goodness-of-fit, what is the benefit of using $S_{O \times O}$ over the nominal approach, i.e., fitting a nominal-by-nominal model $S_{N \times N}$: $Y \sim X_1 + X_2 + X_1:X_2$?

As shown in a lab example,

- in the $N \times N$ approach, interaction effects reduce a deviance of 40.743 on 36 degrees of freedom, but
- the $O \times O$ interaction effect reduces a deviance of 10.175 on one degrees of freedom, i.e., the other 35 interaction effects only reduce a deviance of 30.568



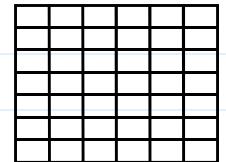
 • Ordinal-by-nominal model (or nominal-by-ordinal model)

- Rows (or columns) assigned scores, but column (or row) variable treated as a nominal variable
- called column (or row) effects model because the columns (or rows) are not assigned scores; instead, their effects are estimated

- alternative viewpoint: the scores of the ordinal columns (or rows) regarded as parameters

► Column effects model:

$$\begin{aligned}\underline{\eta}_{ij} &= \underline{\log}(\underline{\mu}_{ij}) = \underline{\log}(\underline{t} \underline{\pi}_{ij}) \\ &= \underline{\log}(\underline{t}) + \underline{\log}(\underline{\pi}_{i+}) + \underline{\log}(\underline{\pi}_{+j}) + \underline{u}_i \times \underline{\gamma}_j\end{aligned}$$



where u_i 's, $i=1, \dots, I$, are known scores, and

γ_j 's, $j=1, \dots, J$, are unknown parameters (over-parameterized; only requires $J-1$ parameters),

- $Y \sim X_1 + X_2 + u(X_1) : X_2 \equiv S_{O \times N} \supseteq S_{O \times O}$

➤ Some notes about γ_j 's, called the *column effects*:

- Equality of the γ_j 's (then, $\underline{u_i} \times \underline{\gamma_j} = \underline{u_i} \times \underline{\gamma}$) corresponds to the hypothesis of independence between $\underline{X_1}$ and $\underline{X_2}$
- For ordinal column variable, if the model $\underline{S_{O \times O}}$ were a good fit, we would expect the estimates of the γ_j 's in $\underline{S_{O \times N}}$ to be roughly proportional to $\underline{v_j}$'s (e.g., for evenly spaced $\underline{v_j}$'s, estimates of γ_j 's should follow a linear trend)
- We can use the estimates of γ_j 's in $\underline{S_{O \times N}}$ (1) to examine whether the chosen scores for columns in $\underline{S_{O \times O}}$ (i.e., $\underline{v_j}$'s) are appropriate, or (2) to possibly suggest better scores (see an example in lab)

- Some advantages of using scores for ordinal variables

- helpful in reducing the complexity of models for categorical data with ordinal variables
- especially useful in higher dimensional table where a reduction in the # of parameters is particularly welcome
- can also sharpen our ability to detect associations