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9
> Recall: fix, = Txo h_ 3, and under log-linear model,

3‘-—'- —— —
MLE - —
?&Jg.%) — 10g(fix) & Hxo = €XP(1hx0) |1 250 . Txa] = 20

> fix, = ho” B and Var(fx,) =he"Shy | = 2(#/2)x se(Zx)

Bt 5 = comac e (7]
N(EIB A5 h|( 2= = estimated covariance matrix of 6 ) ;—g

> fixg = eXP(iixg) L= (X TR from 1RALS) | | [e4(2x). e22(%g)] |
. Ceedto odfust. if overdispersion, (LNp.440) 7
@The construction of confidence intervals for 7)x,and fix, follows
W,

- e R : ‘
p a similar manner as in binomial GLM. (05228 Fr ot 5

» Suppose that there is only an s-level categorical | Y; 28 pisoon ()
future . . '~ e(Y..-',v IL-Ye:n)
l | covariate (or other covariates are held fixed LN 1P YA 2

2Bl w Denote the s categories by 1,...,s; their count pL_ Uik s+ ms)
& &. =% observations by yl, Y therr count parameters by ,%11, by
dih &
[&[}b fg} Can predict the probablhty that an observed event falls in the
0w 3 i category by fi;/(fi1 + fig + -+ + fls), given y,,....y, were

collected under the same value of a size variable (next slide)

2 Reading: Faraway (2006, 1ed), 3.1  Check % in Np4-3~F What i¥ dr N
___.e_.SE___.OWﬂ-'Y nse = erested "o ¢ Model e.9., kime lengkh (1-dim)|>*™
total # of trialg (1-dim)

* Data: observe the nurnber of eventscg§ at X, | ea (2-dim). yolume (3-dim)
and assume y, ~ Porsson(gzywwm | (check example in Np4-1£3)
where y, (or 4,) depends on a size variable ¢, (which is observed)
that determines the number of opportunities for the events to occur

> Some examples: (&5 > ta's indota
Nate If dain
®y, = number of burglaries reported in different cities i coung:

t, = number of households in these cities md"e‘m

- mnhﬁnalways

i 'sj®y, = number of customers served by sales workers Sha4d always

.&mﬁ%ﬂt = the amounts of time these workers spent@-’ m"—t“; 2 ?,’fﬁ_g

> For such cases we may be interested in the relationship between:

0.2
how X influence | p3- é% = K/, (the rate at X) tf = XB € (-e.20)| ¢ T"‘—M
h

Uy in Bisson GLM
instead of U & n.=XB ow X influence rute| mﬁdﬁ'

* : how to model the rate data?° es( i_ié ipg)x(gg_gﬂ) (%51

D inl> use binomial GLM if t, represents the total number of trrals

LNp 3-5
_ rate becomes a ,1.¢, prob. of- one count,
5&*5‘43% . Then px Hx/txem -J‘rand Uy 7s still E u‘&)bﬂt Ix &'Gl)()lssiflv&mg

@ 5&'2; Example: burglary example = a household regarded as a trial
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If the proportions f/¢, are small and ¢, are large, Poisson _" =
GLM is an effective approximation to the binomial GLMJMﬂg

= Q: can ¢, always be regarded as the total number of tr1als‘7(,u
In customer service example, the t, is not a count IF s or gl

closginsize
a In burglary example, some households T le m(:l'ﬁ
;ts:_gtzz:;ié 4_.,‘5 may be affected more than once %@)ﬂ @ B'f_ﬂlfz:
~OFit a Normal linear moﬁﬂf.—‘ Jt ®§§ + & |

Whenisit E(ﬂ" ')=W
j%t_) (LNp3-3) Yg~Bltt. ), mode] Gyfny using LM <+ \2220RIia? | mgi e W

to its lower
=« However, there are often difficulties with normality < :

l bnund.(.c.la
and unequal variance, particularly if y, are small <> ux small
J&tﬁggg a Poisson GLM with the link (cf., link in log-linear model):

wux)-_ty(tx =log(y/t,) = 1, = j (@ log(y,) = 1xlog(t,) + XB =11,")
Kknownt t—>0 v

a parameter
= log(t E) 1s regarded as a @ with coefﬁc1ent fixed as 1
= This approach thodels the rate while still maintaining the
% | count response for the log. -hnear. modeL:> called rate model
Uxfover XY = A term on the covariate side having &~M(?) mﬂs‘*hdﬁ-

no parameter attached is called an offset @ ﬁﬂ *Q). when R lage
< Reading: Faraway (2006, 1% cd.), 3.2 Kecall. LM, INp4-14

ﬁexplatns

covariates— Negative Binomial Response.__pem“ p- 414

* Data: observe (z;1, T2, . - - CUzmayz) i=12,...k inLNpg;-_Q‘
(%) = 575 ' Yi )b : ‘
oo E0:R)pa & (X5, 40) (X yx) %mmnse migiv be hot

where y, ~ negative binomial, i.c., [# ofBgmmjhl CImaakzlcmma‘:_ces,tzmag
. t: ;r
yx — 1 - s
P(Yx = yx) — ( — 1>px z

x—Tx L

(1_px) ) yx:rxﬂax_"]-:;

G e gy 9=/ L—now, I might treated as a pasgmeter. & 1y & [0, @)
» Negative binomial distribution can arise naturally in several ways:

= ' I th . short time period
» y, = the number of trials untl}rthe Ty SUCCESS; 0 nit: or nohit
gamma <E@Example: a system can withstand 7, hits; the prob. of a hit
distribution in a given time period is p, = y, = the lifetime of the system
» The generalization of Poisson response:

LNp 4-9 ;"l
yx|/] ~Poisson(A, ) where )I is gamma dlstrlbuted_*| 9 5@

#ofountil |2 0,0
» A limiting distribution for urn schemes = a{:&f draw  |axons

that can be used to model contagion lim p(sn=k)=NB pms Bilya urn

process

* We now re-parameterize the negative blnomlal as follows:

ey, 35 (i) ™ 1 =y —r and @ =(1p)=1 (= p,=(1+a)™) ot Bk
better for count resgonse }{ddsx‘, LG[DJQ) ® el0.1] »
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> The pmf becomes (-gannafurckion:grenkiutin f fudarid [ B= Joote, 1Re=F5furss] " **°
L(yx + TX)E‘“) RCE N Y =g

P(Y, =vy,) = — , ¥x=012,.

_( X yx) F(Tx) F(yx 4 1) (1 +a )y_x-l-?“_x y_X
allow Iy tobe nga-inkeger — N 4 mmggela.mmfto
couate s where 7 Dg ) and a,lI(0 # )(ux-m “&*;o&mﬁg e canm.e(- ,
r.x 1P E Yy 8 WNp.4-4) >0 <> x flas war Qx+z-=ax i+ )
2_&:& (y ) "!.—H_._j--2 . > _.&m =£&(—'+ny)
- > Var(y,” ) xQx"‘TxQ'x Hx*'(l_«’x 2Iry) {20+ overdispersion = b A= Yo

[cf., (LNp.4-9) alternative expression: Var(y,” )=44* 1+

» The log-likelihood in terms of fz’s and a’s is: q“ff%&f‘fﬁqfnﬁ; A(‘;}’,I

-+ independ = / o
r—l(a, 1) =D 5 { v, log(1 :a‘) + log(j + 13) A Twn=urw
Mm@-@?a — : ® .
 Sunckion of datn & parameker (0l _-O_Tz log(1l + «;) — log[I'(y; + 1)] }@ &-patumeter (17)
a funckion of parameters gnly —(S)* — o of
. Statlstlcal modehng Yy IﬂERNB(?“X, a,) and 77, = XL ohuckon o deta ey

—>Da convement Way to link f4=F(y," )=r.a; and 7}, 184,(4[‘ r‘)i-{z‘

W EE |

Qx @ parameter Y is (avolved
probobility of failure (0) — Ux ['_ = !lx/ Hx mean L (f. other GLM) o,
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