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• Recall: in binomial GLM, observe data

Poisson Regression

where yx is bounded by nx = number of total trials at x, i.e., 

0 ≤ yx ≤ nx and nx is a fixed and known number

 Q: what if the upper limit to yx is infinite or effectively so?

Some examples of such yx:

 number of species of tortoise found on 30 islands

For such yx, can use Poisson GLM or negative binomial GLM

If yx is sufficiently large

 may fit a Normal linear model:

 number of incidents involving damage 
to ships over a give period of time

 radiation counts as measured in, say, 
particles per second by a Geiger counter

yx = Xβ + ε

p. 4-2• If Yx is Poisson with mean µx (>0), then

E(Yx)=µx and Var(Yx)=µx

Yi~Poisson(µi), i=1,…, t and independent, 

then Y1+…+Yt ~ Poisson(µ1+…+µt) 
 useful if only aggregated data is 

observed, say yx is aggregated over xm

Some rationales for using Poisson for count response

 When yx~B(nx, px) and nx is large while px is small

 example: incidence of rare cancer in a large sample

 For small px’s, 
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 in this case, the use of the Poisson GLM with 

a log link is comparable to the binomial GLM

with a logit link, especially when nx’s are similar.

 Example: number of incoming 

telephone calls/earthquake in [ t1, t2 ]

 Suppose that

1.Probability of an event occurring once in a given (short)

time interval is proportion to the length of the interval

2.The numbers of events in two disjoint

time intervals are independent

Then, the number of events in a specified

time interval will be Poisson distributed

 Suppose that the times between 

any two adjacent events are i.i.d.

as exponential distribution 

 number of events in a given

time period is Poisson distributed. 
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• 3 components of Poisson GLM:

yx ~ Poisson(µx)

 For i=1, …, k, denote the ith row of X by

 link function g: g monotone and differential, and ηx= g(µx) 

[for Poisson GLM, g: (0, ∞)→(−∞, ∞) ]

 Log-linear model: ηx = log(µx) ⇔ µx = exp(ηx) 

• Log-likelihood of log-linear model:


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• Estimation (MLE) of β :

Partial 

derivative 

of l(β):

Set The MLE is the solution to:

 The canonical link for Normal linear model is identity link: 

and for binomial GLM is logit link.

 The link function having the property

is known as canonical link.

For Poisson GLM, no explicit formula for  must resort to 

numerical methods to find a approximated solution (same

numerical method, IRWLS, as in binomial GLM, future lecture)

where 
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• Deviance of log-linear model:

For a saturated model L*, 

the MLE of µx is yx;

The D is known as G2-statistic in the 

analysis of contingency table (future lecture)

For a model S with s (≤ k) parameters, denote its MLE

of µx by         . Then, the deviance of S is (considering 

the likelihood ratio test statistic of H0:S vs. H1:L
*\S):

 when S is the true model

 can do goodness-of-fit test (Note. 

 it is because µx=E(yx)=Var(yx) )

(Q: what should tend to ∞ for this asymptotics?) 
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• Testing for log-linear model:

Consider two nested models S (s parameters) ⊂ L (l parameters)

Test statistic and null distribution D for H0:S vs. H1:L\S

⇔ profile likelihood confidence interval for individual parameter

where dfS=k−s and dfL=k−l
(cf., same asymptotic properties as for binomial GLM) 

An alternative for testing significance of individual parameter:

Wald test statistic for H0: βi=c vs. H1: βi≠c

• Pearson X2 statistic of S (an alternative goodness-of-fit measure):

⇔ 100(1−α)% confidence interval: 
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 Pearson X2 often used in the same manner as the deviance

Pearson X2 typically close in size to the deviance because:

Overdispersion  large DS (goodness-of-fit test rejected)

Other possible reasons causing largeDS should be 

examined before concluding there is an overdispersion. 

For example: (1) outliers, (2) wrong Xβ structure, …

A mechanism that can explain why overdispersion appears:

yx|λx ~ Poisson(λx), but λx is a random variable

 Example: tendency to fail for a product may vary

from batch to batch even though they have same x.

• Overdispersion under a model S, i.e.,
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 Suppose that λx ~ gamma distribution with 

 Then (exercise), yx ~ negative binomial, yx = 0, 1, 2, …, with 

E(yx)=µx but Var(yx)=µx×(1+φx)/φx ≥ µx=E(yx) 

For overdispersion cases, we can model yx as:

 When mechanism known  can model yx as a negative 

binomial response (or other more flexible distribution)

E(λx)=µx and Var(λx)=µx/φx

 When mechanism unknown  can add

a dispersion parameter σ2, which is an 

unknown constant for all x’s, such that:

 σ2 = 1  the regular Poisson GLM; 

σ2 > 1  overdispersion; σ2 < 1  underdispersion

 Estimation of σ2:

Var(yx) = σ2×E(yx) = σ2 µx
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Note: the estimation of β is unaffected by σ2 

choosing a dispersion parameter other than 1 has 

no effect on the estimation procedure (IRWLS) of β
(cf., similar to Normal LM and binomial GLM)

 When comparing two nested models, an F-test statistic:

should be used, rather than the chi-square test. 

The F-test is more reliable than the z-statistic

 No goodness-of-fit test is possible.

The standard error of should be adjusted for 

 scale up the standard error by a factor of 

The z-statistic (Wald test) and its corresponding 

confidence interval should use the scaled

Denote

• Prediction of µx at under a log-linear model:
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 Denote the s categories by 1,…,s; their count 

observations by y1,…,ys; their count parameters by µ1,…,µs

Suppose that there is only an s-level categorical

covariate (or other covariates are held fixed)

 Reading: Faraway (2006, 1st ed.), 3.1

Recall: and under log-linear model,

( = estimated covariance matrix of     )



 and 

The construction of confidence intervals for        and        follows 

a similar manner as in binomial GLM.

 Can predict the probability that an observed event falls in the 

ith category by                                           , given y1,…,ys were

collected under the same value of a size variable (next slide)
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Rate Model
• Data: observe the number of events yx at x, 

and assume yx ~ Poisson(µx),

where yx (or µx) depends on a size variable tx (which is observed) 

that determines the number of opportunities for the events to occur

Some examples:

 yx = number of burglaries reported in different cities

tx = number of households in these cities

 yx = number of customers served by sales workers

tx = the amounts of time these workers spent

• Q: how to model the rate data?

For such cases, we may be interested in the relationship between:

µx/tx (the rate at x) ↔ ηx = Xβ, 

instead of µx ↔ ηx = Xβ

use binomial GLM if tx represents the total number of trials

 Then, px=µx/tx

 Example: burglary example  a household regarded as a trial
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 If the proportions µx/tx are small and tx are large, Poisson 

GLM is an effective approximation to the binomial GLM

 Q: can tx always be regarded as the total number of trials?

 In customer service example, the tx is not a count
 In burglary example, some households

may be affected more than once

Fit a Normal linear model: yx/tx = Xβ + ε

 However, there are often difficulties with normality

and unequal variance, particularly if yx are small

Use a Poisson GLM with the link (cf., link in log-linear model):

 log(tx) is regarded as a term with coefficient fixed as 1

 This approach models the rate while still maintaining the 

count response for the log-linear model  called rate model

 A term on the covariate side having 

no parameter attached is called an offset

log(µx/tx) = ηx = Xβ (⇔ log(µx) = 1×log(tx) + X β ≡ ηx’)

 Reading: Faraway (2006, 1st ed.), 3.2

p. 4-14Negative Binomial Response

where yx ~ negative binomial, i.e.,

• Negative binomial distribution can arise naturally in several ways:

yx = the number of trials until the rx
th success; 

 Example: a system can withstand rx hits; the prob. of a hit

in a given time period is px  yx = the lifetime of the system

The generalization of Poisson response: 

yx|λx ~Poisson(λx), where λx is gamma distributed

A limiting distribution for urn schemes

that can be used to model contagion

• We now re-parameterize the negative binomial as follows:

yx’=yx−rx and αx=(1/px)−1 (⇔ px=(1+αx)
−1)

• Data: observe
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The pmf becomes 

E(yx’) = rx αx ≡ µx

The log-likelihood in terms of rx’s and αx’s is:

a convenient way to link µx=E(yx’)=rxαx and ηx is:

where rx∈(0, ∞) and αx∈(0, ∞).

Var(yx’) = rxαx+rxαx
2 = µx+(µx

2/rx)
[cf., (LNp.4-9) alternative expression: Var(yx’)=µx×(1+φx)/φx ]

 Statistical modeling: yx’ ~ NB(rx, αx) and ηx = Xβ
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• Analysis of negative binomial

responses assuming r1=r2=…=rk≡ r:
r1 = r2 = … = rk ⇔ rx=µx φx=[E(λx)]

2/Var(λx)

(LNp.4-9) is a constant for all x

 Data analysis techniques for 

ordinary GLM can be adopted

 It is an ordinary GLM with canonical link

 cf., dispersion parameter method: Var(yx)=σ2E(yx)=σ2 µx

Treating r as a known constant

 it results in a different structure from the dispersion-

parameter approach for E(yx) and Var(yx)

 cf., assuming φx=rx/µx=E(λx)/Var(λx)

is a constant for all x

Treating r as an unknown parameter

 Not anymore an ordinary GLM
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 Reading: Faraway (2006, 1st ed.), 3.3

 MLE of β and r can be obtained by 

1)using a Newton-Raphson routine on 

all parameters simultaneously, or

2)evaluating the profile likelihood for various fixed r, or

 The usual inferential techniques in GLM

can then be used to compare negative 

binomial models (regarded as inferences

conditional on the estimate of r)

Analysis of negative binomial responses allowing 

parameters r1, r2, …, rk to have different values

 Outside the framework of GLM

(out of the scope of this course)

 Manton et al. (1981), Biometrics 37, p.259-269

3)an approach alternates between a) using IRWLS to 

estimate β with fixed, b) using Newton-Raphson

method to estimate r with      fixed

 and      are asymptotically independent


