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• Recall: in binomial GLM, observe data

Poisson Regression

where yx is bounded by nx = number of total trials at x, i.e., 

0 ≤ yx ≤ nx and nx is a fixed and known number

 Q: what if the upper limit to yx is infinite or effectively so?

Some examples of such yx:

 number of species of tortoise found on 30 islands

For such yx, can use Poisson GLM or negative binomial GLM

If yx is sufficiently large

 may fit a Normal linear model:

 number of incidents involving damage 
to ships over a give period of time

 radiation counts as measured in, say, 
particles per second by a Geiger counter

yx = Xβ + ε

p. 4-2• If Yx is Poisson with mean µx (>0), then

E(Yx)=µx and Var(Yx)=µx

Yi~Poisson(µi), i=1,…, t and independent, 

then Y1+…+Yt ~ Poisson(µ1+…+µt) 
 useful if only aggregated data is 

observed, say yx is aggregated over xm

Some rationales for using Poisson for count response

 When yx~B(nx, px) and nx is large while px is small

 example: incidence of rare cancer in a large sample

 For small px’s, 
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 in this case, the use of the Poisson GLM with 

a log link is comparable to the binomial GLM

with a logit link, especially when nx’s are similar.

 Example: number of incoming 

telephone calls/earthquake in [ t1, t2 ]

 Suppose that

1.Probability of an event occurring once in a given (short)

time interval is proportion to the length of the interval

2.The numbers of events in two disjoint

time intervals are independent

Then, the number of events in a specified

time interval will be Poisson distributed

 Suppose that the times between 

any two adjacent events are i.i.d.

as exponential distribution 

 number of events in a given

time period is Poisson distributed. 
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• 3 components of Poisson GLM:

yx ~ Poisson(µx)

 For i=1, …, k, denote the ith row of X by

 link function g: g monotone and differential, and ηx= g(µx) 

[for Poisson GLM, g: (0, ∞)→(−∞, ∞) ]

 Log-linear model: ηx = log(µx) ⇔ µx = exp(ηx) 

• Log-likelihood of log-linear model:
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• Estimation (MLE) of β :

Partial 

derivative 

of l(β):

Set The MLE is the solution to:

 The canonical link for Normal linear model is identity link: 

and for binomial GLM is logit link.

 The link function having the property

is known as canonical link.

For Poisson GLM, no explicit formula for  must resort to 

numerical methods to find a approximated solution (same

numerical method, IRWLS, as in binomial GLM, future lecture)

where 
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• Deviance of log-linear model:

For a saturated model L*, 

the MLE of µx is yx;

The D is known as G2-statistic in the 

analysis of contingency table (future lecture)

For a model S with s (≤ k) parameters, denote its MLE

of µx by         . Then, the deviance of S is (considering 

the likelihood ratio test statistic of H0:S vs. H1:L
*\S):

 when S is the true model

 can do goodness-of-fit test (Note. 

 it is because µx=E(yx)=Var(yx) )

(Q: what should tend to ∞ for this asymptotics?) 
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• Testing for log-linear model:

Consider two nested models S (s parameters) ⊂ L (l parameters)

Test statistic and null distribution D for H0:S vs. H1:L\S

⇔ profile likelihood confidence interval for individual parameter

where dfS=k−s and dfL=k−l
(cf., same asymptotic properties as for binomial GLM) 

An alternative for testing significance of individual parameter:

Wald test statistic for H0: βi=c vs. H1: βi≠c

• Pearson X2 statistic of S (an alternative goodness-of-fit measure):

⇔ 100(1−α)% confidence interval: 
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 Pearson X2 often used in the same manner as the deviance

Pearson X2 typically close in size to the deviance because:

Overdispersion  large DS (goodness-of-fit test rejected)

Other possible reasons causing largeDS should be 

examined before concluding there is an overdispersion. 

For example: (1) outliers, (2) wrong Xβ structure, …

A mechanism that can explain why overdispersion appears:

yx|λx ~ Poisson(λx), but λx is a random variable

 Example: tendency to fail for a product may vary

from batch to batch even though they have same x.

• Overdispersion under a model S, i.e.,
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 Suppose that λx ~ gamma distribution with 

 Then (exercise), yx ~ negative binomial, yx = 0, 1, 2, …, with 

E(yx)=µx but Var(yx)=µx×(1+φx)/φx ≥ µx=E(yx) 

For overdispersion cases, we can model yx as:

 When mechanism known  can model yx as a negative 

binomial response (or other more flexible distribution)

E(λx)=µx and Var(λx)=µx/φx

 When mechanism unknown  can add

a dispersion parameter σ2, which is an 

unknown constant for all x’s, such that:

 σ2 = 1  the regular Poisson GLM; 

σ2 > 1  overdispersion; σ2 < 1  underdispersion

 Estimation of σ2:

Var(yx) = σ2×E(yx) = σ2 µx
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Note: the estimation of β is unaffected by σ2 

choosing a dispersion parameter other than 1 has 

no effect on the estimation procedure (IRWLS) of β
(cf., similar to Normal LM and binomial GLM)

 When comparing two nested models, an F-test statistic:

should be used, rather than the chi-square test. 

The F-test is more reliable than the z-statistic

 No goodness-of-fit test is possible.

The standard error of should be adjusted for 

 scale up the standard error by a factor of 

The z-statistic (Wald test) and its corresponding 

confidence interval should use the scaled

Denote

• Prediction of µx at under a log-linear model:
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 Denote the s categories by 1,…,s; their count 

observations by y1,…,ys; their count parameters by µ1,…,µs

Suppose that there is only an s-level categorical

covariate (or other covariates are held fixed)

 Reading: Faraway (2006, 1st ed.), 3.1

Recall: and under log-linear model,

( = estimated covariance matrix of     )



 and 

The construction of confidence intervals for        and        follows 

a similar manner as in binomial GLM.

 Can predict the probability that an observed event falls in the 

ith category by                                           , given y1,…,ys were

collected under the same value of a size variable (next slide)
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Rate Model
• Data: observe the number of events yx at x, 

and assume yx ~ Poisson(µx),

where yx (or µx) depends on a size variable tx (which is observed) 

that determines the number of opportunities for the events to occur

Some examples:

 yx = number of burglaries reported in different cities

tx = number of households in these cities

 yx = number of customers served by sales workers

tx = the amounts of time these workers spent

• Q: how to model the rate data?

For such cases, we may be interested in the relationship between:

µx/tx (the rate at x) ↔ ηx = Xβ, 

instead of µx ↔ ηx = Xβ

use binomial GLM if tx represents the total number of trials

 Then, px=µx/tx

 Example: burglary example  a household regarded as a trial
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 If the proportions µx/tx are small and tx are large, Poisson 

GLM is an effective approximation to the binomial GLM

 Q: can tx always be regarded as the total number of trials?

 In customer service example, the tx is not a count
 In burglary example, some households

may be affected more than once

Fit a Normal linear model: yx/tx = Xβ + ε

 However, there are often difficulties with normality

and unequal variance, particularly if yx are small

Use a Poisson GLM with the link (cf., link in log-linear model):

 log(tx) is regarded as a term with coefficient fixed as 1

 This approach models the rate while still maintaining the 

count response for the log-linear model  called rate model

 A term on the covariate side having 

no parameter attached is called an offset

log(µx/tx) = ηx = Xβ (⇔ log(µx) = 1×log(tx) + X β ≡ ηx’)

 Reading: Faraway (2006, 1st ed.), 3.2

p. 4-14Negative Binomial Response

where yx ~ negative binomial, i.e.,

• Negative binomial distribution can arise naturally in several ways:

yx = the number of trials until the rx
th success; 

 Example: a system can withstand rx hits; the prob. of a hit

in a given time period is px  yx = the lifetime of the system

The generalization of Poisson response: 

yx|λx ~Poisson(λx), where λx is gamma distributed

A limiting distribution for urn schemes

that can be used to model contagion

• We now re-parameterize the negative binomial as follows:

yx’=yx−rx and αx=(1/px)−1 (⇔ px=(1+αx)
−1)

• Data: observe
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The pmf becomes 

E(yx’) = rx αx ≡ µx

The log-likelihood in terms of rx’s and αx’s is:

a convenient way to link µx=E(yx’)=rxαx and ηx is:

where rx∈(0, ∞) and αx∈(0, ∞).

Var(yx’) = rxαx+rxαx
2 = µx+(µx

2/rx)
[cf., (LNp.4-9) alternative expression: Var(yx’)=µx×(1+φx)/φx ]

 Statistical modeling: yx’ ~ NB(rx, αx) and ηx = Xβ
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• Analysis of negative binomial

responses assuming r1=r2=…=rk≡ r:
r1 = r2 = … = rk ⇔ rx=µx φx=[E(λx)]

2/Var(λx)

(LNp.4-9) is a constant for all x

 Data analysis techniques for 

ordinary GLM can be adopted

 It is an ordinary GLM with canonical link

 cf., dispersion parameter method: Var(yx)=σ2E(yx)=σ2 µx

Treating r as a known constant

 it results in a different structure from the dispersion-

parameter approach for E(yx) and Var(yx)

 cf., assuming φx=rx/µx=E(λx)/Var(λx)

is a constant for all x

Treating r as an unknown parameter

 Not anymore an ordinary GLM
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 Reading: Faraway (2006, 1st ed.), 3.3

 MLE of β and r can be obtained by 

1)using a Newton-Raphson routine on 

all parameters simultaneously, or

2)evaluating the profile likelihood for various fixed r, or

 The usual inferential techniques in GLM

can then be used to compare negative 

binomial models (regarded as inferences

conditional on the estimate of r)

Analysis of negative binomial responses allowing 

parameters r1, r2, …, rk to have different values

 Outside the framework of GLM

(out of the scope of this course)

 Manton et al. (1981), Biometrics 37, p.259-269

3)an approach alternates between a) using IRWLS to 

estimate β with fixed, b) using Newton-Raphson

method to estimate r with      fixed

 and      are asymptotically independent


