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Poisson Regression
» Recall: in binomial GLM, observe data

(a:il,a:@,...,a:im,%),i: 1,2,....k
& (X 9) & (X, Yx)

where y, 1s bounded by n, = number of total trials at x, i.e.,

0=<y,<n, and n,is a fixed and known number

» Q: what if the upper limit to y, is infinite or effectively so?

» Some examples of such y.:

= number of incidents involving damage
to ships over a give period of time

= radiation counts as measured in, say,
particles per second by a Geiger counter

» number of species of tortoise found on 30 islands

» For such y,, can use Poisson GLM or negative binomial GLM

> 1f Yy 1s sufficiently large
— may fit a Normal linear model: y, = XL+ &

2
@ orr Y, is Poisson with mean £ (>0), then i
e e X e
B(YX — yx) — ‘_ ’ Yx 2971727;
- Yx _

> E(Y)=# and Var(Y)=44,
» Y ~Poisson(4;), =1,..., t and independent,
then Y, +...+Y, ~ Poisson(,+...+14)
= useful if only aggregated data is
observed, say y, 1s aggregated over z,,,

» Some rationales for using Poisson for count response

= When y,~B(n,, p,) and n, 1s large while p, is small
M _ € (nxPx) ™
( )pxy—"(l — Px) R =
Yx Yx:

oexample: incidence of rare cancer in a large sample

_nxpx

= [ix = Tix Px

o For small p_’s,

7 I'X

Px

Nx = logit(px) = lo_g< — )&log(]ﬁ) = log(px) — log(nx)
B

1_px
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= 1n this case, the use of the Poisson GLM with
a log link i1s comparable to the binomial GLM
with a logit link, especially when n,’s are similar.

= Suppose that

1.Probability of an event occurring once in a given (short)
time interval 1s proportion to the length of the interval

2. The numbers of events in two disjoint
time intervals are independent

Then, the number of events in a specified
time interval will be Poisson distributed

o Example: number of incoming .
telephone calls/earthquake in [, ¢,] T

= Suppose that the times between
any two adjacent events are 1.1.d.
as exponential distribution : —
= number of events in a given '
time period is Poisson distributed. .

p. 4-4

* 3 components of Poisson GLM:

>y, ~ Poisson(44,)

P
>X_6 = Z]—-Zlﬁ X E(Xl’ ey X)) = n_x(é)
=« For i=1, ..., k, denote the ¢th row of X by
By = (a(x1), . hp(x0))T =, = b7
» link function g: g monotone and differential, and 77,= g(4,)
[for Poisson GLM, g: (0, ©) — (=, ) ] R R
= Log-linear model: 1}, = log(4,) < W = exp(7])
* Log-likelihood of log-linear model:
e i Ly, L

1B = log(ITt )

I ==1=1 y,&'

L —
= 2. [y log(px,) — px, — log(yi!) |

= S [y i — exp(nx,) — log(yi!) ]
= > [y (078) — exp(by”B) — log(y:!) ]




“. Estimation (MLE) of 5
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» Partial P
derivative —I[(8) = x | ihi; —exp(h;" ) h;; |
of (B): 0B;- B T it
= il —exp(hi” B) ] hy;
> Set 91(8)/0p; =0, ¥V j. The MLE § is the solution to:
0="37 —1hijyi — f:lhzl&7 J=1L...,p

» The link function having the property

X Tﬁ = XTY is known as canonical link.

» The canonical link for Normal linear model is identity link:
E(Y)=p=mn=Xf,and for binomial GLM is logit link.

» For Poisson GLM, no explicit formula for @ = must resort to
numerical methods to find a approximated solution (same
numerical method, IRWLS, as in binomial GLM, future lecture) »

* Deviance of log-linear model:

p. 4-6

> For a saturated model L”,
the MLE of £ 1s y,;

» For a model S with s (£ k) parameters, denote its MLE
of 4, by fix s . Then, the deviance of S is (considering
the likelihood ratio test statistic of H,:S vs. H;:L"\S):

Ds = 2(l—ls)
k Yi "
= aw [ ton () — )
- = Hi,s -
» Dg ~ X:_, When S is the true model

= can do goodness-of-fit test (Note.
it is because f4=L(y,)=Var(y,) )

(Q: what should tend to o for this asymptotics?)

» The D is known as G*-statistic in the
analysis of contingency table (future lecture)




&
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» Testing for log-linear model:

» Consider two nested models S (s parameters) [ L (I parameters)
» Test statistic and null distribution D for H:S vs. H:L\S

0< Ds—Dg = ~ X, _q, (under Ho)

where d_f§:@—§ and d f £:@—£

(cf., same asymptotic properties as for binomial GLM)

< profile likelthood confidence interval for individual parameter

» An alternative for testing significance of individual parameter:
Wald test statistic for H: S=c vs. H,: B#c

B = (@ — g)/se(&) = & N(0,1) (under Hp)

= 100(1-a)% confidence interval: j3; + z(a/2) x se(3;)

« Pearson X7 statistic of S (an alternative goodness-of-fit measure):
e (Oi—E)? o Wi i)

X2 _— - — . ~
_ﬁ Z'L—l & Z'L—l ,u'l,,§
2
N > Pearson X* typically close in size to the deviance because: ~ **°
k R R
D= 22|y loglyi/ fu) — (yi — fis)]
k - A . 5
= 23l = ) + (s — 2%/ Q) + o] = (i — )y
g (Y — fu)*
Az Zi—:l — ’&_ - X—2

— Pearson &2 often used in the same manner as the deviance

« Overdispersion under a model S, i.e., Var(yx,s) > E(yx,s)
» Overdispersion => large D¢ (goodness-of-fit test rejected)

» Other possible reasons causing large Dg should be
examined before concluding there is an overdispersion.
For example: (1) outliers, (2) wrong XS structure, ...

» A mechanism that can explain why overdispersion appears:

Yy~ Poisson(A,), but A, is a random variable

»« Example: tendency to fail for a product may vary
from batch to batch even though they have same x. >
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= Suppose that A, ~ gamma distribution with
E(A)=4, and Var(A)=44/ &

= Then (exercise), y, ~ negative binomial, y, =0, 1, 2, ..., with

Ly =4 but Var(y)=p>(1+ @)/ ¢ = [h=E(y,)

» For overdispersion cases, we can model y, as:

= When mechanism known = can model y, as a negative
binomial response (or other more flexible distribution)

= When mechanism unknown = can add
a dispersion parameter ¢, which is an
unknown constant for all x’s, such that:

Var(y,) = *xE(y,) = O U,

o 0 = 1 = the regular Poisson GLM,;
& > 1 = overdispersion; ¢ < 1 = underdispersion

o Estimation of & g
ox2 2 - ) ]
6% = =

— k-5 k—s
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+ Note: the estimation of Bis unaffected by ¢ =
choosing a dispersion parameter other than 1 has
no effect on the estimation procedure (IRWLS) of 8
(cf., similar to Normal LM and binomial GLM)

+ The standard error of (3; should be adjusted for

= scale up the standard error by a factor of &

+ The z-statistic (Wald test) and its corresponding
confidence interval should use the scaled se(;)

o When comparing two nested models, an F-test statistic:

(Ds — Dp)/(dfs —dfr)
52 = Fdfs—de,de (under &ﬁ)
L

should be used, rather than the chi-square test.

o The F-test 1s more reliable than the z-statistic

o No goodness-of-fit test is possible.
* Prediction of £ at xg = (%01, - - -, acom)Tunder a log-linear model:

» Denote m — (ﬁ(ﬂ)a cee hp(&))T

B
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9
» Recall: pix, — Nxo = @Tﬁ and under log-linear model,

Nxo = 1Og(:uxo) A Hxo = eXp(nXO)

> fix, = ho' B and Var(fx,) =ho' Lho

(Z = estimated covariance matrix of é )
> o = €XP(7x )

» The construction of confidence intervals for 7)x,and [ix, follows
a similar manner as in binomial GLM.

» Suppose that there is only an s-level categorical
covariate (or other covariates are held fixed)

= Denote the s categories by 1,...,s; their count
observations by y;,...,y,; their count parameters by f,...,4,

= Can predict the probability that an observed event falls in the
i™ category by fi; /(i + fig + - -+ + fls), given yy,...,y, were
collected under the same value of a size variable (next slide)

% Reading: Faraway (2006, 1t ed.), 3.1

Rate Model m
+ Data: observe the number of events y, at x,

and assume y, ~ Poisson(4,), )

where y, (or 4,) depends on a size variable ¢, (which is observed)
that determines the number of opportunities for the events to occur

» Some examples:
= y, = number of burglaries reported in different cities
t. = number of households in these cities

X

= i, = number of customers served by sales workers

t, = the amounts of time these workers spent
» For such cases, we may be interested in the relationship between:

/L (the rate at x) 7}, = XB,
instead of 4, - 1, =Xp

* Q: how to model the rate data?

» use binomial GLM if ¢, represents the total number of trials
= Then, 1_95:"—15@5

»« Example: burglary example = a household regarded as a trial




= I the proportions 4/t are small and ¢, are large, Poisson **"
GLM is an effective approximation to the binomial GLM
= Q: can ¢, always be regarded as the total number of trials?

oln customer service example, the ¢, is not a count
oIn burglary example, some households
may be affected more than once

» Fit a Normal linear model: y,/t, = X3+ &

=« However, there are often difficulties with normality
and unequal variance, particularly if y, are small

» Use a Poisson GLM with the link (cf., link in log-linear model):
log(4/t) = n, = XPB (= log(y,) = 1xlog(t,) + XB =1,")

= log(t,) 1s regarded as a term with coefficient fixed as 1

» This approach models the rate while still maintaining the

count response for the log-linear model = called rate model
= A term on the covariate side having

no parameter attached is called an offset
* Reading: Faraway (2006, 15t ed.), 3.2

Negative Binomial Response P
* Data: observe (51, %32, - - - Tim»¥i), L = 1,2,..., k
< (%4, ¥i) < (X 4x)
where y, ~ negative_bi;omial, i.ej
X v — 1

B(ﬁ N y_X) N (7“ — I)px""_X(l — px)yx—?“x’ Yx = Tx;Tx+ 1y

* Negative binomial distribution can arise naturally in several ways:
> y, = the number of trials until the r ™ success;
. Example: a system can withstand . hits; the prob. of a hit
in a given time period 1S p, = y, = the lifetime of the system
» The generalization of Poisson response:
y,|A, ~Poisson(A,), where A, is gamma distributed
» A limiting distribution for urn schemes
that can be used to model contagion
* We now re-parameterize the negative binomial as follows:

Yy =y—ry and a,=(1/p)-1 (= p=(1+a,)™)




&
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» The pmf becomes /
F(yx + Tx) axyx
BY);:y;( — Y y;(:Q71727"’
LT T T Mg ) e
where r Dg o) and a§D§ , ©).
> B(y') =1, 0= U
>@(Q§ ) - T a rxgxz = HX+(H§E/ f})

[cf., (LNp.4-9) alternative expression: Var(y," )=4*(11 @)/ @ ]
» The log-likelihood in terms of r,’s and a,’s is:

L(g,z)sz’ {yzlog(lJr )+Z 10g(3+n)

~rilog(1+ a;) — log[P(y; + 1)) }

» Statistical modeling: y,” ~ NB(r,, a,) and 77, = XL

»a convenient way to link £4=E(y," )=r.q, and 77, is:

- los(157) ~ e 57)
BB Tran/ 2\ x + s

2
<:I . . . . p. 4-16
» Analysis of negative binomial
responses assuming 7, =r,=...=r;=
PriErn=.L = e TGS [E(/] W Var(A,)

(LNp.4- 9) is a constant for all x

= cf., assuming @=r,/(=FE(A,)/Var(A,)
is a constant for all x

= cf., dispersion parameter method: Var(y,)=¢* E(y,)= U,
= it results in a different structure from the dispersion-

parameter approach for E(y,) and Var(y,)
» Treating r as a known constant

= [t 1s an ordinary GLM with canonical link

nx = log (UX/(MX + f))

= Data analysis techniques for
ordinary GLM can be adopted

» Treating r as an unknown parameter

=« Not anymore an ordinary GLM >




=« MLE of Sand r can be obtained by p. 417

1)using a Newton-Raphson routine on
all parameters simultaneously, or

2)evaluating the profile likelihood for various fixed r, or

3)an approach alternates between a) using IRWLS to
estimate S with 7 fixed, b) using Newton-Raphson
method to estimate r with @A fixed

. é and © are asymptotically independent

» The usual inferential techniques in GLM
can then be used to compare negative

binomial models (regarded as inferences
conditional on the estimate of r)

» Analysis of negative binomial responses allowing
parameters r, ,, ..., 7, to have different values
= Outside the framework of GLM
(out of the scope of this course)
» Manton et al. (1981), Biometrics 37, p.259-269

% Reading: Faraway (2006, 1%ted.), 3.3




