
p. 3-40

 Violation of independence assumption can cause

E(y) = iE(si) = i{E[E(si|πi)]}= l×mp = np

Overdispersion cannot arise when n=1 (sparse case). 

Var(y) = iVar(si) = i{E[Var(si|πi)]+Var[E(si|πi)]} 

= i{E[mπi(1−πi)]+Var(mπi)}
= l×{m p – m[τ2p(1−p) + p2] + m2 τ2p(1−p)}

= [1+(m−1)τ2]np(1−p) ≥ np(1−p)

 over-dispersion, e.g., response has a common 
cause, say a disease is influenced by genes, the 
responses will tend to be positively correlated

 under-dispersion, e.g., when food supply is limited, 
survival probability of an animal may be increased
by the death of others, i.e., negatively correlated

• Q: how to model overdispersion and do analysis?

 Introduce one additional dispersion parameter σ2, i.e., 

⇐ notice its similarity to linear model

(standard binomial case  σ2=1; over-dispersion  σ2>1)

p. 3-41
For a model S, σ2 can be estimated using

Estimation of β is unaffected since E(yx)

is not changed (Why? Note that yx is not

~ binomial so that likelihood is different)

For S nested in L, difference in their deviances

No goodness-of-fit test is possible 

This dispersion parameter method is more appropriate when the 
covariate classes are roughly equal in size (i.e., n1≈n2≈…≈nk)

(using deviance D in place of X2 is not very recom-

mended as D may be inconsistent for sparse data)

When comparing models, e.g., testing H0:S vs. H1:L\S, can use

But,                                             and
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p. 3-42

Matched Case-Control Studies

• Q: In a case-control study, how should we choose the 

controls if there exist some confounding variables W, 

say age and sex, that may affect the outcome in 

addition to the risk factors X?

 Reading: Faraway (2006, 1st ed.), 2.11

Alternative approaches to over-dispersion

 beta-binomial method (Williams, 1982; Crowder, 1978)

 quasi-likelihood: specify only how the mean and variance
of the response are connected to covariates. 

Approach 1: record and include confounding 

variables as covariates in GLM analysis 

(however, we may not be interested in the 

effects of the confounding variables)

Approach 2: confounding variables are 

explicitly adjusted for in the design

p. 3-43

• Matched case-control design (MCCD): match each case with one 

or more controls that have the same or similar values of some set 

of potential confounding variables. A group of a case and its 

corresponding controls is called a matched set, e.g.,
1st case

age=20; sex=male
2st case

age=20; sex=female
nst case

age=70; sex=female

1:M MCCD: M controls for each case

• Some disadvantages of MCCD

M typically small, can vary in size in every matched set

 Each additional control yields a diminished return in terms of 

increased efficiency in estimating the effects of risk factors

 It is usually not worth exceeding M=5

Lose the possibility of discovering the 
effects of the confounding variable W

The data will likely be far from a random 
sample of the population of interest

Dc D

Xc y1 0 0 1
X y1 1 0 0

Dc D

Xc y200 0
X y210 1

Dc D

Xc yn00 1
X yn10 0• • •
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