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Alternative Goodness-of-Fit Measure
• Recall: deviance is one 

measure of how well the 

model fits the data. 

Q: are there others?

• Pearson’s X2 statistic 

for a model S (i.e.,                                    )

which results in

where Oij: observed counts for ijth cell

Eij: expected counts for ijth cell under S

General definition (for J, ≥ 2, categories)

For a binomial response (J=2):

 number of 1’s: Oi1 = yi while Ei1 =

 number of 0’s:Oi2 = ni−yi while Ei2 = 

p. 3-33• Some properties of the Pearson’s X2 statistic:

X2 typically close in size to the deviance. Why?

X2 can often be used in the same manner as the deviance

Alternative versions of hypothesis tests described above: use 

X2 in place of the D (with same asymptotic null distribution)

 However, some care is necessary, e.g., the 

model is fit (i.e., β is estimated) to minimize

the deviance and not the Pearson’s X2

 It is possible, although unlikely, that the X2 could 

increase as an effect is added to the model
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• We can define Pearson residuals under model S as: 

• generalized R2

Recall: R2 for Normal linear model is a popular goodness-of-fit

measure, which represents the proportion of variance explained.

Q: how to generalize this concept to binomial GLM?

which can be viewed as a type of standardized residual

So, Pearson’s X2 is analogous to the residual 

sum of squares used in Normal linear model



For a data with K Bernoulli ungrouped data zj’s and k binomial

grouped data yi’s, the parameters p’s (and η’s) in the models of 

zj’s and yi’s are:

p. 3-35

Approach 2: interpretation of R2 from likelihood viewpoint 

 Recall. In Normal Linear model,

Approach 1: proportion of deviance explained

Consider the following models:

 null model: all η’s are equal (intercept-only model) 

 full model: all the η’s are free to vary

 A model S (                                   ) in which 

all η’s are restricted to fall on a linear function 

of effect codings and their coefficients β
Then,  null model ⊆ model S ⊆ full model

K: number of observations (i.e., K=n+n+…+nk)

 : maximized likelihood of K obs. under null model

 : maximized likelihood of K obs. under model S

where
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 Generalization to binomial case: 

K: number of Bernoulli observations zj’s

 : the maximized likelihood of K obs. under null model

 : the maximized likelihood of K obs. under model S

 Reading: Faraway (1st ed.), 2.9

 However, Nagelkerke (1991) pointed out that for 

discrete models, i.e., models whose likelihood is a 

product of probabilities, instead of densities, 

 Nagelkerke (1991) suggested (for model S )

For sparse data (i.e., ni is small), it is quite common to 

see low value of R2 even when the model is a good fit.

p. 3-37

Over-dispersion

• Q: What is overdispersion?

 Q: Why no goodness-of-fit test for 

Normal linear model if no further 

information about σ2 is available?

 Q: what cause large DS?  may suspect 

which is referred to as over-dispersion

Recall 2:

Recall 1: If data really follows a binomial GLM

model, i.e.,                                               where 

under model S,                                     then



 if true, yx’s no more ~ binomial even E(yx)=nxpx (S) holds



NTHU STAT 5230, 2025  Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)


