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• From each unit, observe data

covariates (explanatory variables): x=(x1,…,xm) 

response: zj’s, independent random variables, zj equals 1 with 

probability pxj, and 0 with probability 1− pxj

 objective: determine the relationship of x=(x1,…,xm) to px

(cf., linear model)

• Covariate classes

Sometimes, several units have same values of  covariates

Split the total sample K into k groups of size n1, …, nk, where 

each observation within a group has same values of covariates

The groups are called covariate classes

Binomial Data
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• After grouping, data can be expressed as

response: yi’s, independent r.v.’s with distribution B(ni, pxi)

• Advantage of grouping

Data is easier to view and store in the form 

of covariate classes (K units → k classes)

Grouped case and ni’s are large  can use 

Normal asymptotic theory or fit a linear model

(cf., un-grouped case, regarded as ni=1 for all i

 different asymptotics)

• Warning:

yi ~ B(ni, pxi) when the corresponding zj’s are (1) independent, 

(2) identically distributed as (3) Bernoulli with same pxi. It 

should be checked whether the 3 conditions hold.
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Be careful about reducing

raw data to covariate classes, 

e.g., the reduction throws 

away the time order of zj’s

which may be relevant

• A linear model approach for binomial data:

yx/nx = Xβ + ε, ε ∼ Ν (0, σ2Ι )

 Q: when is the approach appropriate? 

 The pmf shape of the distribution of yx/nx
is similar to the pdf shape of Normal

 px’s do not change too much (say, 0.3<px<0.7)

Some problems with this approach

 Predicted probability may > 1 or < 0

 Variance of binomial is not constant
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 Normal approximation might be too much a stretch

when ni’s not large enough or px≈1 or 0

 Some of these problems could be corrected

by using transformation and weighting

Generalized Linear Model for Binomial Data

• Recall: linear model

model description 1: Y = Xβ + ε, ε ∼ Ν (0, σ2Ι )
model description 2: Y ∼ Ν (Xβ, σ2Ι ) 

 Y ∼ Ν (µx, Σx) 



 µx = ηx, Σx = σ2Ι

Q: which description can be generalized to binomial data? 
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• 3 components in a generalized linear model (binomial example)

yx ~ B(nx, px)



 link function g: monotone and differentiable such that 

ηx=g(px)  px=g
−1(ηx) [for binimial, g:(0,1)→(−∞,∞) ]

Note. 
 Logit is close to the complementary 

log-log when px is small

• Common choices of link function for binomial data

Logit: ηx= log(px/(1−px))

Probit: ηx= Φ−1(px), where Φ is the cdf of N(0,1)

Complementary log-log: ηx= log(−log(1−px))

 Logit is close to probit when 0.1<px<0.9

(exercise: compare the 3 functions)
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• Recall. Likelihood-based approach for estimation and testing

Estimation: maximum likelihood estimator (MLE)

Testing: likelihood-ratio (LR) test, Wald test

• Log-likelihood of the binomial GLM (use logit link as an example):

• Estimation of β
Recall: in linear model, the LS estimator of β is also the MLE

For GLM, the concept of LS not appropriate any more 

 still can adopt the method of MLE

 maximizing l(β) as a function of β to find MLE

Obtain MLE by solving  ∂ l(β)/∂β=0:
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Usually no explicit formula for MLE of β in GLM

An algorithm (related to IRWLS) to perform the 

maximization will be discussed in future lecture

 Q: What is the estimated covariance matrix of the MLE? 

p. 3-8

Inference

• RSS (in LM) and deviance (in GLM)

Recall: in linear model, RSS play 

a critical role in inference

 Q: In GLM, what is the concept similar to RSS? 

 consider two models L and S

 a larger model L: l parameters and likelihood LL
 a smaller model S: s (s < l) parameters and likelihood LS

 S is nested in L (S ⊂ L), e.g.,

 Q: How to evaluate whether              are close enough in GLM? 

 To test H0: S (say, Aβ=c) vs. H1:L\S, likelihood 

methods suggests the likelihood ratio statistics:

where dfL\S=dim(L)−dim(S)=l−s.
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 Suppose that the larger model L is saturated. 

We have                 under L, and the LR test statistic becomes:

where         is the fitted values from the smaller model S.

DS is called deviance of S, which plays a role similar to RSS

 Since the saturated model fits as well as any 

model can fit, the deviance DS measures how 

close the (smaller) model S comes to the 

perfection (i.e., D=0 under saturated model).

 Deviance can be treated as a measure of goodness-of-fit
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• Suppose yi’s are truly binomial and ni’s are relatively large

Test for goodness-of-fit

If the model S is correct (H0), under H0:

• Use deviances to compare two models S and L, where S nested in L

 can use deviance to test whether the 

model is an adequate fit (i.e., not rejected)

The chi-square (null distribution) is 

only an approximation that becomes 

more accurate as the ni’s increase

[often suggest ni≥5 ]

Larger model L:  deviance DL and dfL (=k−l)
Smaller model S: deviance DS and dfS (=k−s)
To test H0: S (say, Aβ=c) vs. H1:L\S, the LR test statistics is

which is asymptotically distributed as                under H0
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• In terms of the accuracy of null distribution approximation, nested 

test is generally better than goodness-of-fit test

• (Wald test) alternative test for 

H0: βi=0 vs. H1: βi≠0

Recall. Consider the MLE for estimating Θ
 Asymptotic normality:

 Linear transformation:

 Wald test statistic for H0: AΘ=c vs. H1: AΘ≠c is:

Can be generalized to H0: βi=c or H0: β=c or H0: Aβ=c
 In contrast to normal linear model, these two test statistics

(deviance-based and Wald) are not identical

test statistics: z-value
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• Brief comparison

Deviance-based test requires finding the MLEs for both 

models S and L, while Wald test needs just one MLE (for L) 

 deviance-based test requires more computation

 deviance-based test is preferred unless

computation is too burdensome

Approach 1: (from Wald test) 

Hauck-Donner effect (Hauck and Donner, 1977): 

for sparse data (i.e., many ni’s=1 or small), the 

standard errors can be over-estimated and so the 

z-value is too small than it should be and the 

significance of an effect could be missed

• 100(1−α)% confidence interval for βi
T (test statistic)

θ

acceptance 

region of 

H0: θ =θ0 vs. 

H1: θ ≠θ0

confidence 

interval 

based on 

TobsTobs

θ0

Duality between confi-

dence interval and tests
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Approach 2: (profile likelihood-based method)

 Parameters:

 Likelihood:

 Profile likelihood:

(recall: the computation of the C.I. for λ in Box-Cox method)

The profile likelihood method is generally 

preferable for the same Hauck-Donner reason

Similar method can be generalized to construct 

confidence region of several parameters

 For a coefficient βi, its profile 

likelihood-based C.I. is

other βj’s, j≠i, set to the MLE when 

βi fixed (i.e., MLE as a function of βi)
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• Some notices about deviance when ni is small

Take the extreme case ni=1 (binary data). 

Then, yi = 0 or 1. For a model S (i.e., XSβS) under logit link, 

 Reading: Faraway (2006, 1st ed.), 2.1, 2.2, 2.3, Appendix A

For a DS to measure goodness-of-fit, it has to compare the fitted 

values to the data yi (cf., in linear model, we use 

to compare), but here we have only a function of

Other methods must be used to judge 

goodness-of-fit for binary data or the case 

of small ni’s [e.g., Hosmer-Lemeshow 

test, see Hosmer and Lemeshow (2013, 

3rd ed.), Applied Logistic Regression]
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• a comparison

Linear model Binomial 

GLMY=Xβ+ε Y∼N(Xβ, σ2I)
estimation of β
Goodness of fit

or Lack of fit

H0: S vs. 

H1:L\S

H0: βi=0

Confidence 

interval or

region
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Tolerance distribution

• Consider the following example:

Students answers k questions on a test

The jth student has an aptitude Tj, 

The distribution of Tj is called tolerance distribution, 
which arose from toxicity studies where the aptitude
would be replaced with the tolerance of the insects.

The ith question has a fixed difficulty xi

The jth student will get the ith answer correct only if Tj > xi
The probability that a randomly selected

student will get the ith answer wrong is:
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• F = Φ(η)  probit link

• F =  logit link

• F = (heavier tail)

 complementary log-log link

Odds

• Definition of odds ox

Sometimes, a better scale than probability to present chance

Express the payoffs for bets

 even bet: pay $1 for every $1 bet, odds=1  p=0.5

 3-1 against bet: pay $3 for every $1 bet, odds=1/3  p=0.25

 1-3 on bet: pay $1 for every $3 bet, odds=3  p=0.75

 ox = px/(1−px)  px= ox/(1+ox)

A mathematical advantage of odds: unbounded above and 

unbounded above & below after taking log.
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• odds and logit link

Consider the model

at two covariate values x=(x1, x2) and x’=(x1+1, x2).

The coefficient β1 can be interpreted as: 

A unit increase in x1 with x2 held fixed

 increases the log-odds of successes by β1, or

 increases the odds of successes by a factor of exp(β1)

The usually interpretational difficulties regarding causation

apply as in standard regression

No such simple interpretation exists for other links, e.g.,
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• Odds ratio and relative risk

Suppose the probability of successes at x1 (say, in the presence

of some condition) is p1 and p2 at x2 (say, in its absence)

Prospective and retrospective sampling

• Data: 

 Relative risk = p1/p2

 Odds ratio = o1/o2

 Log odds ratio = log(o1/o2)

For rare outcomes, relative risk ≈ odds ratio, but for larger 

probabilities, they may be substantial differences

There is some debate over which is the more intuitive

way of expressing the effect of changing from x1 to x2.

Q: how is the data collected?
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• Sampling methods:

Prospective sampling: the covariates x are fixed and then the 

response z (or y) is observed, called cohort study.

Retrospective sampling: the response z (but not y) is fixed and 

then the covariates x are observed, called case-control study.

An infant respiratory disease example:

 Select a sample of newborn boy/girl whose parents had 

chosen a particular method of feeding, and then monitor

whether disease present or not present for their first year. 

 Find infants coming to a doctor with a respiratory 

disease in the first year and then record their sex and 

method of feeding; also obtain a sample of respiratory 

disease-free infants and record their information

(Note. It requires the ratio of inclusion probabilities in 

the study to be irrelevant to the covariate values)

 Q: which method is better?
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• Since the question of interest is how covariates affect response, 
prospective sampling seems to be required, but retrospective
sampling is cheaper, faster, and more efficient.

Dc (=0) D (=1)

Rc (=0) π0 0 (0.1) a π0 1 (0.6) a

Rc (=1) π1 0 (0.1) a π1 1 (0.2) a

Given Rc, log-odds for disease is log(π01/π00)

Given R, log-odds for disease is log(π11/π10)

The difference between the two log-odds is of interest (why?):

1000

1000

1000/7

1000/3

6000/7

2000/3

1000

500

500

1000

750

250

• An example

response z: disease present/not present – D/Dc

covariate x: risk factor present/not present – R/Rc

The two ratios π11/π01 and π10/π00 can 

be estimated in a retrospective manner.

p. 3-22• A retrospective sampling is as effective as a prospective one for 
estimating ∆ (provided (1) the probabilities of inclusion in D and in 
Dc are homogeneous or their ratio is irrelevant to covariates, and 
(2) data is reliable, e.g., no problems such as inaccurate or 
incomplete historical records; or unreliable memory of the subject)

• This manipulation is not possible for other links ever mentioned.

• Q: When can retrospective sampling work (under logit link)? 

Consider a scenario: a study with response Z and covariates X and 

zj: binary response of jth unit (e.g., disease present/not present)

Z=0 Z=1

1st covari-

ate class

( X1 )

2nd covari-

ate calss 

( X2 )

•••
•••

•••

kth covari-

ate class 

( Xk )

xj: covariate values of jth unit in the population

Ij: =1 if jth unit is included in the study, 0 if not

τj: =P(Ij=1)=prob. jth unit included in the study

assume that (i) for jth units in the cell of ith

covariate class with Z=0 or Z=1, respectively,

τj = P ( Ij=1 |Z=0, X=Xi ) = τi0 ;

τj = P ( Ij=1 |Z=1, X=Xi ) = τi1 , and

(ii) τi1/τi0’s irrelevant to (i.e., constant over) Xi’s
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For fair prospective study, τi0=τi1, i=1, …, k.

For retrospective study, often τi0≠τi1 and τi1 much larger than τi0
The probability of interested is

pi ≡ P (Z=1 |X=Xi )

We can use data (either from prospective or 
retrospective sampling) to study the probability:

qi ≡ P (Z=1 | I=1, X=Xi )
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 In a retrospective study,

 β1, …, βp−1 (effects of X) are estimable

 β0 is inestimable when no information about τi1/τi0
 cannot estimate pi’s

 Q: Why should the ratio of τi1 and τi0 be irrelevant to X?

 Reading: Faraway (2006, 1st ed.), 2.4, 2.5, 2.6
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Choice of link function

• Usually not possible to make the choice based 

on the data alone (i.e., based on fits) because

the fits based on the 3 links would be 

quite similar for moderate p (why?)

• A lab example

for pi that is close to 0 or 1, a very 

large amount of ni would be 

necessary to distinguish them (why?)
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• Logit link (logistic regression) is popular. Reasons to use logit:

 theoretically/mathematically simpler due the intractability of Φ
easier to interpret – logit is related to log-odds

retrospective sampling

 Reading: Faraway (1st ed.), 2.7

• The choice of link function is usually made based on assumptions

derived from physical knowledge or simple convenience

• In some cases, harmful effects only 

become apparent at large dosages

In order to estimate the probability of a 

harmful effect at low dose, it would be 

necessary to select an appropriate link 

function. 

However, the data for high dosages will be 

of little help in selecting an appropriate link
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Prediction and Effective Doses

• Prediction of the probability px0
(or odds ox0

, 

or ηx0
) of success for given covariate values x0

• Recall: At covariate values 

For the MLE , we have 

Denote the estimate of Σ by 

Predict ηx0
by           , denoted by 

Predict px0
by                , denoted by 

100(1−α)% confidence interval for ηx0
: 

100(1−α)% confidence interval for px0
: 
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 In contrast to the linear model situation, there is no distinction

possible between prediction interval (P.I.) for a future obser-

vation z and confidence interval (C.I.) for the mean response

• Prediction of future binary observation zx0
and classification

 Q: What is a classi-

fication problem for 

binary data?

 p0 often chosen to equal 0.5

 for cases where the losses due to mis-

classification are not symmetrical, p0

other than 0.5 should be used, such as 

disease diagnosis, credit scoring

Q: How about P.I. for a future binomial observation yx0
?

The prediction of zx0
is based on whether under 

the fit at x0 is greater (then, predict zx0
=1) 

or less (then, predict zx0
=0) than a given p0
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• Prediction of effective dose (an inverse problem):

 Reading: Faraway (2006, 1st ed.), 2.10

 Q: What is an inverse problem? Estimate/predict the 

set of covariate values x that meet certain condition.

When there is a single covariate or when other covariates are 

held fixed, we sometimes wish to estimate the value of xp0

corresponding to a given p0, i.e., find xp0
such that ηxp



=g(p0)

For example, determine which dose xp0

will lead to a probability of success p0

 ED50 (effective dose) or LD50 (lethal dose): p0=1/2

 For a logit link with ηx=β0+β1x, 

 Set p0=1/2 (logit(p0)=0) and solve for xp0


 To determine its standard error, we can use δ-method: 
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Estimation Problems

• Q: If we observe a dataset that has all 0 at lower doses and all 1

at high doses, (1) what does it imply? (2) is it a good thing?

• The IRWLS algorithm for MLE (future lecture) 

usually converge (approximate) to the MLE fast

• However, difficulties can sometimes arise  convergence fail

• The following is a condition that cause the failure

 the two groups are linearly separable
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Deviance would be small

Estimation of β is very unstable  large standard error

 Wald test insignificant

 Reading: Faraway (1st ed.), 2.8

Lesson for data collection  should get 

yx on some x’s where yx/nx ≠ 0 or 1. (Q: 

why there is no such issue in Normal y?)

• Alternative fitting approaches

exact logistic regression (Cox, 1970; Mehta and Patel, 1995)

• Instability in parameter estimation will also 
occur in datasets that approach linear separability

Bias reduction (BR) method of Firth (1993): remove

the O(n−1) term from the asymptotic bias of 

This is an “embarrassment of riches” 

 Perfect fit is possible, 

but estimation is a problem
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Alternative Goodness-of-Fit Measure
• Recall: deviance is one 

measure of how well the 

model fits the data. 

Q: are there others?

• Pearson’s X2 statistic 

for a model S (i.e.,                                    )

which results in

where Oij: observed counts for ijth cell

Eij: expected counts for ijth cell under S

General definition (for J, ≥ 2, categories)

For a binomial response (J=2):

 number of 1’s: Oi1 = yi while Ei1 =

 number of 0’s:Oi2 = ni−yi while Ei2 = 
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X2 typically close in size to the deviance. Why?

X2 can often be used in the same manner as the deviance

Alternative versions of hypothesis tests described above: use 

X2 in place of the D (with same asymptotic null distribution)

 However, some care is necessary, e.g., the 

model is fit (i.e., β is estimated) to minimize

the deviance and not the Pearson’s X2

 It is possible, although unlikely, that the X2 could 

increase as an effect is added to the model
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• We can define Pearson residuals under model S as: 

• generalized R2

Recall: R2 for Normal linear model is a popular goodness-of-fit

measure, which represents the proportion of variance explained.

Q: how to generalize this concept to binomial GLM?

which can be viewed as a type of standardized residual

So, Pearson’s X2 is analogous to the residual 

sum of squares used in Normal linear model



For a data with K Bernoulli ungrouped data zj’s and k binomial

grouped data yi’s, the parameters p’s (and η’s) in the models of 

zj’s and yi’s are:
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Approach 2: interpretation of R2 from likelihood viewpoint 

 Recall. In Normal Linear model,

Approach 1: proportion of deviance explained

Consider the following models:

 null model: all η’s are equal (intercept-only model) 

 full model: all the η’s are free to vary

 A model S (                                   ) in which 

all η’s are restricted to fall on a linear function 

of effect codings and their coefficients β
Then,  null model ⊆ model S ⊆ full model

K: number of observations (i.e., K=n+n+…+nk)

 : maximized likelihood of K obs. under null model

 : maximized likelihood of K obs. under model S

where
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 Generalization to binomial case: 

K: number of Bernoulli observations zj’s

 : the maximized likelihood of K obs. under null model

 : the maximized likelihood of K obs. under model S

 Reading: Faraway (1st ed.), 2.9

 However, Nagelkerke (1991) pointed out that for 

discrete models, i.e., models whose likelihood is a 

product of probabilities, instead of densities, 

 Nagelkerke (1991) suggested (for model S )

For sparse data (i.e., ni is small), it is quite common to 

see low value of R2 even when the model is a good fit.
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Over-dispersion

• Q: What is overdispersion?

 Q: Why no goodness-of-fit test for 

Normal linear model if no further 

information about σ2 is available?

 Q: what cause large DS?  may suspect 

which is referred to as over-dispersion

Recall 2:

Recall 1: If data really follows a binomial GLM

model, i.e.,                                               where 

under model S,                                     then



 if true, yx’s no more ~ binomial even E(yx)=nxpx (S) holds
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Presence of some outliers (can be detected

in diagnostics for GLM, future lecture)

• Some possible explanations for large deviance DS, say when 

H0: S is correct is rejected (cf., possible reasons causing       larger

than σ2 in Normal linear model)

 For a larger number of outliers, we might conclude that they

are not exceptional  something amiss with other structures

Sparse data (i.e., nx’s too small)  is questionable

Wrong linear structure in ηx

Deficiencies in the random part of GLM (i.e., yx not binomial)

 Covariates not transformed/combined in a 

correct way (diagnostics for GLM can help) 

 Important covariates are not included ( cause 

overdispersion if these important predictors are not available)

Consider two scenarios when yx not binomially distributed:

over-dispersion: 

under-dispersion:                                              (in rare cases) 
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(i) the sub-population of X=x can be divided into clusters

(families, litters, …); (ii) l clusters sampled, and (for

simplicity) m units drawn from each of the l clusters; 

(iii) total number of units sampled at X=x is n=l×m.

In the ith sampled cluster, i=1, …, l, 

number of successes = si ~ B(m, πi), 
where πi’s could vary (say, vary with other covariates)

 Violation of the assumption of same px in a covariate class

 Example: in shuttle disaster case, position of O-ring on the 

booster rocket may have effect on the failure probability. 

Yet, this (important) covariate was not recorded.

 Q: How can the heterogeneity cause overdispersion? e.g.,

X=x

1st cluster

(1st sampled)

2nd cluster

(not sampled)

•••
•••

uth cluster

(lth sampled)

•••
•••

[Note:                            only when the corresponding nx zx’s

are (1) independent and (2) identically distributed as B(1, px)]

Regard πi’s as independent random variables

with mean p and variance τ2 p(1−p)

 y = s1+…+sl
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 Violation of independence assumption can cause

E(y) = iE(si) = i{E[E(si|πi)]}= l×mp = np

Overdispersion cannot arise when n=1 (sparse case). 

Var(y) = iVar(si) = i{E[Var(si|πi)]+Var[E(si|πi)]} 

= i{E[mπi(1−πi)]+Var(mπi)}
= l×{m p – m[τ2p(1−p) + p2] + m2 τ2p(1−p)}

= [1+(m−1)τ2]np(1−p) ≥ np(1−p)

 over-dispersion, e.g., response has a common 
cause, say a disease is influenced by genes, the 
responses will tend to be positively correlated

 under-dispersion, e.g., when food supply is limited, 
survival probability of an animal may be increased
by the death of others, i.e., negatively correlated

• Q: how to model overdispersion and do analysis?

 Introduce one additional dispersion parameter σ2, i.e., 

⇐ notice its similarity to linear model

(standard binomial case  σ2=1; over-dispersion  σ2>1)
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For a model S, σ2 can be estimated using

Estimation of β is unaffected since E(yx)

is not changed (Why? Note that yx is not

~ binomial so that likelihood is different)

For S nested in L, difference in their deviances

No goodness-of-fit test is possible 
This dispersion parameter method is more appropriate when the 

covariate classes are roughly equal in size (i.e., n1≈n2≈…≈nk)

(using deviance D in place of X2 is not very recom-

mended as D may be inconsistent for sparse data)

When comparing models, e.g., testing H0:S vs. H1:L\S, can use

But,                                             and
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Matched Case-Control Studies

• Q: In a case-control study, how should we choose the 

controls if there exist some confounding variables W, 

say age and sex, that may affect the outcome in 

addition to the risk factors X?

 Reading: Faraway (2006, 1st ed.), 2.11

Alternative approaches to over-dispersion

 beta-binomial method (Williams, 1982; Crowder, 1978)

 quasi-likelihood: specify only how the mean and variance
of the response are connected to covariates. 

Approach 1: record and include confounding 

variables as covariates in GLM analysis 

(however, we may not be interested in the 

effects of the confounding variables)

Approach 2: confounding variables are 

explicitly adjusted for in the design
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• Matched case-control design (MCCD): match each case with one 

or more controls that have the same or similar values of some set 

of potential confounding variables. A group of a case and its 

corresponding controls is called a matched set, e.g.,

Dc D

Xc y1 0 0 1
X y1 1 0 0

Dc D

Xc y200 0
X y210 1

1st case
age=20; sex=male

2st case
age=20; sex=female

Dc D

Xc yn00 1
X yn10 0

nst case
age=70; sex=female

• • •

1:M MCCD: M controls for each case

• Some disadvantages of MCCD

M typically small, can vary in size in every matched set

 Each additional control yields a diminished return in terms of 

increased efficiency in estimating the effects of risk factors

 It is usually not worth exceeding M=5

Lose the possibility of discovering the 
effects of the confounding variable W

The data will likely be far from a random 
sample of the population of interest
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• Modeling and Analysis of a 1:M MCCD with n matched sets

For individual i in the jth matched set W=wj, 

j=1, …, n, observe the value of risk factors xij

Denote i=0  case and i=1,…, M control

Assume the main-effect model of 

X and W (i.e., no interactions):

Let Sj = z0 j+z1 j+…+zMj = the 

number of 1’s (i.e., D) in the M+1

binary responses observed in the 

jth matched set

Dc D

Xc yj00 yj01

X yj10 yj11

Kj−Sj Sj Kj

W=wj

αj: effect of W=wj (jth match set)

 Sj: sufficient statistics of αj
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Conditional probability of the observed data in jth matched set

Regard αj’s as nuisance parameters, it is natural to make 

inference conditional on its sufficient statistics Sj’s
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The complete conditional likelihood

 Reading: Faraway (2006, 1st ed.), 2.12

 Standard likelihood methods can 

now be employed to make inference

 The conditional likelihood takes the same 

form as that used for the proportional hazards 

model (PHM) in survival/reliability analysis 

 can use software developed for PHM

 Note that in this approach:

 αj’s are not estimated  cannot make predictions of pij’s

 only can make statements about the 

odds ratio as measured by the β

(Even if αj’s are estimated, they are not likely

the estimates of the true effects of W, 

prediction of pij’s is still questionable)


