p- 21

Types of variables

« response-explanatory distinction
(dependent-independent, response-predictor)

» response variables Y': regarded as random.

» explanatory variables X, ..., X : regarded as deterministic.

b b

» causal relationship? not necessary.

e continuous-discrete distinction

» whether a variable can take any values within an interval
(if yes = continuous; if no, only countable values = discrete)

» Q: does continuous data really exist in the real world?
No, because of the precision limitation of measuring instrument.

> a better distinction approach from the viewpoint of data
analysis: according the number of values a variable
can take within the range in which most data fall

= variable taking lots of values (dense) P
= continuous; few values = discrete

= Q: Should Poisson data (infinite possible
values) be treated as discrete or continuous
from this data analysis viewpoint?

* quantitative-qualitative distinction

» continuous variable must be quantitative

» discrete variable could be quantitative/qualitative/between

 categorical (qualitative or between) variables can be further
classified into:

»nominal variable: no natural ordering between categories
(e.g., religious affiliation, mode of transportation, favorite
type of music, ...)

= values that represent categories have no numeric meaning

» no value exist between categories

= analysis irrelevant to the order of listing the categories
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» ordinal variable: there exist some ordering between categories

(e.g., size of automobile, social class, political philosophy,
patient condition, ...)

= exact distance between ordered categories are unknown

» interval variable: categories are non-overlapping intervals (e.g.,
functional life length of television set, length of prison term, ...)

» can have numerical distances between 2 categories

» sometimes, possible to compare the ratio of 2 categories

» Sometimes, it is the way that a variable is measured
determined its classification, e.g., education:

» nominal when measured as public/private school
» ordinal when measured as none/high school/bachelor/...

» interval variable when measured by # of year intervals
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» hierarchy of measurement scale: interval variable (highest) >
ordinal > nominal (lowest)

= statistical methods for variables of one type can be used
for variables at higher level, but not at lower levels

» nominal variable = qualitative; interval variable = (close to)
quantitative;  ordinal variable = between (fuzzy)

Resp. | Expl.
» choice of statistical method/model for different Cf’m-
types of variables — a rough classification: Disc.

Quan.

» only response variables, no explanatory variable Disc.
Inte.

Ordi.

» 1 response variable = uni-variate analysis

Nomi.

=« more than 1 response = multi-variate analysis

» both response and explanatory variables
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= response: (1) regarded as random variable; (2) modeling
depends on the types of variable

o continuous & normal = linear model (LM)

o continuous but not normal (including exponential family,
such as Weibull, gamma, ...) = generalized linear model

o discrete = generalized linear model (GLM)

» explanatory: (1) regarded as deterministic; (2) same treatment
(sum of base functions multiplied by their coefficients) for
any types of explanatory variables in modeling

o quantitative: base functions like polynomial or other
continuous transformations (e.g., log, exp, sin, cos, ...)

o qualitative: base function like dummy variables

Sufficient statistics of categorical responses

* Q: how to convert categorical observations (symbols or notations)
into numerical and computable data without losing any important
information? Q: what important information?
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« Example 1.
» scenario
= observe Y ; U r categories {1, 2, ..., r}, =1, ..., k.
= category j observed with probablhty DPx.js l—l, ., T, and

Pyt Dot Fpy, =1
= statistical modelmg Y Yio ..., Yy, are independent and

identically distributed from multmomzal(l Px1s --5 Pxy)-

» sufficient statistics
« the joint pmfof Y, |, ¥\, ..., ¥y 18

X,
Na: 1 Nm,Q N:c,r
Py 1 "Pgo " Pxr

where N, ;= number of category j in the k, trials, j=1, ..., ,
and k, N R A

x by factorlzatlon thm ( ..., Iy ,) are the sufficient
statistics for the parameters Q) x.ls -5 Dy,) and

X,

(N_l, ey ﬂ) Dmulttnomzal(@z; Px.1s s pﬁ).

»note: two categories and binomial is a special case of r=2.
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« Example 2.
» scenario

= observe Y, ; U r categories {1, 2, ..., r}, =1, ..., K, where
K,isa random variable on the non- negatlve 1ntegers

= assume K, [ Poisson(A,) and given (conditioned on) K =k,

m]

Yer Y ..., Y, ;. are independent and identically
dlstrlbuted from multinomial(l; Px1s ---5 Px,), Where

o p, ~H(observing category j), 1—1,..., r, and py ;+-+py =1
» sufficient statistics
= the joint pmfof Y, , Y, ,, ..., Y, x 1S

X, X, X, Ky

_ — N, _
e~ Az )\Kax N1 Ner € APz L (Agpg 1) Vo1 e~ T (A\gpg ) Noor
—Xpwl ...pwJ. X X.X

Kg! 7 Ng.1! Nz !

where NV, ;= number of category j in the
Kg trials, j=1, ..., r, and K N it Ny

= by factorization thm, (N, 4, .. ) are the sufficient
statistics for the parameters ()\pr s sees N pr 7«) and
« N,y ..., N, are independent and N, ; O Poisson(Ap, ;). " *
* In the 2 examples,
categorical counts statistics Informa-
TCSpONse " (numeric) (numeric " " tion
(symbols) —_— calculation) —

Some real-data examples (from Agresti,
Categorical Data Anslysis)
« From Agresti (2002, 2/ ed.)

TABLE 3.1 Swedish Study on Aspirin Use and
Myocardial Infarction

Myocardial Infarction

Yes No Total

Placebo 28 656 684
Aspirin 18 658 676




« From Agresti (2013, 3" ed.)

Table 6.9 Clinical Trial Relating Treatment to Response for Eight Centers, with Expected
Value and Variance (of Success Count for Drug) Under Conditional Independence

Response

Center Treatment Success Failure QOdds Ratio [ var(n )

1 Drug 11 25 1.19 10.36 3.79
Control 10 27

2 Drug 16 4 1.82 14.62 2.47
Control 22 10

3 Drug 14 5 4.80 10.50 2.41
Control 7 12

4 Drug 2 14 2.29 1.45 0.70
Control 1 16

5 Drug 6 11 00 3.52 1.20
Control 0 12

6 Drug 1 10 00 0.52 0.25
Control 0 10

7 Drug 1 4 2.0 0.71 0.42
Control 1 8

8 Drug 4 2 0.33 4.62 0.62
Control 6 I
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« From Agresti (2013, 3" ed.)

Table 2.11 Data for Exercise 2.15 on Graduate Admissions

Whether Admitted

Male Female

Department Yes No Yes No
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« From Agresti (2013, 3" ed.)

Table 2.5 Cross-Classification of Smoking by
Lung Cancer

Lung Cancer

Smoker Cases Controls
Yes 688 650
No 21 59
Total 709 709

« From Agresti (2013, 3™ ed.)

Table 3.9 Data for Fisher’s Tea-Tasting Experiment

Guess Poured First

Poured First Milk Tea Total
Milk 3 | 4
Tea 1 3 4
Total 4 4
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« From Agresti (2002, 2" ed.)

TABLE 7.1 Primary Food Choice of Alligators

Primary Food Choice

Size
Lake Gender (m) Fish Invertebrate Reptile Bird  Other
Hancock Male < 23 g/ | 0 0 5
> 23 4 0 ) 1 2
Female <23 16 3 2 2 3
>23 3 0 1 2 3
Oklawaha Male < 23 2 2 0 0 1
> 2.3 13 7 6 0 0
Female < 2.3 3 9 1 0 2
> 23 0 | 0 1 0
Trafford Male < 2:3 3 7 1 0 1
>23 8 6 6 3 5
Female <23 2 4 1 1 4
> 2.3 0 | 0 0 0
George Male < 2.3 13 10 0 2 2
> 2.3 9 0 0 1 2
Female < 23 3 9 1 0 |
> 23 8 1 0 0 |
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« From Agresti (2002, 2" ed.)

TABLE 7.7 Life-Length Distribution of U.S. Residents (Percent),” 1981

Males Females
Life Length White Black White Black
0-20 24 (24) 3.6 (4.4) LG (12 27 25
20-40 34 (3.3) 7.5 (6.4) 1.4 (1.9) 2.9 (3.4)
40-50 3.8 (44) 8.3 (7:47) 22 (©4) 44 (4.3)
50-60 17.5 (16.7) 25.0 (26.1) 9.9 (9.6) 16.3 (16.3)
Over 65 72.9 (73.0) 55.6 (55.4) 84.9 (84.9) 73.7 (73.7)
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« From Agresti (2013, 3" ed.)

Table 8.7 Outcomes for Pregnant Mice in Developmental
Toxicity Study

Concentration i

(mg/kg per day) Nonlive Malformation Normal
0 (controls) 15 1 281
62.5 17 0 225
125 22 7 283
250 38 59 202

500 144 132 9
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« From Agresti (2002, 2" ed.)

TABLE 2.8 Cross-Classification of Job Satisfaction by Income

Job Satisfaction

Income Very Little Moderately Very
(dollars) Dissatisfied Dissatisfied Satisfied Satisfied
< 15,000 | 3 10 6
15,000-25,000 2 3 10 i
25,000-40,000 | 6 14 12

> 40,000 0 1 9 11

+ Reading: Agresti (2013), 1.1; Faraway (2006, 1%t ed.), Preface (page v)
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Some discrete distributions

Definition. Bernoulli distribution - B(p)

A Bernoulli distribution takes on only two values: 0 and 1, with
probabilities 1 — p and p, respectively.

, [ -p" ifz=00rz=1
© pmf: plr) = { 0, otherwise

e mgf: pe! +1—1p

e mean: p

e variance: p(1l — p)

e parameter: p € [0, 1]

e example: toss a coin once, p=probability that head occurs

Note: If A is an event, then the indicator random variable [

follows the Bernoulli distribution.
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Definition. Binomial distribution - B(n, p)

Suppose that n independent Bernoulli trials are performed, where
n is a fixed number. The total number of 1 appearing in the n
trials follows a binomial distribution with parameters n and p.

n
(1 — m)(n—=a) _
0pmf:p(gj): (ﬂf)p(l p) , L 0,1,...,71
0, otherwise ' Lt 14+ O=X
e mgf: (pe'+1—p)", teR. %

e mean: np
e variance: np(l —p)
e parameter: p € [0,1], n=1,2,...

e example: # of heads, toss a coin n times

n=10andp=.1

n=10andp=3

p(x)
[

Note:
0 _
D123 4567890 0123455678980 (a—l—b)nzgzzo(n)a“’bnx.

(3) X (b) x L
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Note.

1. binomial distribution is a generalization of bernoulli distri-

bution from 1 trial to n trials

2. Let Xy,..., X, beiid. B(p),thenY = X; +---4+ X, ~
B(n,p).

3. Let X; ~ B(n;,p),i = 1,...,k, and Xy,..., X} are inde-
pendent. Then, Y = Xy + -+ Xp ~ B(ny + - -+ + ng, p).

% %
eh  Met 4 47 %
P s
X+ X + --- + Xk =\(='-R—0%1'5 n <V\\+~"+M> tral

Definition. Geometric distribution - G(p)

The geometric distribution is constructed from an infinite se-
quence of independent Bernoulli trials. Let X be the total num-
ber of trials up to and including the first appearance of 1. Then,
X follows the geometric distribution.

b % % % Yo
o 0 o o 1
)

.
e

d L}
2 3 x|l %




0, otherwise

0, r <1

e mgf: %, t < —log(l—p).

® 1neart: %

e variance: 1p;2p

e parameter: p € [0, 1]

to and including the first winning ticket

Note: a memoryless distribution

_p)(w—l)p’ T = 172737 .
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1—(1-—p), 1<z <z<z]+1

e example: lottery, # of tickets a person must purchase up

Note:
Z;O:n t" = 1t_t7
for =1 <t < 1.

Definition. Negative Binomial distribution - NB(r, p)

p. 2-20

An infinite sequence of independent Bernoulli trials is performed

until the appearance of the rth 1. Let X denote the total number
of trials. Then, X follows negative binomial distribution.

e mean: %

. . r(1-p)
e variance: —

e parameter: p € [0,1], r=1,2,...

e example: lottery, # of tickets a person
must purchase up to and including the
rth winning ticket

Yo Wroe Vo Yo' o'
9o 9loo o/ 90 of
L";’- A 2nd iy
#of triaks %
z—1
r(1 _ n\(z—r) _
0pmf:p(aj): (7’*_1>p(1 p) y L T7T+1,...
0, otherwise
'rert
e mgf: MW’ t < —log(1—p).

Note:

Zoc . (?”H—x—l) - ( 1 )
T= T -]
for —1 <t < 1.
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Note.
1. negative binomial distribution is a generalization of geo-

metric distribution from 1st success to rth success

2. Let X5, Xo,..., X, beiid. G(p), thenY = X;+---+ X, ~
NB(r,p).

3. Let X; ~ NB(ry,p),i=1,...,k, and Xy,..., X} are inde-
pendent. Then, Y = X +-- -+ Xp ~ NB(ri+ -+ + 1, p).

% % ek k X% k
0/ --- rr9--"1¢ /79 1
P2 --c 12 s Xp ~-- lI’L 9'6|<
\/m__//r\.w/,]\ \111\
ot =" Y "l
X+ X+ - 4 XK _\1/ i:}ogtnd&mh\((w +Tp<> one .

4. Consider two random variables (Y, A). Suppose that
Y|,_, ~ Poisson(}) and A ~ gamma(a, ), where a is a

positive integer. Then,

4
Lta M( 1+B>
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Definition. Multinomial distribution - Multinomial(n, T D coc D,)

Suppose that each of n independent trials can result in one of
types of outcomes, and that on each trial the probabilities of the
r outcomes are py, pa, ..., pr. Let X; be the total number of out-
comes of type i in the n trials, i = 1,...,r. Then, (Xy,...,X,)
follows a multinomial distribution.

e joint pmf:

n - . x;=20,1,....n, and
plzy,...,z.) = (1111"'337~)p1 G 3 g =
0, otherwise
e joint mgf: (pie"t +--- + pe)" ty,... ¢, € R.
e marginal distribution: X; ~ B(n,p;),i=1,....,7
e mean: F(X;)=np;, i=1,...,n

e variance: Var(X;) =np;(1—p;), i=1,...,n
e covariance: Cov(X;, X;) = —npip;, 1 # j

e parameter: p; € [0,1], and > p;=1. n=1,2,...




e example: randomly choose n people, record the numbers " s

of people with different religions

Note: (a1 +---+ap)" = Z (a: " x)a‘fl---ai’“.
1 Tk

Notes.
1. Multinomial distribution is a generalization of the binomial

distribution from 2 outcomes to r outcomes.

2. Consider (X1y,...,X,) ~ multinomial(n,ps,...,p;). Let

10,1, - - - , 1 be integers such that 0 = 49 < 41 < --- <1 =1,
and define iy
L= Z =i
m:ij_l—l

g =1,...,k. Then,

(Y1,...,Yy) ~ multinomial(n, qi, . . ., qx),

where g = Z%:ij_l_l Pm,J=1,...,k
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Definition. Poisson distribution - P(A)

Limit of binomial distributions X,, ~ B(n, p,), where p,, = 0 as

n — oo in such a way that A\, = np, — A.

(n>pﬁ(1 — p,)9) Note: if a, — a, (1 + %")n — e,

T

_ n(n—1)..:.6!(71—95+1)<%)I<l_%>nm
= n(n—1)-.-(n—l’+1)l)\x(1_ﬁ>7lx

nE L n
1 — 1.\ A" A\ : ATe™
= 11— 1 -T2 (122 7.2 e 1=
n n x! n n @l z!
explanations.

1. if n large, the pmf of B(n,p) is not easily calculated. Then,
we can approximate them by pmf of P()\), where A = np.

oooopog - - - 000

e
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2. Let X be the number of times some event occurs in a given

time interval /. Divide the interval into many small subin-
tervals Iy, k = 1,...,n, of equal length. Let Nj be the
number of events occurring in . When we can assume
Ny, ..., N, are independent and approximately ~ B(p), X
has a distribution near P(\), where A = np.

P
'pmﬁmm_{ge’x 0,1,2,...

otherwise
e mgf: MU ¢ eR.
e mean: A\
e variance: )\
e parameter: A\ > ( goie:z;o—o X

e example: number of phone calls coming into an exchange
during a unit of time

4 20 1

: A=1 m V=5, =10
0 0 HHHH HHHI'IHH__ 0:

0123 453 012345 01234567 890UNRBUISIEIIEIN 012345678910 NBUIBIEINERN

X
o) ; o ¢ i !

Notes.
Let X; ~ P(N\),t=1,...,k, and Xy,..., X} are independent.
Then,

1,X:X1_|_...+XkNP(AE)\le..._F)\k)'

2. (X1,..., X |Y = n) ~ multinomial(n, p1, . . ., pr), where

Pi =, 1=1

= L = k.
2Nt A

g s e ey

The converse statement also holds with A\; = A X p;.
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Definition. Hypergeometric distribution - HG(r, n, m)

Suppose that an urn contains n black balls and m white balls.
Let X denote the number of black balls drawn when taking
r balls without replacement. Then, X follows hypergeometric
distribution.

([ n m
r )\ r—zx x=0,1,...,min(r, n),

e pmf: p(z) = < (n—|—m> T r—x<m

r Note:
L0, otherwise (") =22 () (1)
e mgf: exist, but no simple expression

rn

® INnearn. n—f-_m

rom(n+m—r)
n+m)?(n+m—1)

e variance: (

e parameter: rn,m=1,2,...,andr <n+4+m

e example: sampling industrial products for defect inspection
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Notes. a relationship between hypergeometric and binomial distri-
butions: Let m, n — oo in such a way that

n

TTLTLE _> Y
P, m-+n P

where 0 < p < 1. Then,

()0
() !

% Reading: Agresti (2013), 1.2

+¢ Further Reading: Agresti (2013), 1.3, 1.4, 1.5, 1.6. These are about uni-variate analysis for data from
some discrete distribution.




