Types of variables

- response-explanatory distinction (dependent-independent, response-predictor)
 - response variables Y: regarded as random.
 - \triangleright explanatory variables $X_1, ..., X_m$: regarded as <u>deterministic</u>.
 - causal relationship? not necessary.
- continuous-discrete distinction
 - whether a <u>variable</u> can take <u>any values</u> within an <u>interval</u> (if <u>yes</u> \Rightarrow <u>continuous</u>; if <u>no</u>, only <u>countable</u> values \Rightarrow <u>discrete</u>)
 - ▶ Q: does continuous <u>data</u> really <u>exist</u> in the <u>real world</u>?
 No, because of the <u>precision limitation</u> of <u>measuring instrument</u>.
 - ➤ a better distinction approach from the <u>viewpoint</u> of <u>data</u> analysis: according the <u>number</u> of <u>values</u> a variable can take within the <u>range</u> in which most data fall

NTHU STAT 5230, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

- variable taking lots of values (dense)
 ⇒ continuous; few values ⇒ discrete
- Q: Should <u>Poisson data (infinite possible values)</u> be treated as <u>discrete</u> or <u>continuous</u> from this data analysis <u>viewpoint</u>?
- quantitative-qualitative distinction
 - continuous variable must be quantitative
 - discrete variable could be quantitative/qualitative/between
- <u>categorical</u> (<u>qualitative</u> or <u>between</u>) variables can be <u>further</u> classified into:
 - nominal variable: no natural ordering between categories
 (e.g., religious affiliation, mode of transportation, favorite
 type of music, ...)
 - values that represent categories have no numeric meaning
 - no value exist between categories
 - <u>analysis</u> irrelevant to the <u>order</u> of <u>listing</u> the categories

(e.g., size of automobile, social class, political p	hilosop	ohy,	
patient condition,)			
■ exact distance between ordered categories are	unkno	own_	
<u>functional life length</u> of television set, <u>length</u> of		`	_
■ can have <u>numerical distances</u> between <u>2 cate</u>	gories		
■ sometimes, possible to compare the <u>ratio</u> of 2	catego	ories	
Sometimes, it is the way that a variable is measu	ıred		
determined its <u>classification</u> , e.g., <u>education</u> :			
• nominal when measured as public/private sch	nool		
ordinal when measured as none/high school/	bachelo	or/	
■ interval variable when measured by # of year	interv	als	
NTHU STAT 5230, 2025, Lecture Notes made by SW. Cheng (NTHU, Taiwan)			
<u>hierarchy</u> of <u>measurement scale</u> : <u>interval</u> variable <u>ordinal</u> > <u>nominal</u> (lowest)	e (<u>high</u>	est) >	>
 statistical methods for variables of one type of for variables at higher level, but not at lower 		used	
\triangleright nominal variable \Rightarrow qualitative; interval variable	ole \Rightarrow (close	to
$\underline{\text{quantitative}}; \underline{\text{ordinal}} \text{ variable} \Rightarrow \underline{\text{between}} \text{ (fuzz)}$	<u>zy</u>)	Resp.	Е
 choice of statistical method/model for different 	Cont.	Resp.	
types of variables – a rough classification:	Disc.		
only response variables, no explanatory variable	Quan. Disc.		
■ 1 response variable ⇒ uni-variate analysis	Inte.		
= <u>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</u>	Ordi. Nomi.		
■ more than 1 response ⇒ multi-variate analys			ļ
= more than 1 response — math-variate analys	10		

- response: (1) regarded as random variable; (2) modeling depends on the types of variable
 - \blacksquare continuous & normal \Rightarrow linear model (LM)
 - continuous but not normal (including exponential family, such as Weibull, gamma, ...) ⇒ generalized linear model
 - \square discrete \Rightarrow generalized linear model (GLM)
- explanatory: (1) regarded as deterministic; (2) same treatment (sum of base functions multiplied by their coefficients) for any types of explanatory variables in modeling
 - quantitative: base functions like polynomial or other continuous transformations (e.g., log, exp, sin, cos, ...)
 - qualitative: base function like dummy variables

Sufficient statistics of categorical responses

• Q: how to convert categorical observations (symbols or notations) into numerical and computable data without losing any important information? **Q**: what important information?

• Example 1.

p. 2-6

- > scenario
 - observe $\underline{Y}_{x,i} \in \underline{r}$ categories $\{\underline{1, 2, ..., r}\}, \underline{i}=1, ..., \underline{k}_x$.
 - category j observed with probability $p_{x,j}$, $j=1, ..., \underline{r}$, and $\underline{p_{\mathbf{x},1} + p_{\mathbf{x},2} + \cdots + p_{\mathbf{x},r}} = 1.$
 - statistical modeling: $Y_{x,1}, Y_{x,2}, ..., Y_{x,k_x}$ are independent and identically distributed from $\underline{multinomial}(1; p_{x,1}, ..., p_{x,r})$.
- sufficient statistics
 - the joint pmf of $\underline{Y_{\mathbf{x},1}}, \underline{Y_{\mathbf{x},2}}, \dots, \underline{Y_{\mathbf{x},k_{\mathbf{x}}}}$ is $p_{\mathbf{x},1}^{N_{\mathbf{x},1}} \cdot p_{\mathbf{x},2}^{N_{\mathbf{x},2}} \cdots p_{\mathbf{x},r}^{N_{\mathbf{x},r}}$

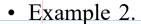
$$p_{\boldsymbol{x},\boldsymbol{1}}^{N_{\boldsymbol{x},\boldsymbol{1}}} \cdot p_{\boldsymbol{x},\boldsymbol{2}}^{N_{\boldsymbol{x},\boldsymbol{2}}} \cdots p_{\boldsymbol{x},r}^{N_{\boldsymbol{x},r}}$$

where $N_{\mathbf{x},j} = \underline{\text{number}}$ of category \underline{j} in the $\underline{k}_{\mathbf{x}}$ trials, $\underline{j}=1, ..., \underline{r}$, and $\underline{k}_{\mathbf{x}} = \underline{\overline{N}}_{\mathbf{x},1} + \dots + \underline{N}_{\mathbf{x},r}$.

• by factorization thm, $(N_{x,1}, ..., N_{x,r})$ are the sufficient statistics for the parameters $(p_{x,1}, ..., p_{x,r})$ and

$$(N_{\underline{\mathbf{x}},\underline{1}},...,N_{\underline{\mathbf{x}},\underline{r}}) \sim \underline{multinomial}(\underline{k}_{\underline{\mathbf{x}}};\underline{p}_{\underline{\mathbf{x}},\underline{1}},...,p_{\underline{\mathbf{x}},\underline{r}}).$$

 \triangleright note: two categories and binomial is a special case of r=2.



> scenario

- observe $\underline{Y}_{\underline{x},i} \in \underline{r}$ categories $\{\underline{1, 2, ..., r}\}, \underline{i}=1, ..., \underline{K}_{\underline{x}}$, where $\underline{K}_{\underline{x}}$ is a <u>random variable</u> on the <u>non-negative integers</u>.
- assume $\underline{K_x} \sim \underline{Poisson}(\underline{\lambda_x})$ and \underline{given} (conditioned on) $\underline{K_x} = k_x$,
 - $\neg \underline{Y_{x,1}}, \underline{Y_{x,2}}, \dots, \underline{Y_{x,k_x}}$ are <u>independent</u> and <u>identically</u> distributed from $\underline{multinomial}(1; \underline{p_{x,1}}, \dots, \underline{p_{x,r}})$, where
 - $\underline{p}_{x,j} = \underline{P}(\text{observing } \underline{\text{category } j}), \underline{j} = 1, \dots, \underline{r}, \text{ and } \underline{p}_{x,1} + \dots + \underline{p}_{x,r} = 1.$

sufficient statistics

• the joint pmf of $Y_{x,1}, Y_{x,2}, ..., Y_{x,\underline{K_x}}$ is

$$\frac{e^{-\lambda_{\boldsymbol{x}}}\lambda_{\boldsymbol{x}}^{K_{\boldsymbol{x}}}}{K_{\boldsymbol{x}}!} \times \underline{p_{\boldsymbol{x},1}^{N_{\boldsymbol{x},1}} \cdots p_{\boldsymbol{x},r}^{N_{\boldsymbol{x},r}}} \propto \frac{e^{-\lambda_{\boldsymbol{x}}p_{\boldsymbol{x},1}}(\lambda_{\boldsymbol{x}}p_{\boldsymbol{x},1})^{N_{\boldsymbol{x},1}}}{N_{\boldsymbol{x},1}!} \times \cdots \times \frac{e^{-\lambda_{\boldsymbol{x}}p_{\boldsymbol{x},r}}(\lambda_{\boldsymbol{x}}p_{\boldsymbol{x},r})^{N_{\boldsymbol{x},r}}}{N_{\boldsymbol{x},r}!}$$

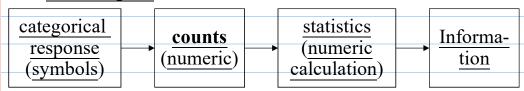
where $\underline{N}_{\underline{x},j} = \underline{\text{number}}$ of $\underline{\text{category } j}$ in the $\underline{K}_{\underline{x}} \underline{\text{trials}}, \underline{j} = 1, \dots, \underline{r}, \text{ and } \underline{K}_{\underline{x}} = \underline{N}_{\underline{x},1} + \dots + \underline{N}_{\underline{x},r}.$

• by <u>factorization thm</u>, $(\underline{N}_{\underline{x},1}, ..., N_{\underline{x},r})$ are the <u>sufficient</u> statistics for the <u>parameters</u> $(\underline{\lambda}_{\underline{x}}\underline{p}_{\underline{x},1}, ..., \underline{\lambda}_{\underline{x}}\underline{p}_{\underline{x},r})$ and

NTHU STAT 5230, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

■ $N_{\underline{\mathbf{x}},1}, \dots, N_{\underline{\mathbf{x}},r}$ are independent and $N_{\underline{\mathbf{x}},j} \sim Poisson(\underline{\lambda}_{\underline{\mathbf{x}}}\underline{p}_{\underline{\mathbf{x}},j})$.

• In the 2 examples,



Some real-data examples (from Agresti, Categorical Data Anslysis)

• From Agresti (2002, 2rd ed.)

TABLE 3.1 Swedish Study on Aspirin Use and Myocardial Infarction

	Myocardia	Infarction	
	Yes	No	Total
Placebo	28	656	684
Aspirin	18	658	676

• From Agresti (2013, <u>3rd ed.</u>)

Table 6.9 Clinical Trial Relating Treatment to Response for Eight Centers, with Expected Value and Variance (of Success Count for Drug) Under Conditional Independence

		Resp	onse			
Center	Treatment	Success	Failure	Odds Ratio	μ_{11k}	$var(n_{11k})$
1	Drug	11	25	1.19	10.36	3.79
	Control	10	27			
2	Drug	16	4	1.82	14.62	2.47
	Control	22	10			
3	Drug	14	5	4.80	10.50	2.41
	Control	7	12			
4	Drug	2	14	2.29	1.45	0.70
	Control	1	16			
5	Drug	6	11	∞	3.52	1.20
	Control	0	12			
6	Drug	1	10	∞	0.52	0.25
	Control	0	10			
7	Drug	1	4	2.0	0.71	0.42
	Control	1	8			
8	Drug	4	2	0.33	4.62	0.62
	Control	6	1			

NTHU STAT 5230, 2025, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

• From Agresti (2013, 3rd ed.)

Table 2.11 Data for Exercise 2.15 on Graduate Admissions

		Whether	Admitted	
	M	ale	Fe	male
Department	Yes	No	Yes	No
A	512	313	89	19
В	353	207	17	8 —
C	120	205	202	391
D	138	279	131	244 —
Е	53	138	94	299
F	22	351	24	317
Total	1198	1493	557	1278

• From Agresti (2013, <u>3rd ed.</u>)

Table 2.5 Cross-Classification of Smoking by **Lung Cancer**

	Lung	Cancer
Smoker	Cases	Controls
Yes	688	650
No	21	59
Total	709	709

• From Agresti (2013, 3rd ed.)

Table 3.9 Data for Fisher's Tea-Tasting Experiment

	Guess Por	ured First	
Poured First	Milk	Tea	Total
Milk	3	1	4
Tea	1	3	4
Total	4	4	

NTHU STAT 5230, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

• From Agresti (2002, 2rd ed.)

TABLE 7.1 Primary Food Choice of Alligators

		Size		Primary 1	Food Choice	e	
Lake	Gender	(m)	Fish	Invertebrate	Reptile	Bird	Other
Hanc	ock Male	≤ 2.3	7	1	0	0	5
		> 2.3	4	0	0	1	2
	Female	≤ 2.3	16	3	2	2	3
		> 2.3	3	0	1	2	3
Oklav	vaha Male	≤ 2.3	2	2	0	0	1
		> 2.3	13	7	6	0	0
	Female	≤ 2.3	3	9	1	0	2
		> 2.3	0	1	0	1	0
Traffe	ord Male	≤ 2.3	3	7	1	0	1
		> 2.3	8	6	6	3	5
	Female	≤ 2.3	2	4	1	1	4
		> 2.3	0	1	0	0	0
Geor	ge Male	≤ 2.3	13	10	0	2	2
		> 2.3	9	0	0	1	2
	Female	≤ 2.3	3	9	1	0	1
		> 2.3	8	1	0	0	1

• From Agresti (2002, <u>2rd ed.</u>)

TABLE 7.7 Life-Lei	agth Distribution of	U.S. Residents	(Percent).	^a 1981
--------------------	----------------------	----------------	------------	-------------------

		1	Males			Fem	nales	
Life Len	igth W	hite	В	lack	W	hite	Bl	ack
0-20	2.4	(2.4)	3.6	(4.4)	1.6	(1.2)	2.7	(2.3)
20-40	3.4	(3.5)	7.5	(6.4)	1.4	(1.9)	2.9	(3.4)
40-50	3.8	(4.4)	8.3	(7.7)	2.2	(2.4)	4.4	(4.3)
50-60	17.5	(16.7)	25.0	(26.1)	9.9	(9.6)	16.3	(16.3)
Over 65	72.9	(73.0)	55.6	(55.4)	84.9	(84.9)	73.7	(73.7)

NTHU STAT 5230, 2025, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

• From Agresti (2013, 3rd ed.)

Table 8.7 Outcomes for Pregnant Mice in Developmental Toxicity Study

Concentration		Response	
(mg/kg per day)	Nonlive	Malformation	Normal
0 (controls)	15	1	281
62.5	17	0	225
125	22	7	283
250	38	59	202
500	144	132	9

• From Agresti (2002, 2rd ed.)

TABLE 2.8 Cross-Classification of Job Satisfaction by Income

		Job Satist	faction	
Income (dollars)	Very Dissatisfied	Little Dissatisfied	Moderately Satisfied	Very Satisfied
< 15,000	1	3	10	6
15,000-25,000	2	3	10	7
25,000-40,000	1	6	14	12
> 40,000	0	1	9	11

* Reading: Agresti (2013), 1.1; Faraway (2006, 1st ed.), Preface (page v)

made by S.-W. Cheng (NTHU, Taiwan)

Some discrete distributions

p. 2-16

Definition. Bernoulli distribution - B(p)

A <u>Bernoulli</u> distribution takes on only <u>two values:</u> 0 and 1, with probabilities 1 - p and p, respectively.

- pmf: $p(x) = \begin{cases} p^x (1-p)^{(1-x)}, & \text{if } x = 0 \text{ or } x = 1 \\ 0, & \text{otherwise} \end{cases}$
- mgf: $pe^t + 1 p$
- mean: p
- variance: p(1-p)
- parameter: $p \in [0, 1]$
- \bullet example: toss a coin once, p=probability that head occurs

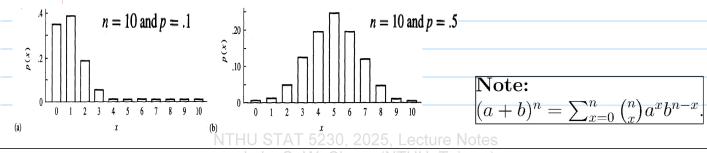
Note: If \underline{A} is an event, then the indicator random variable $\underline{I_A}$ follows the <u>Bernoulli</u> distribution.

Definition. Binomial distribution - B(n, p)

Suppose that n independent Bernoulli trials are performed, where n is a fixed number. The total number of 1 appearing in the ntrials follows a binomial distribution with parameters n and p.

• pmf:
$$p(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{(n-x)}, & x = 0, 1, \dots, n \\ 0, & \text{otherwise} \end{cases}$$

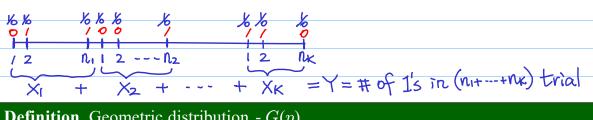
- mgf: $(pe^t + 1 p)^n$, $t \in \mathbb{R}$.
- mean: np
- variance: np(1-p)
- parameter: $p \in [0, 1], n = 1, 2, ...$
- example: # of heads, toss a coin n times



Note.

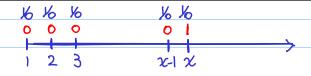
p. 2-18

- 1. <u>binomial</u> distribution is a generalization of <u>bernoulli</u> distribution from 1 trial to n trials
- 2. Let X_1, \ldots, X_n be i.i.d. B(p), then $Y = X_1 + \cdots + X_n \sim$ B(n,p).
- 3. Let $X_i \sim B(n_i, p), i = 1, \ldots, k$, and X_1, \ldots, X_k are independent. Then, $\underline{Y} = X_1 + \cdots + X_k \sim B(n_1 + \cdots + n_k, p)$.



Definition. Geometric distribution - G(p)

The geometric distribution is constructed from an infinite sequence of independent Bernoulli trials. Let X be the total number of trials up to and including the first appearance of 1. Then, X follows the geometric distribution.



- **pmf:** $p(x) = \begin{cases} (1-p)^{(x-1)}p, & x = 1, 2, 3, \dots \\ 0, & \text{otherwise} \end{cases}$
- cdf: $F(x) = \begin{cases} 1 (1-p)^{[x]}, & 1 \le [x] \le x < [x] + 1 \\ 0, & x < 1 \end{cases}$
- mgf: $\frac{pe^t}{1-(1-p)e^t}$, $t < -\log(1-p)$.
- mean: $\frac{1}{p}$
- variance: $\frac{1-p}{n^2}$
- parameter: $p \in [0, 1]$
- example: lottery, # of tickets a person must purchase up to and including the first winning ticket

Note: a memoryless distribution

p. 2-20

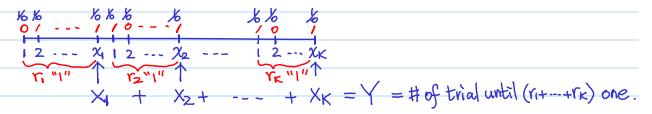
Definition. Negative Binomial distribution - NB(r, p)

An <u>infinite</u> sequence of independent Bernoulli trials is performed until the appearance of the rth 1. Let X denote the total number of trials. Then, X follows negative binomial distribution.

- $\mathbf{pmf:} \ p(x) = \left\{ \begin{array}{c} x-1 \\ r-1 \end{array} \right\} p^r (1-p)^{(x-r)}, \ x=r,r+1,\dots$
- mgf: $\frac{p^r e^{rt}}{[1-(1-p)e^t]^r}$, $t < -\log(1-p)$.
- mean: $\frac{r}{p}$
- variance: $\frac{r(1-p)}{p^2}$
- parameter: $p \in [0,1], r = 1, 2, ...$
- example: lottery, # of tickets a person must purchase up to and including the rth winning ticket

 $\sum_{x=0}^{\infty} {n+x-1 \choose x} t^x = \frac{1}{(1-t)^n},$ for -1 < t < 1.

- 1. <u>negative binomial</u> distribution is a <u>generalization</u> of <u>geometric distribution</u> from 1st success to rth success
- 2. Let X_1, X_2, \ldots, X_r be i.i.d. G(p), then $Y = X_1 + \cdots + X_r \sim NB(r, p)$.
- 3. Let $X_i \sim NB(r_i, p)$, i = 1, ..., k, and $X_1, ..., X_k$ are independent. Then, $Y = X_1 + \cdots + X_k \sim NB(r_1 + \cdots + r_k, p)$.



4. Consider two random variables $(\underline{Y},\underline{\Lambda})$. Suppose that $\underline{Y}|_{\underline{\Lambda}=\underline{\lambda}} \sim \underline{Poisson}(\underline{\lambda})$ and $\underline{\Lambda} \sim \underline{gamma}(\underline{\alpha},\underline{\beta})$, where $\underline{\alpha}$ is a positive integer. Then,

$$\underline{\underline{Y} + \alpha} \sim \underline{NB}\left(\underline{\alpha}, \frac{\beta}{1+\beta}\right).$$

NTHU STAT 5230, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

p. 2-22

Definition. Multinomial distribution - $Multinomial(n, p_1, p_2, ..., p_r)$

Suppose that each of \underline{n} independent trials can result in one of \underline{r} types of outcomes, and that on each trial the probabilities of the r outcomes are $\underline{p_1, p_2, \ldots, p_r}$. Let $\underline{X_i}$ be the total number of outcomes of type \underline{i} in the n trials, $\underline{i} = 1, \ldots, r$. Then, $\underline{(X_1, \ldots, X_r)}$ follows a $\underline{\text{multinomial}}$ distribution.

• joint pmf:

$$p(x_1, \dots, x_r) = \begin{cases} \binom{n}{x_1 \cdots x_r} p_1^{x_1} \cdots p_r^{x_r}, & x_i = 0, 1, \dots, n, \text{ and } \\ x_1 \cdots x_r & \sum_{i=1}^r x_i = n \\ 0, & \text{otherwise} \end{cases}$$

- joint mgf: $(p_1e^{t_1} + \cdots + p_re^{t_r})^n, t_1, \dots, t_r \in \mathbb{R}$.
- marginal distribution: $X_i \sim B(n, p_i), i = 1, \ldots, r$
- mean: $E(X_i) = np_i, i = 1, ..., n$
- variance: $Var(X_i) = np_i(1 p_i), i = 1, ..., n$
- covariance: $Cov(X_i, X_j) = -np_i p_j, i \neq j$
- **parameter:** $p_i \in [0, 1]$, and $\sum_{i=1}^r p_i = 1$. n = 1, 2, ...

• **example:** randomly choose <u>n</u> people, record the <u>numbers</u> of people with different religions

Note:
$$(a_1 + \dots + a_k)^n = \sum_{x_1 + \dots + x_k = n} {n \choose x_1, \dots, x_k} a_1^{x_1} \cdots a_k^{x_k}.$$

Notes.

- 1. <u>Multinomial</u> distribution is a <u>generalization</u> of the <u>binomial</u> distribution from <u>2 outcomes</u> to <u>r outcomes</u>.
- 2. Consider $(X_1, \ldots, X_{\underline{r}}) \sim \underline{multinomial(\underline{n}, \underline{p_1}, \ldots, \underline{p_r})}$. Let $\underline{i_0, i_1, \ldots, i_k}$ be integers such that $\underline{0 = i_0 < i_1 < \cdots < \underline{i_k = r}}$, and define

$$\underline{Y_j} = \sum_{m=\underline{i_{j-1}}-1}^{\underline{i_j}} \underline{X_m},$$

 $j=1,\ldots,\underline{k}$. Then,

$$\underline{(Y_1,\ldots,Y_k)} \sim \underline{multinomial}(\underline{n},\underline{q_1},\ldots,\underline{q_k}),$$

where
$$\underline{q_j} = \underline{\sum_{m=i_{j-1}-1}^{i_j} \underline{p_m}}, j = 1, \dots, k.$$

NTHU STAT 5230, 2025, Lecture Notes

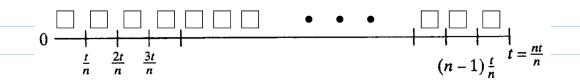
Definition. Poisson distribution - $P(\lambda)$

<u>Limit</u> of <u>binomial</u> distributions $X_n \sim \underline{B(n, p_n)}$, where $\underline{p_n \to 0}$ as $\underline{n \to \infty}$ in such a way that $\underline{\lambda_n} \equiv \underline{np_n \to \lambda}$.

$$\frac{\binom{n}{x}p_n^x(1-p_n)^{(n-x)}}{\sum_{n=0}^{\infty}\frac{n(n-1)\cdots(n-x+1)}{x!}\left(\frac{\lambda_n}{n}\right)^x\left(1-\frac{\lambda_n}{n}\right)^{n-x}} = \frac{n(n-1)\cdots(n-x+1)}{n^x}\left(\frac{\lambda_n}{n}\right)^x\left(1-\frac{\lambda_n}{n}\right)^{n-x} \\
= \frac{n(n-1)\cdots(n-x+1)}{n^x}\frac{1}{x!}\lambda_n^x\left(1-\frac{\lambda_n}{n}\right)^{n-x} \\
= 1(1-\frac{1}{n})\cdots(1-\frac{x-1}{n})\frac{\lambda_n^x}{x!}\left(1-\frac{\lambda_n}{n}\right)^n\left(1-\frac{\lambda_n}{n}\right)^{-x} \to 1^x \cdot \frac{\lambda^x}{x!} \cdot e^{-\lambda} \cdot 1 = \frac{\lambda^x e^{-\lambda}}{x!}$$

explanations.

1. if <u>n large</u>, the <u>pmf of B(n, p) is not easily calculated</u>. Then, we can approximate them by <u>pmf of $P(\lambda)$ </u>, where $\lambda = np$.



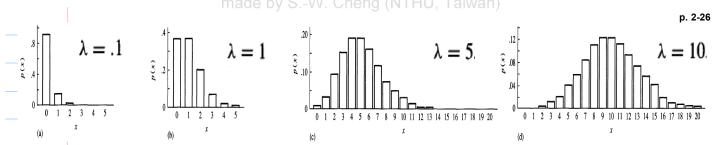
• **pmf:**
$$p(x) = \begin{cases} \frac{\lambda^x}{x!} e^{-\lambda}, & x = 0, 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$

- mgf: $e^{\lambda(e^t-1)}$, $t \in \mathbb{R}$.
- mean: λ
- variance: λ
- parameter: $\lambda > 0$

Note: $e^{\lambda} = \sum_{x=0}^{\infty} \frac{\lambda^x}{x!}$

• example: <u>number of phone calls</u> coming into an exchange during a <u>unit of time</u>

NTHU STAT 5230, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)



Notes.

Let $\underline{X_i} \sim \underline{P(\underline{\lambda_i})}$, $i = 1, \dots, \underline{k}$, and $\underline{X_1, \dots, X_k}$ are independent. Then,

1.
$$\underline{Y} = \underline{X_1 + \dots + X_k} \sim P(\underline{\lambda} \equiv \underline{\lambda_1 + \dots + \lambda_k}).$$

2. $(\underline{X_1, \ldots, X_k} \mid \underline{Y = \underline{n}}) \sim \underline{multinomial(\underline{n}, \underline{p_1, \ldots, p_k})}$, where

$$\underline{p_{\underline{i}}} = \frac{\lambda_{\underline{i}}}{\lambda_1 + \dots + \lambda_k} = \frac{\lambda_{\underline{i}}}{\underline{\lambda}}, \ i = 1, \dots, k.$$

The <u>converse statement</u> also <u>holds</u> with $\underline{\lambda_i} = \underline{\lambda} \times \underline{p_i}$.

Definition. Hypergeometric distribution - HG(r, n, m)

Suppose that an <u>urn</u> contains \underline{n} black balls and \underline{m} white balls. Let X denote the <u>number of black balls</u> drawn when <u>taking \underline{r} balls</u> without replacement. Then, X follows <u>hypergeometric</u> distribution.

• **pmf:**
$$p(x) = \begin{cases} \frac{\binom{n}{x}\binom{m}{r-x}}{\binom{n+m}{r}}, & x = 0, 1, \dots, \underline{\min(r, n)}, \\ \frac{(n+m)}{r}, & \underline{r-x \leq m} \end{cases}$$
• **Note:**

$$0, & \text{otherwise} \qquad \binom{n+m}{r} = \sum_{x} \binom{n}{x} \binom{m}{r-x}.$$

- mgf: exist, but no simple expression
- mean: $\frac{rn}{n+m}$
- variance: $\frac{rnm(n+m-r)}{(n+m)^2(n+m-1)}$
- parameter: $\underline{r, n, m} = \underline{1, 2, ...}$, and $\underline{r \leq n + m}$
- example: sampling industrial products for defect inspection

NTHU STAT 5230, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

p. 2-28

Notes. a relationship between <u>hypergeometric</u> and <u>binomial</u> distributions: Let $\underline{m}, n \to \infty$ in such a way that

$$\underline{p_{m,n}} \equiv \frac{n}{m+n} \to p,$$

where 0 . Then,

$$\frac{\binom{n}{x}\binom{m}{r-x}}{\binom{n+m}{r}} \to \binom{r}{x}p^x(1-p)^{r-x}.$$

- **Reading**: Agresti (2013), 1.2
- ❖ Further Reading: Agresti (2013), 1.3, 1.4, 1.5, 1.6. These are about <u>uni-variate</u> analysis for <u>data</u> from some discrete distribution.