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response variables Y : regarded as random.

explanatory variables X1, …, Xm: regarded as deterministic. 

causal relationship? not necessary.

• continuous-discrete distinction

whether a variable can take any values within an interval

(if yes  continuous; if no, only countable values  discrete)

Types of variables

 Q: does continuous data really exist in the real world?

No, because of the precision limitation of measuring instrument.

a better distinction approach from the viewpoint of data 

analysis: according the number of values a variable 

can take within the range in which most data fall

• response-explanatory distinction 

(dependent-independent, response-predictor)
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 variable taking lots of values (dense) 

 continuous; few values  discrete

 Q: Should Poisson data (infinite possible 

values) be treated as discrete or continuous

from this data analysis viewpoint?

• quantitative-qualitative distinction

continuous variable must be quantitative

discrete variable could be quantitative/qualitative/between

• categorical (qualitative or between) variables can be further 

classified into:

nominal variable: no natural ordering between categories

(e.g., religious affiliation, mode of transportation, favorite 

type of music, …)

 values that represent categories have no numeric meaning

 no value exist between categories

 analysis irrelevant to the order of listing the categories
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ordinal variable: there exist some ordering between categories

(e.g., size of automobile, social class, political philosophy, 

patient condition, …)

 exact distance between ordered categories are unknown

 interval variable: categories are non-overlapping intervals (e.g., 

functional life length of television set, length of prison term, …)

 can have numerical distances between 2 categories

 sometimes, possible to compare the ratio of 2 categories

Sometimes, it is the way that a variable is measured

determined its classification, e.g., education:

 nominal when measured as public/private school

 ordinal when measured as none/high school/bachelor/…

 interval variable when measured by # of year intervals

p. 2-4

 hierarchy of measurement scale: interval variable (highest) > 

ordinal > nominal (lowest)

 statistical methods for variables of one type can be used

for variables at higher level, but not at lower levels

 nominal variable  qualitative;    interval variable  (close to) 

quantitative;    ordinal variable  between (fuzzy)

• choice of statistical method/model for different 

types of variables – a rough classification:

only response variables, no explanatory variable

 1 response variable  uni-variate analysis

 more than 1 response  multi-variate analysis

Resp. Expl.

Cont.

Disc.
Quan.

Disc.
Inte.

Ordi.

Nomi.

both response and explanatory variables
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 response: (1) regarded as random variable; (2) modeling

depends on the types of variable

 continuous & normal  linear model (LM)

 continuous but not normal (including exponential family, 

such as Weibull, gamma, …)  generalized linear model

 discrete  generalized linear model (GLM)

 explanatory: (1) regarded as deterministic; (2) same treatment

(sum of base functions multiplied by their coefficients) for 

any types of explanatory variables in modeling

 quantitative: base functions like polynomial or other 

continuous transformations (e.g., log, exp, sin, cos, …)

 qualitative: base function like dummy variables

Sufficient statistics of categorical responses

• Q: how to convert categorical observations (symbols or notations) 

into numerical and computable data without losing any important 

information? Q: what important information?
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• Example 1.

scenario

 observe Yx,i ∈ r categories {1, 2, …, r}, i=1, …, kx. 

 category j observed with probability px,j, j=1, …, r, and

px,1 + px,2 + ··· + px,r = 1.

 statistical modeling: Yx,1, Yx,2, …, Yx,kx
are independent and 

identically distributed from multinomial(1; px,1, …, px,r).

sufficient statistics

 the joint pmf of Yx,1, Yx,2, …, Yx,kx
is

where Nx,j = number of category j in the kx trials, j=1, …, r, 

and kx=Nx,1+···+Nx,r. 

 by factorization thm,  (Nx,1, …, Nx,r) are the sufficient 

statistics for the parameters (px,1, …, px,r) and 

(Nx,1, …, Nx,r) ∼ multinomial(kx; px,1, …, px,r).

note: two categories and binomial is a special case of r=2. 
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• Example 2.

scenario

 observe Yx,i ∈ r categories {1, 2, …, r}, i=1, …, Kx, where 
Kx is a random variable on the non-negative integers. 

 assume Kx ∼ Poisson(λx) and given (conditioned on) Kx=kx,

 Yx,1, Yx,2, …, Yx,kx
are independent and identically

distributed from multinomial(1; px,1, …, px,r), where

 px,j=P(observing category j), j=1,…, r, and px,1+···+px,r=1.

sufficient statistics

 the joint pmf of Yx,1, Yx,2, …, Yx,Kx
is

where Nx,j = number of category j in the 

Kx trials, j=1, …, r, and Kx=Nx,1+···+Nx,r. 

 by factorization thm,  (Nx,1, …, Nx,r) are the sufficient 

statistics for the parameters (λxpx,1, …, λxpx,r) and 
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 Nx,1, …, Nx,r are independent and Nx,j ∼ Poisson(λxpx,j). 

• In the 2 examples, 

Some real-data examples (from Agresti, 

Categorical Data Anslysis)

• From Agresti (2002, 2rd ed.)

categorical 
response
(symbols)

counts
(numeric)

statistics
(numeric

calculation)

Informa-
tion
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• From Agresti (2013, 3rd ed.)
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• From Agresti (2013, 3rd ed.)
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• From Agresti (2013, 3rd ed.)

• From Agresti (2013, 3rd ed.)
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• From Agresti (2002, 2rd ed.)
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• From Agresti (2002, 2rd ed.)
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• From Agresti (2013, 3rd ed.)
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 Reading: Agresti (2013), 1.1; Faraway (2006, 1st ed.), Preface (page v)

• From Agresti (2002, 2rd ed.)
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Definition. Bernoulli distribution - B(p)

Some discrete distributions
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Definition. Binomial distribution - B(n, p)

Suppose that n independentBernoulli trials are performed, where

n is a fixed number. The total number of 1 appearing in the n

trials follows a binomial distribution with parameters n and p.

• • •
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Definition. Geometric distribution - G(p)
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Definition. Negative Binomial distribution - NB(r, p)
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Definition. Multinomial distribution - Multinomial(n, p1, p2, …, pr)
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Definition. Poisson distribution - P(λ)

• • •
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Definition. Hypergeometric distribution - HG(r, n, m)
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 Reading: Agresti (2013), 1.2

 Further Reading: Agresti (2013), 1.3, 1.4, 1.5, 1.6. These are about uni-variate analysis for data from 

some discrete distribution. 


