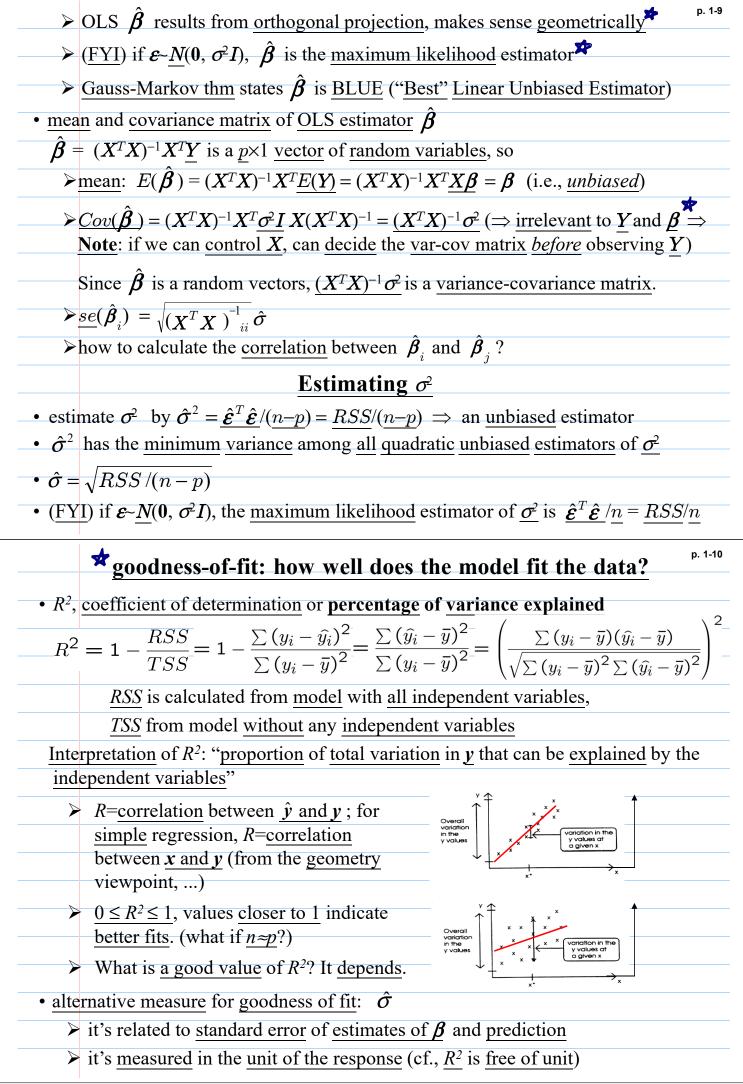
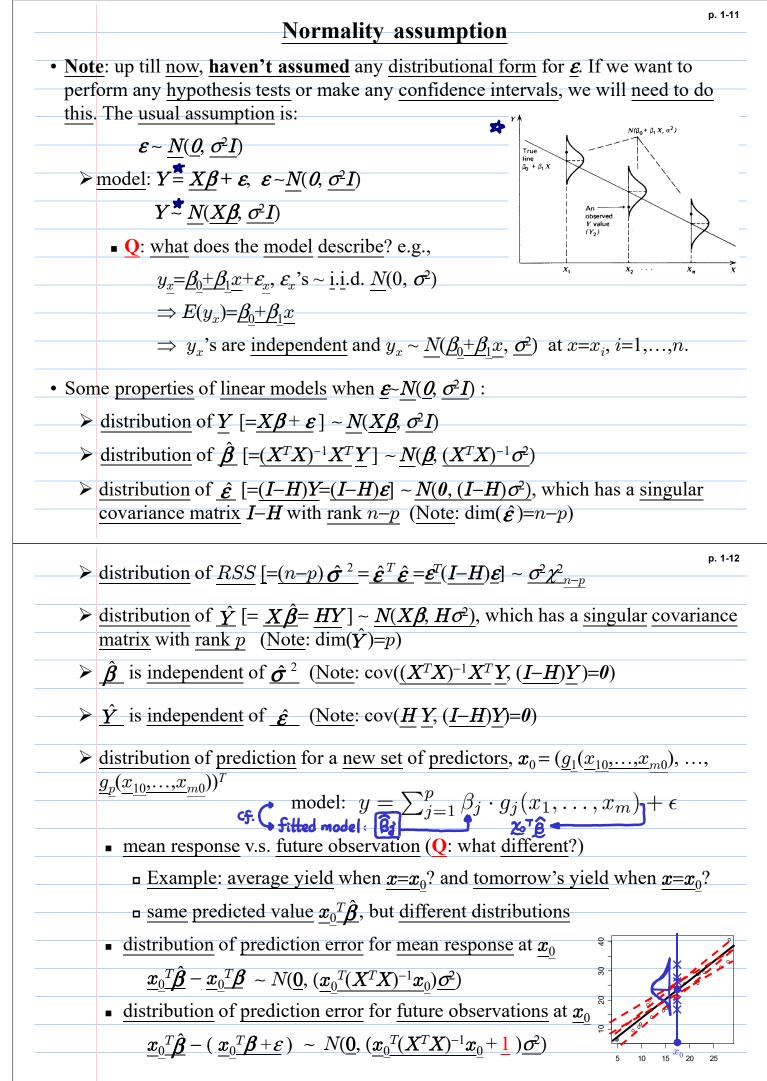
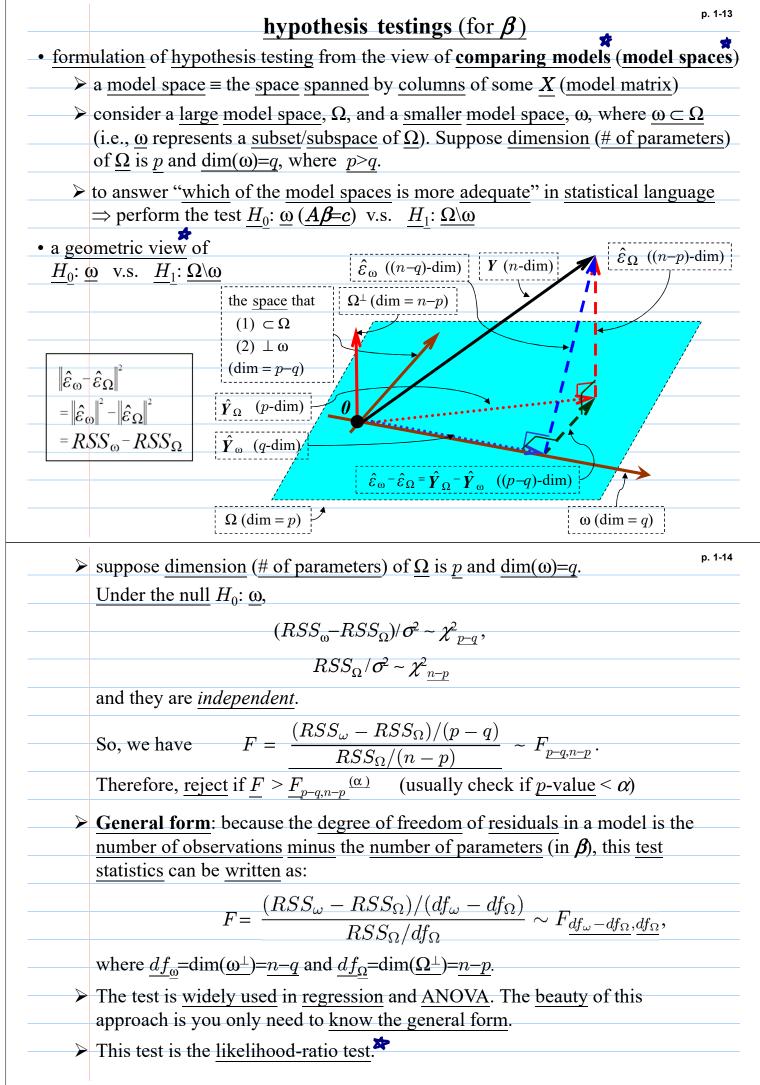
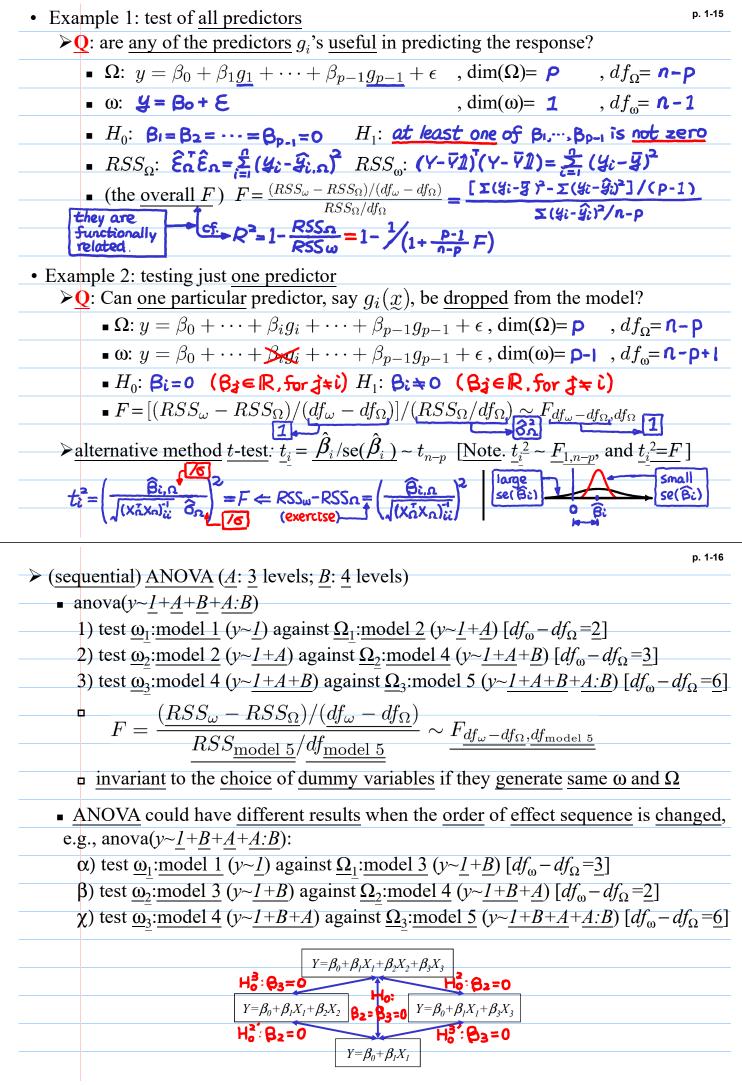


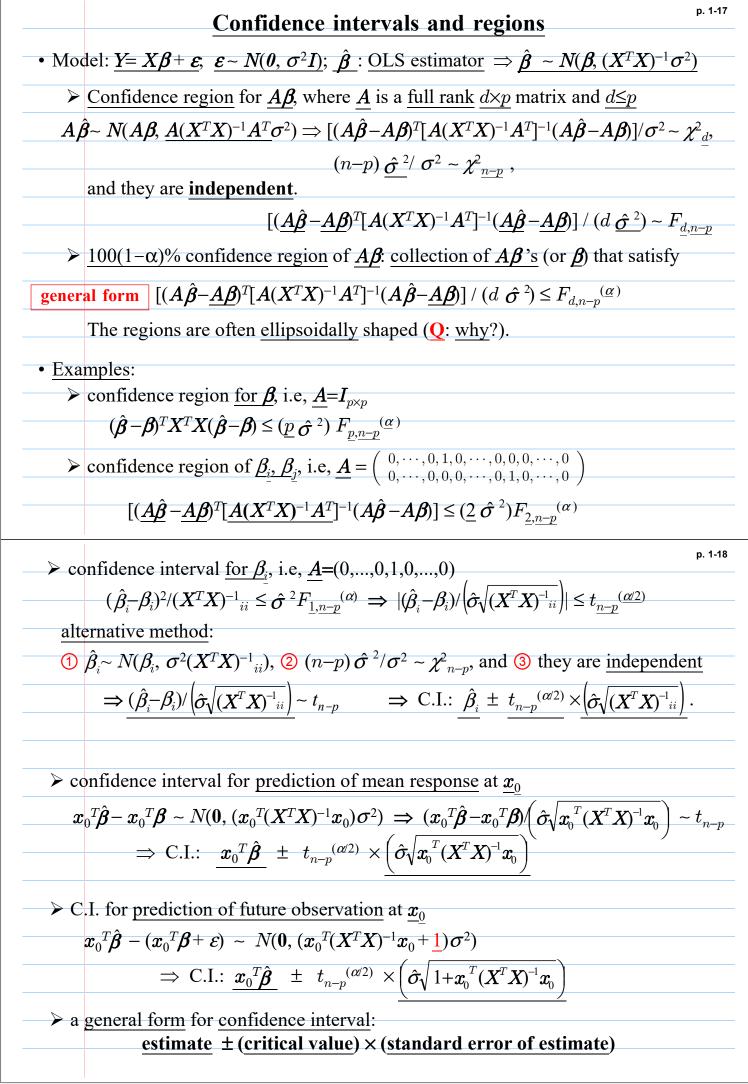
made by S.-W. Cheng (NTHU, Taiwan)

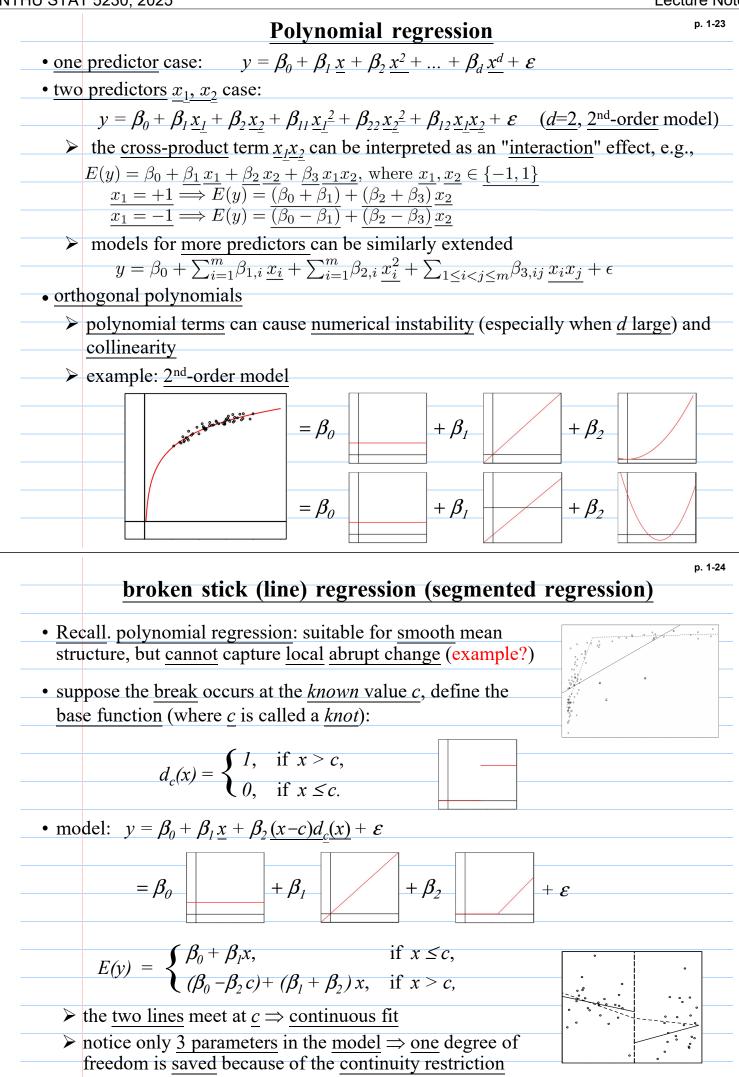

Lecture Notes

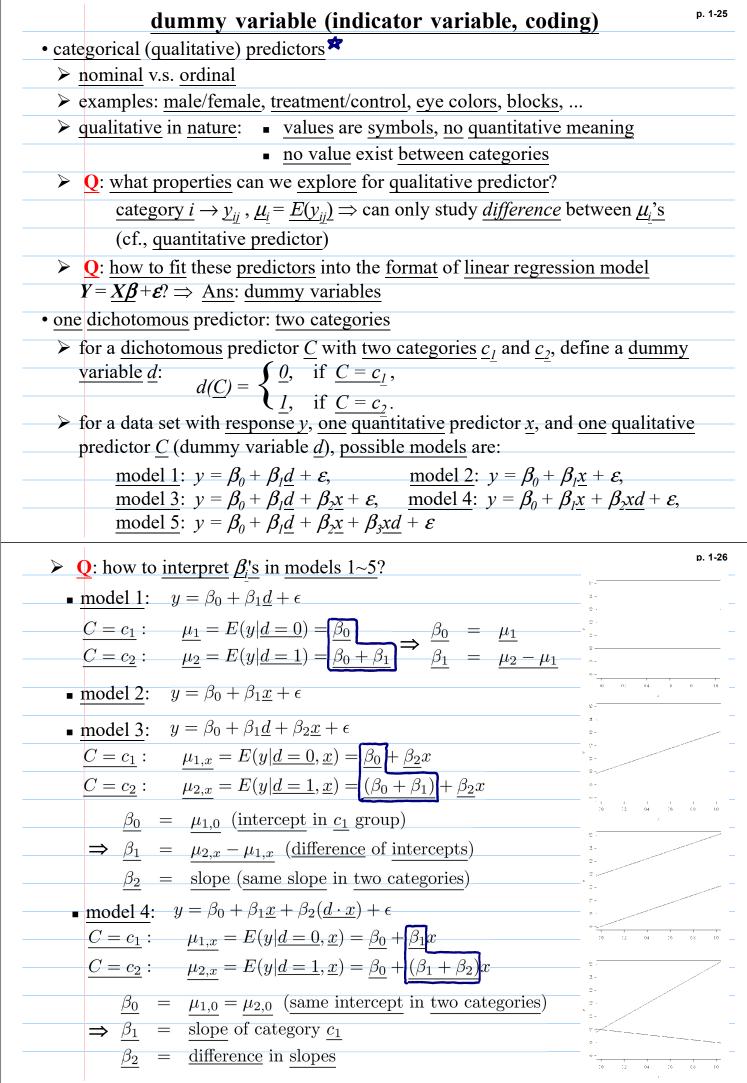



Lecture Notes

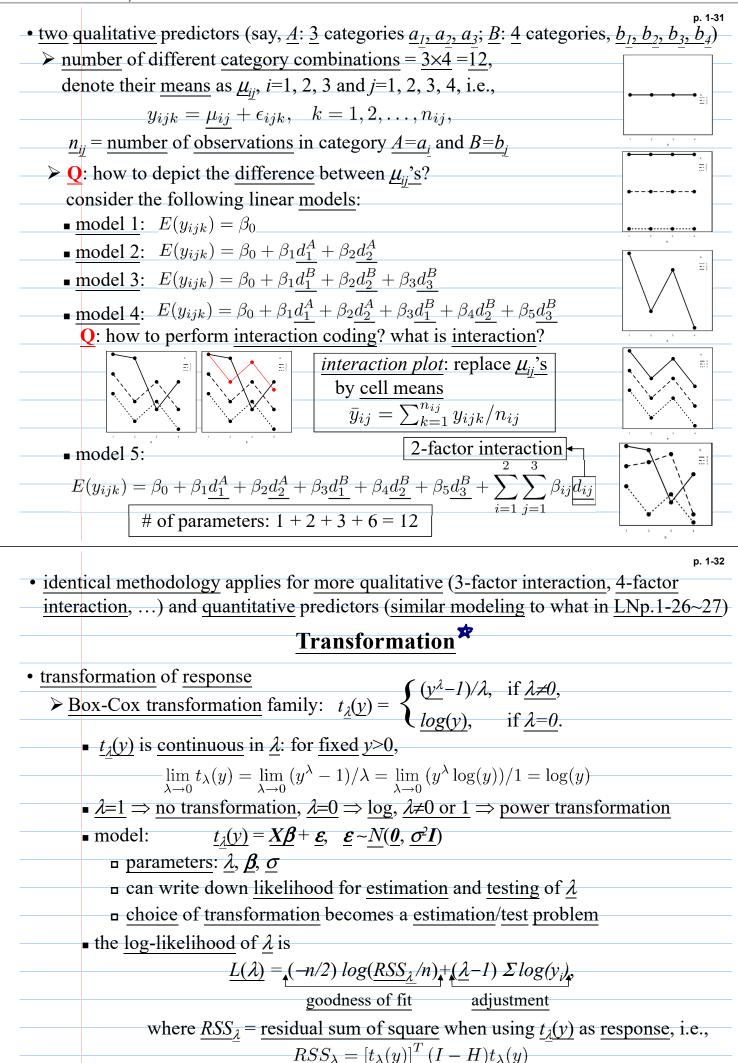

	30, 2025)						Lecil	ure N
	c Bo	6	CB2		CBo.				p. 1-7
Y =	• * × 1 +	$+ \checkmark \mathbf{g}_1 -$	$+ \mathbf{g}_{\mathbf{x}} \mathbf{g}_{2} +$	+		+	ε		
$y_1 =$: 1 +							a <u>row</u> : one <u>group</u> of	
y ₂ =	: 1 +	⊢ g ₂₁ -	$\begin{array}{c} + & g_{12} & + \\ + & g_{22} & + \end{array}$	+	g_{2p-1}	+	\mathcal{E}_2	observations	
=								a <u>column</u> : <u>response</u> or	
$y_n =$: 1 +	$+$ g_{n1} $-$	+ g_{n2} +	+	$g_{np\!-\!1}$	+	\mathcal{E}_n	effect	
								•	
• <u>Matr</u>	ix form	<u>m</u> of the	e linear n	nodel	•		•	$ \begin{array}{c} & $	
			Y	∽ ≛	XB +	E	< CF	$U_{\underline{x}} \leftarrow \underline{X}\underline{\beta}$	
					ap ·	υ,	•	$G_{\underline{x}}^2 \leftarrow Var(\underline{E_{\underline{x}}})$	
where	г -	л г	-1				-		٦
	y_1		$1 g_{11}$	L • • •	g_{1p-}	-1		$\beta_0 \epsilon$	1
Y=	y_2	, X =	$1 g_{21}$	L • • •	g_{2p-}	-1	, β =	$\begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \cdots \\ \beta_{p-1} \end{bmatrix}, \ \boldsymbol{\varepsilon} = \begin{bmatrix} \epsilon \\ \epsilon \\ \epsilon \\ \epsilon \end{bmatrix}$	2
	•••		1	•••	•••				••
	$\lfloor y_n \rfloor$	JL	$1 g_{n1}$	•••	$-g_{np-}$	-1		$\lfloor \rho_{p-1} \rfloor \ \lfloor \epsilon_{r}$	$n \downarrow$
(ordina		st square.		stima	ating	₿∢		irrelevant *	p. 1
				$(\cdot \cdot)$	1 .		(17.4		
			correlated						
> def								$\underline{ror}: \boldsymbol{\varepsilon}^{T} \boldsymbol{\varepsilon} = \sum_{i=1}^{n} \epsilon_{i}^{2}$	
	$\boldsymbol{\varepsilon}^{T}\boldsymbol{\varepsilon}$ =	= (Y-Z)	$(X \beta)^T (Y - \lambda)^T$	$-X\beta$	$=Y^TY$	- 2	$2\beta^T X^T$	$Y + \boldsymbol{\beta}^T X^T X \boldsymbol{\beta}$	(*)
		\Rightarrow a se	cond-orde	r poly	nomial c	of þ	}		
≻ On	e methc	od of find	ing the mi	nimize	er is to d	iffe	rentiate	9	
(*)	w.r.t. <u></u>	and set	the derivat	ives ea	qual to z	ero			
	$\rightarrow \frac{\partial}{\partial x}$	$=\epsilon^T \epsilon = -$	$-2X^TY+$	$2 \mathbf{X}^T$	XB = 0	0—			
	- /					•			
$\geq Bv$	calculu	$\frac{15}{10}$, p 15 u						*	
≻ By		$\mathbf{v}_T \mathbf{v}$	$r \rho = \tau T \tau$		11	1	1	· · · · · · · · · · · · · · · · · · ·	
			$\underline{\beta} = X^T \underline{Y}$	<u>Y</u> <	= called	d <u>n</u> a	ormal e	equation ~	
> ass	ume X^{T}	TX is non	-singular,						
> assi	ume $\underline{X^{T}}$ $\hat{\boldsymbol{\beta}} =$	$\frac{TX}{X}$ is <u>non</u> $(X^TX)^{-1}$	$-\frac{1}{X^T Y}$	\Rightarrow				$\underline{Y}^{-1}X^{T}Y \equiv \underline{H}Y$	
> ass	ume $\underline{X^{T}}$ $\hat{\boldsymbol{\beta}} =$ dicted v	$\frac{TX}{X}$ is non $(X^TX)^{-1}$	$\frac{1}{\hat{Y}} = X\hat{\beta} = \frac{1}{2}$	\Rightarrow HY	$X\hat{oldsymbol{eta}}$ =	X			
> ass	ume $\underline{X^{T}}$ $\hat{\boldsymbol{\beta}} =$ dicted v	$\frac{TX}{X}$ is non $(X^TX)^{-1}$	$-\frac{1}{X^T Y}$	\Rightarrow HY	$X\hat{oldsymbol{eta}}$ =	X			
> assi > pre > $rest$	ume $\underline{X^{T}}$ $\hat{\boldsymbol{\beta}} =$ <u>dicted v</u> <u>iduals</u> :	$\hat{\boldsymbol{\mathcal{I}}}_{X}$ is non $(\boldsymbol{X}^{T}\boldsymbol{X})^{T}$ $\hat{\boldsymbol{\mathcal{L}}}$ $\hat{\boldsymbol{\mathcal{L}}}$ $\hat{\boldsymbol{\mathcal{L}}} = \boldsymbol{Y} - \boldsymbol{\hat{\mathcal{L}}}$	$\hat{Y} = X\hat{\beta} = Y$	$\Rightarrow \qquad $ $\frac{HY}{-\hat{Y}} = $	$X\hat{oldsymbol{eta}} =$	<u>X</u>	$(X^T X$		Y

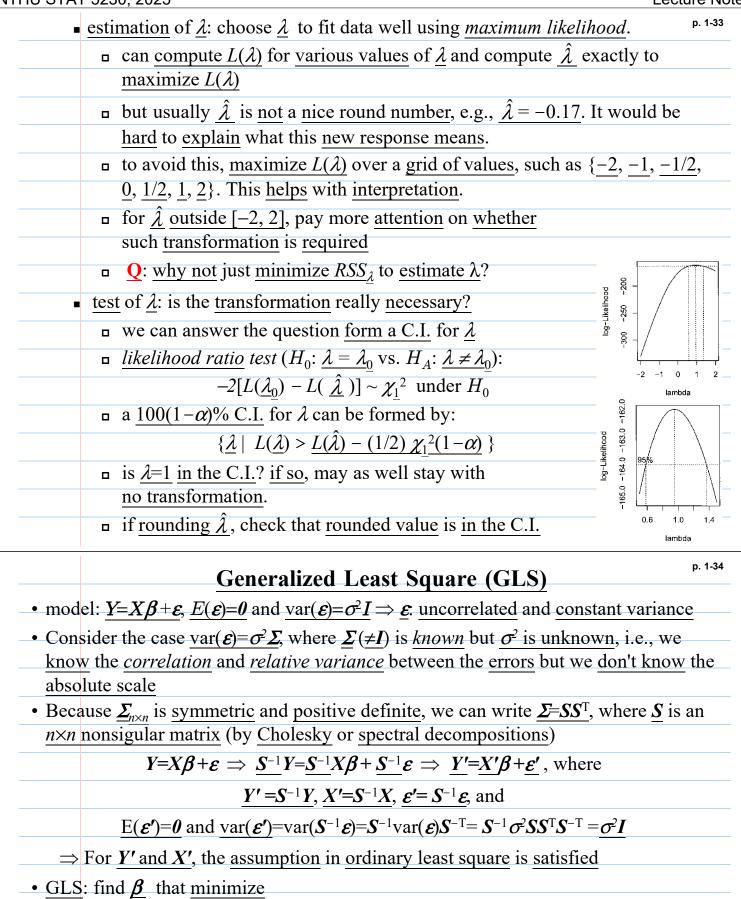

Lecture Notes




made by S.-W. Cheng (NTHU, Taiwan)

10 STAT 5230, 2025	Lecture No
Interpreting parameter estimates 🖈	р. 1-19
• $\underline{\mathbf{Q}}: \underline{Y} = X \boldsymbol{\beta} + \boldsymbol{\varepsilon}$, what does $\hat{\boldsymbol{\beta}}$ mean? $\boldsymbol{\mathcal{E}}(\boldsymbol{\mathcal{J}}_{\boldsymbol{x}}) = X \boldsymbol{\beta}^{\boldsymbol{x}}$	
Some matters needing attention about $\hat{\beta}$:	
$\hat{\boldsymbol{\beta}}$ have units [e.g., fuel consumption data, fitted model:	
fuel = 154.19 + (-4.23)Tax + (0.47)Dlic + (-6.14)Income + (18.54))log ₂ (Miles)]
\succ sign of $\hat{\beta}$: direction of the relationship between the term and the r	esponse
interpretation of estimated value (see <u>next two slides</u>)	
better to also consider values	
contained in its confidence interval	
➤ <u>causality</u> or <u>association</u>	
\succ the parameters $\underline{\beta}$	
• <u>some β_i's</u> have <u>physical interpretation</u> , especially those from a	
<u>model</u> [e.g., attach weights x to a spring and measure the extended of x and x	nsion y]
\Rightarrow unfortunately, <u>such cases</u> are <u>rare</u>	
• usually, $\underline{\beta}_{\underline{i}}$'s do not have such physical interpretation	
\Rightarrow in the case, the model $\underline{Y=X\beta+\varepsilon}$ is only an <i>empirical model</i>	-
convenience for representing a complex reality within the range	
the <u>real meaning</u> of a particular $\underline{\beta}_i$ is <u>not obvious</u> , <u>interpretation</u>	n is <u>difficult</u>
Some interpretations of parameter estimates	p. 1-20
> a <u>naive</u> interpretation:	1.
"A <u>unit increase</u> in X_i <u>will <i>cause</i></u> an <u>average change</u> of $\hat{\beta}_i$ in Y "	\leftarrow causality
[e.g., \underline{Y} : annual income, and \underline{X} : years of education]	statement
• Q: what if there exist <u>lurking variables</u> ?	Z
[e.g., \underline{X} : shoe size, \underline{Y} : reading abilities, \underline{Z} : age of child]	
\Rightarrow causal conclusion is doubtful	X •• Y
• Q: what if the roles of predictor and response are mistakenly switche	<u>ed</u> ?
[e.g., Y: fire damage, and X: numbers of firefighters called out]	
• Q: what if some important effects are not included in model? • $V \text{ fixed } T(\hat{a}) = 2 + (W^T W_{a})^{-1} W^T W_{a}$	t (<i>i</i>)
$ \frac{\mathbf{X} \text{ fixed. } E(\hat{\boldsymbol{\beta}}_1) = \boldsymbol{\beta}_1 + (\mathbf{X}_1^T \mathbf{X}_1)^{-1} \mathbf{X}_1^T \mathbf{X}_2 \boldsymbol{\beta}_2 }{\mathbf{X} \text{ rendom true model: } E(\mathbf{X} + \mathbf{X} - \mathbf{X}) - \mathbf{X} \boldsymbol{\beta}_2 + \mathbf{X} \boldsymbol{\beta}_2 } $	7=0 2-1
$ \underline{X \text{ random.}} \underbrace{\text{true model:}}_{E(Y \mid \mathbf{X}_1, \mathbf{X}_2) = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2, \qquad \underline{X}_1 = \mathbf{X}_1 \boldsymbol{\beta}_1 $ fitted model: $E(Y \mid \mathbf{X}_1) = \mathbf{X}_1 \boldsymbol{\beta}_1$	z=0
$\frac{\underline{\operatorname{nucc}}}{E(Y \mid \mathbf{X}_1) = \mathbf{X}_1 \boldsymbol{\beta}_1 + E(\mathbf{X}_2 \mid \mathbf{X}_1) \boldsymbol{\beta}_2}$	в (ii) х
	Z=0
• even though we have all important variables in the model	Z=1
and no lurking variables, there still are problems, e.g.:	
$y = \beta_0 + \beta_1 \underline{X}_1 + \beta_2 \underline{X}_2 + \varepsilon = \beta_0 + (\beta_1 - \beta_2) \underline{X}_1 + \beta_2 (\underline{X}_1 + \underline{X}_2) + \varepsilon$	
• in a properly designed experiment, the naive interpretation is	x
more reasonable (because of its use of orthogonal designs and	
randomization); but for observational data, it's often questionable.	
made by SW. Cheng (NTHU, Taiwan)	

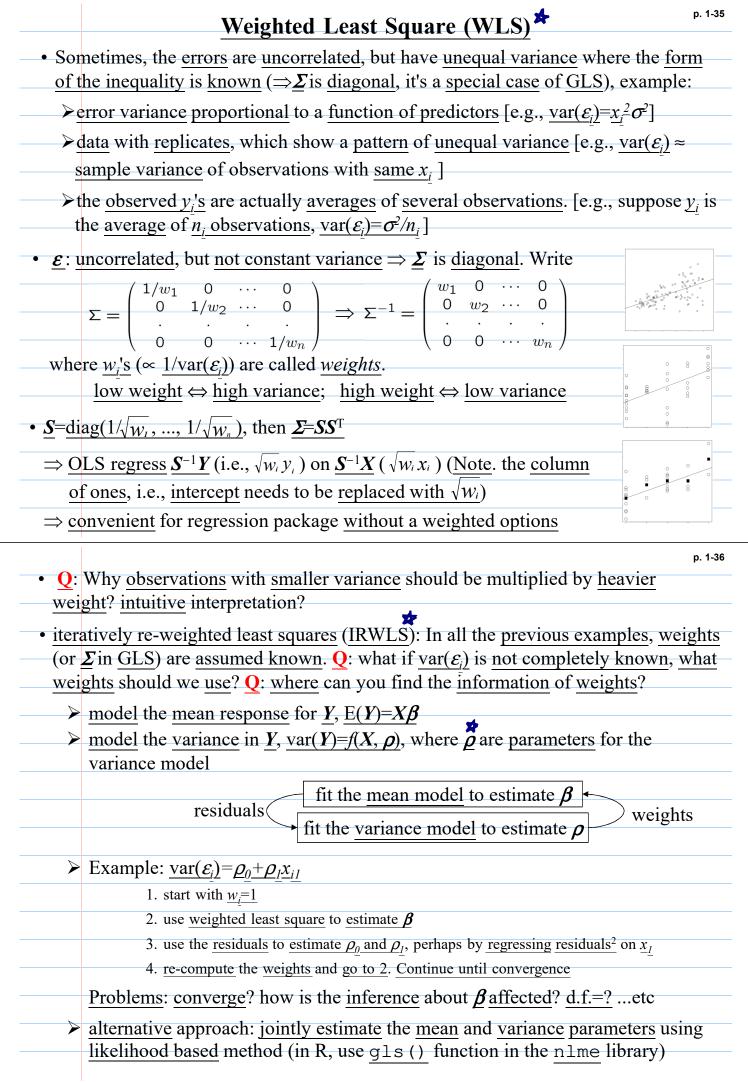

10 STAT 5230, 2025	Lecture
> an <u>alternative</u> interpretation	p. 1-
"A <u>unit increase</u> in $X_{\underline{i}}$ with <u>all the other</u> (specified) <u>terms</u> <u>hel</u>	<u>d constant</u> will be
<u>associated</u> with an <u>average change</u> of $\hat{eta_i}$ in Y "	
Q: can other terms be held constant? e.g.	
\square X_1 and X_2 are highly correlated	
$\Box \ \overline{\text{consider the model } E(Y)} = \beta_0 + \beta_1 \underline{X}_1 + \beta_2 \underline{X}_2 + \beta_3 \underline{X}_1 \underline{X}_2 = \beta_0 + (\beta_1 \underline{X}_1 + \beta_2 \underline{X}_2 + \beta_3 \underline{X}_1 \underline{X}_2 = \beta_0 + (\beta_1 \underline{X}_1 + \beta_2 \underline{X}_2 + \beta_3 \underline{X}_1 \underline{X}_2 = \beta_0 + (\beta_1 \underline{X}_1 + \beta_3 \underline{X}_1 - \beta_3 \underline{X}_$	$\beta_1 + \beta_3 X_2 X_1 + \beta_2 X_2$
• it requires the specification of the other terms/effects.	<u></u>
Q: what will happen in the analysis when	
strong collinearity exists between effects?	
\Rightarrow estimates and tests of β_i 's may significantly change according	•
effects are included. It makes the interpretation almost impo	
cases, the problem can be removed by redefining the terms	into <u>new linear</u>
<u>combinations</u> that <u>may be easier</u> to <u>interpret</u> .	
➤ an interpretation from prediction viewpoint	
regarding the <u>parameters</u> and their <u>estimates</u> as <u>fictional quantities</u>	
concentrating on prediction enable a rather cautious interpretation	-
$\underline{\text{given}} (g_{1,0}, \dots, g_{i,0}, \dots, g_{p-1,0}) \to \hat{y}_0, \ \underline{\text{observe}} (g_{1,0}, \dots, g_{i,0} + 1, \dots, g_{p-1,0})$	$\hat{y}_0 \rightarrow \hat{y}_0 + \hat{\beta}_i$
 prediction is more stable than parameter estimation 	
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when <u>x₀</u> is outside the ra Mean structure \$\$\lambda\$	р. 1-
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when <u>x₀</u> is outside the ra <u>Mean structure</u> → xβ[‡] idea: data are generated from an underlying system, which is 	p. 1- assumed to have
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when <u>x₀</u> is outside the ra <u>Mean structure</u> ↔ xβ[*] idea: data are generated from an underlying system, which is the form: <u>y = f(x₁,, x_m) + ε</u>, where <u>f</u> is <u>unknown</u>. → E(generated from the second system) is the second system. 	p. 1- assumed to have ()= 5
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when <u>x₀</u> is outside the ra <u>Mean structure</u> ↔ Xβ[*] idea: data are generated from an underlying system, which is the form: <u>y = f(x₁,, x_m) + ε</u>, where <u>f</u> is <u>unknown</u>. → E(s regression <u>approximates</u> the mean structure <u>f</u> by a linear contract of the structure f is a structure f by a linear contract of the structure f by a linear contract of the	$assumed to have f(x) = \frac{1}{2}$
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when <u>x₀</u> is outside the ra <u>Mean structure</u> → xβ[*] idea: data are generated from an <u>underlying system</u>, which is the form: <u>y</u> = <u>f(x₁,, x_m) + ε</u>, where <u>f</u> is <u>unknown</u>. → E(g regression <u>approximates</u> the mean structure f by a linear con (known) <u>base functions g_i(x₁,, x_m)'s, i=1,, p, i.e.,</u> 	$assumed to have f(x) = \frac{1}{2}$
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when <u>x₀</u> is outside the ra <u>Mean structure</u> ↔ Xβ[‡] idea: data are generated from an underlying system, which is the form: <u>y = f(x₁,, x_m) + ε</u>, where <u>f</u> is <u>unknown</u>. → E(g regression <u>approximates</u> the mean structure f by a linear con (known) <u>base functions g_i(x₁,, x_m)'s, i=1,, p, i.e., <u>f</u> ↔ <u>∑^p_{i=1} β_i · g_i(x₁,, x_m)</u></u> 	p. 1- assumed to have $f(t) = \frac{f}{t}$ <u>abination</u> of
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when x₀ is outside the ra Mean structure ↔ Xβ[*] idea: data are generated from an underlying system, which is the form: y = f(x₁,, x_m) + ε, where f is unknown. → E(s) regression approximates the mean structure f by a linear con (known) base functions g_i(x₁,, x_m)'s, i=1,, p, i.e., f ↔ ∑^p_{i=1} β_i ⋅ g_i(x₁,, x_m) when the structure of f is simple and almost linear, it can 	p. 1- assumed to have f(t) = f(t) <u>abination</u> of
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when x₀ is outside the ra <u>Mean structure</u> → xβ[*] idea: data are generated from an <u>underlying system</u>, which is the form: y = f(x₁,, x_m) + ε, where f is <u>unknown</u>. → E(s regression approximates the mean structure f by a linear con (known) base functions g_i(x₁,, x_m)'s, i=1,, p, i.e., f < ∑^p_{i=1} β_i · g_i(x₁,, x_m) when the structure of f is simple and almost linear, it can by a simple structure with fewer terms, e.g., 	p. 1- assumed to have $f(t) = \frac{f}{t}$ <u>abination</u> of
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when x₀ is outside the ra Mean structure ↔ Xβ[*] idea: data are generated from an underlying system, which is the form: y = f(x₁,, x_m) + ε, where f is unknown. → E(s) regression approximates the mean structure f by a linear con (known) base functions g_i(x₁,, x_m)'s, i=1,, p, i.e., f ↔ ∑^p_{i=1} β_i ⋅ g_i(x₁,, x_m) when the structure of f is simple and almost linear, it can 	p. 1- assumed to have f(t) = f(t) <u>abination</u> of
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when x₀ is outside the ra <u>Mean structure</u> → xβ[*] idea: data are generated from an <u>underlying system</u>, which is the form: y = f(x₁,, x_m) + ε, where f is <u>unknown</u>. → E(s regression approximates the mean structure f by a linear con (known) base functions g_i(x₁,, x_m)'s, i=1,, p, i.e., f < ∑^p_{i=1} β_i · g_i(x₁,, x_m) when the structure of f is simple and almost linear, it can by a simple structure with fewer terms, e.g., 	p. 1- assumed to have f(t) = f(t) <u>abination</u> of
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when <u>x₀</u> is outside the ra <u>Mean structure</u> → xβ⁴ idea: data are generated from an <u>underlying system</u>, which is the form: <u>y = f(x₁,, x_m) + ε</u>, where <u>f</u> is <u>unknown</u>. → E(g regression <u>approximates</u> the mean structure f by a linear con (known) <u>base functions g_i(x₁,, x_m)'s, i=1,, p, i.e., <u>f</u> ← <u>∑^p_{i=1} β_i · g_i(x₁,, x_m)</u></u> when the structure of f is <u>simple</u> and <u>almost linear</u>, it can by a <u>simple structure</u> with fewer terms, e.g., E(y) = <u>f</u> ≈ β₀ + <u>β₁ x₁ + + β_m x_m</u> 	p. 1- assumed to have f) = f <u>hbination</u> of be approximated
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when <u>x₀</u> is outside the ra <u>Mean structure</u> → xβ[‡] idea: data are generated from an underlying system, which is the form: <u>y</u> = f(x₁,, x_m) + ε, where f is <u>unknown</u>. → E(g regression <u>approximates</u> the mean structure f by a linear con (known) <u>base functions g_i(x₁,, x_m)'s, i=1,, p, i.e., f < ∑_{i=1}^p β_i · g_i(x₁,, x_m)</u> when the structure of f is <u>simple</u> and <u>almost linear</u>, it can by a <u>simple structure</u> with fewer terms, e.g., E(y) = f ≈ β₀ + β₁x₁ + + β_mx_m Q: nature is simple? 	p. 1- assumed to have f) = f <u>hbination</u> of be approximated
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance data are generated from an underlying system, which is the form: y = f(x₁,, x_m) + ɛ, where f is unknown. → E(g is regression approximates the mean structure f by a linear condition (known) base functions g_i(x₁,, x_m)'s, i=1,, p, i.e., f < ∑_{i=1}^p β_i · g_i(x₁,, x_m) when the structure of f is simple and almost linear, it can by a simple structure with fewer terms, e.g., E(y) = f ≈ β₀ + β₁ x₁ + + β_m x_m Q: nature is simple? Q: are there sufficient data to support/fit a complex region. 	p. 1- assumed to have f) = f <u>hbination</u> of be approximated
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance dangers of extrapolation, be cautious when x₀ is outside the rance data are generated from an underlying system, which is the form: y = f(x₁,, x_m) + ɛ, where f is unknown. → E(g regression approximates the mean structure f by a linear context (known) base functions g_i(x₁,, x_m)'s, i=1,, p, i.e., f < ∑_{i=1}^p β_i · g_i(x₁,, x_m) when the structure of f is simple and almost linear, it can by a simple structure with fewer terms, e.g., E(y) = f ≈ β₀ + β₁ x₁ + + β_m x_m Q: nature is simple? Q: are there sufficient data to support/fit a complex mean structure f is complex and non-linear ⇒ need more terms 	p. 1- assumed to have f) = f <u>nbination</u> of be approximated <u>nodel</u> ?
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when x₀ is outside the ra Mean structure → xβ[*] idea: data are generated from an underlying system, which is the form: y = f(x₁,, x_m) + ε, where f is unknown. → E(g regression approximates the mean structure f by a linear con (known) base functions g_i(x₁,, x_m)'s, i=1,, p, i.e., f ← ∑^p_{i=1} β_i · g_i(x₁,, x_m) when the structure of f is simple and almost linear, it can by a simple structure with fewer terms, e.g., E(y) = f ≈ β₀ + β₁ x₁ + + β_m x_m Q: nature is simple? Q: are there sufficient data to support/fit a complex m to get a good approximation 	p. 1- assumed to have f) = f <u>nbination</u> of be approximated <u>model</u> ? <u>more data</u>
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when x₀ is outside the ra Mean structure → xβ⁴ idea: data are generated from an underlying system, which is the form: y = f(x₁,, x_m) + ε, where f is unknown. → E(g regression approximates the mean structure f by a linear con (known) base functions g_i(x₁,, x_m)'s, i=1,, p, i.e., f < ∑^p_{i=1} β_i · g_i(x₁,, x_m) when the structure of f is simple and almost linear, it can by a simple structure with fewer terms, e.g., E(y) = f ≈ β₀ + β₁x₁ + + β_mx_m Q: nature is simple? Q: are there sufficient data to support/fit a complex m to get a good approximation more parameters, need more degrees of freedom, i.e., 	p. 1-3 assumed to have f) = f <u>nbination</u> of be approximated <u>model</u> ? <u>more data</u>
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when x₀ is outside the ra <u>Mean structure</u> → xβ⁴ idea: data are generated from an <u>underlying system</u>, which is the form: y = f(x₁,, x_m) + ε, where f is <u>unknown</u>. → E(g regression approximates the mean structure f by a linear con (known) base functions g_i(x₁,, x_m)'s, i=1,, p, i.e., f ← ∑^p_{i=1} β_i · g_i(x₁,, x_m) > when the structure of f is simple and almost linear, it can by a simple structure with fewer terms, e.g., E(y) = f ≈ β₀ + β₁ x₁ + + β_m x_m Q: nature is simple? Q: are there sufficient data to support/fit a complex m to get a good approximation more parameters, need more degrees of freedom, i.e., e.g., 2 levels, only linear effects; 3 levels, linear and c 	p. 1- assumed to have () = f <u>nbination</u> of be approximated <u>model</u> ? <u>more data</u> <u>quadratic</u> effects
 prediction is more stable than parameter estimation directly interpretable and success may be measured in future dangers of extrapolation, be cautious when x₀ is outside the ra Mean structure → xβ[*] idea: data are generated from an underlying system, which is the form: y = f(x₁,, x_m) + ε, where f is unknown. → E(g regression approximates the mean structure f by a linear con (known) base functions g_i(x₁,, x_m)'s, i=1,, p, i.e., f ← ∑^p_{i=1} β_i · g_i(x₁,, x_m) when the structure of f is simple and almost linear, it can by a simple structure with fewer terms, e.g., E(y) = f ≈ β₀ + β₁ x₁ + + β_m x_m Q: nature is simple? Q: are there sufficient data to support/fit a complex m to get a good approximation more parameters, need more degrees of freedom, i.e., e.g., 2 levels, only linear effects; 3 levels, linear and c Q: what other complex models? 	p. 1- assumed to have () = f <u>nbination</u> of be approximated <u>model</u> ? <u>more data</u> <u>quadratic</u> effects



p. 1-27
• <u>model 5</u> : $y = \beta_0 + \beta_1 \underline{d} + \beta_2 \underline{x} + \beta_3 (\underline{d \cdot x}) + \epsilon$
$\underline{C = c_1}: \qquad \underline{\mu_{1,x}} = E(y \underline{d = 0}, \underline{x}) = \underline{\beta_0} + \underline{\beta_2 x}$
$\underline{C=c_2}: \qquad \underline{\mu_{2,x}} = E(y \underline{d=1},\underline{x}) = \underline{(\beta_0+\beta_1)} + \underline{(\beta_2+\beta_3)x}$
$\underline{\beta_0} = \underline{\mu_{1,0}} \text{ (intercept of category } \underline{c_1}) \leftarrow \underline{\text{reference}}^*$
$\beta_2 = \text{slope of category } \underline{c_1} \leftarrow \text{reference}$
$\beta_1 = \underline{\text{difference}}$ in intercepts
$\underline{\beta_3} = \underline{\text{difference}} \text{ in } \underline{\text{slopes}}$
> alternative coding of dummy variable (better orthogonality)
$d(\underline{C}) = \begin{cases} \frac{-1}{l}, & \text{if } \underline{C} = \underline{c}_{\underline{l}}, \\ 1, & \text{if } C = \underline{c}_{2}. \end{cases}$
Q: how to interpret β_i 's in models 1~5 under this coding?
• model 1: $y = \beta_0 + \beta_1 d + \epsilon$
$C = c_1: \mu_1 = E(y d = -1) = \beta_0 - \beta_1 \qquad \beta_0 = (\mu_1 + \mu_2)/2$
$\frac{C = c_1:}{C = c_2:} \xrightarrow{\mu_1} = E(y \underline{d} = -1) = \underbrace{\beta_0 - \beta_1}_{\beta_0 - \beta_1} \Rightarrow \frac{\beta_0}{\beta_1} = (\underbrace{\mu_1 + \mu_2})/2$ $\underline{C = c_2:} \xrightarrow{\mu_2} = E(y \underline{d} = 1) = \underbrace{\beta_0 + \beta_1}_{\beta_0 - \beta_1} \Rightarrow \frac{\beta_1}{\beta_1} = (\underbrace{\mu_2 - \mu_1})/2$
> analysis strategy: start from the full model (model 5) if there are enough
degrees of freedom, and then test if some terms can be eliminated
identical methodology applies for more than 2
categories and more quantitative predictors
→ ANalysis of COVAriance: testing model 3 (Ω) against model 2 (ω)
(more than 2 categories and more quantitative predictors is
allowed). The quantitative predictor is called <i>covariate</i> and is
expected to have the <u>same effect</u> in <u>all categories</u> . The <u>difference</u>
 between <u>categories</u> is assumed to be an <u>additive effect</u>. one polytomous predictor: more than two categories
For k categories, $k-1$ dummy variables are needed to depict the difference
between categories (one parameter is used to represent constant term)
> various coding of dummy variables: 4 categories c_1, c_2, c_3, c_4 example
treatment coding Helmert coding sum coding
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
c_4 0 0 3 c_4 0 0 3
▷ consider the model: $y = \beta_0 + \beta_1 d_1 + \beta_2 d_2 + \beta_3 d_3 + \epsilon$
 properties of treatment coding:
$\underline{C = c_1}: \qquad \underline{\mu_1} = E(y \underline{d_1 = 0}, \underline{d_2 = 0}, \underline{d_3 = 0}) = \underline{\beta_0} \qquad \qquad \underline{\beta_0} = \underline{\mu_1}$
$\underline{C = c_2}: \qquad \underline{\mu_2} = E(y \underline{d_1 = 1}, \underline{d_2 = 0}, \underline{d_3 = 0}) = \underline{\beta_0 + \beta_1} \qquad \underline{\beta_1} = \underline{\mu_2 - \mu_1}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\underline{C = c_4}: \qquad \underline{\mu_4} = E(y \underline{d_1 = 0}, \underline{d_2 = 0}, \underline{d_3 = 1}) = \underline{\beta_0 + \beta_3} \qquad \underline{\beta_3} = \underline{\mu_4 - \mu_1}$
made by SW. Cheng (NTHU, Taiwan)

\square treats \underline{c}_{l} as a reference	p. 1-29
it is convenient if a "standard" categories exists	
\square <u><i>d</i></u> ₁ , <u><i>d</i></u> ₂ , and <u><i>d</i></u> ₃ are mutually orthogonal, but not orthogonal to constant ter	m
• properties of Helmert coding: $y = \beta_0 + \beta_1 \underline{d_1} + \beta_2 \underline{d_2} + \beta_3 \underline{d_3} + \epsilon$	
$\underline{C = c_1}: \qquad \underline{\mu_1} = E(y \underline{d_1 = -1}, \underline{d_2 = -1}, \underline{d_3 = -1}) = \underline{\beta_0 - \beta_1 - \beta_2 - \beta_3}$	
$\underline{C = c_2}: \qquad \underline{\mu_2} = E(y \underline{d_1 = 1}, \underline{d_2 = -1}, \underline{d_3 = -1}) = \underline{\beta_0 + \beta_1 - \beta_2 - \beta_3}$	
$\underline{C = c_3}: \qquad \underline{\mu_3} = E(y \underline{d_1 = 0}, \underline{d_2 = 2}, \underline{d_3 = -1}) = \underline{\beta_0 + 2\beta_2 - \beta_3}$	
$\underline{C = c_4}: \qquad \underline{\mu_4} = E(y \underline{d_1 = 0}, \underline{d_2 = 0}, \underline{d_3 = 3}) = \underline{\beta_0 + 3\beta_3}$	
$\underline{\beta_0} = \frac{\mu_1 + \mu_2 + \mu_3 + \mu_4}{4} \equiv \underline{\mu}$	
$ \begin{array}{rcl} & \underline{\beta_1} & = & \frac{\mu_2 - \underline{\mu_1}}{2} \\ \Rightarrow & \underline{\beta_2} & = & \frac{\mu_3 - ((\mu_1 + \mu_2)/2)}{3} \end{array} \end{array} $	
$\implies \qquad \qquad$	
$\beta_3 = \frac{\mu_4 - ((\mu_1 + \mu_2 + \mu_3)/3)}{4}$	
$\frac{\underline{u_1}, \underline{u_2}, \underline{u_2}, \underline{u_3}}{\underline{u_1}, \underline{u_2}, \underline{u_2}, \underline{u_3}}$ observations in each categories	
\square hard to interpret parameters $\mu_1 \ \mu_2 \ \mu_3 \ \mu_4$	
□ may <u>suitable</u> for <u>ordinal</u> qualitative predictor ★	
	n 1 20
• properties of sum coding: $y = \beta_0 + \beta_1 \underline{d_1} + \beta_2 \underline{d_2} + \beta_3 \underline{d_3} + \epsilon$	p. 1-30
$\underline{C = c_1}: \qquad \underline{\mu_1 = E(y d_1 = -1, d_2 = -1, d_3 = -1)} = \underline{\beta_0 - \beta_1 - \beta_2 - \beta_3}$	
$\frac{C = c_2}{C} : \qquad \mu_2 = E(y \underline{d_1} = 1, \underline{d_2} = 0, \underline{d_3} = 0) = \beta_0 + \beta_1$	
$\frac{C = c_3:}{C = c_4:} \frac{\mu_3}{\mu_4} = E(y d_1 = 0, d_2 = 1, d_3 = 0) = \beta_0 + \beta_2$ $C = c_4: \mu_4 = E(y d_1 = 0, d_2 = 0, d_3 = 1) = \beta_0 + \beta_3$	
$\underline{\beta_0} = \frac{\mu_1 + \mu_2 + \mu_3 + \mu_4}{4} \equiv \underline{\mu}$	
$\Rightarrow \underline{\beta_1} = \underline{\mu_2 - \overline{\mu}}$	
$\underline{\beta_2} = \underline{\mu_3 - \overline{\mu}}$	
$\underline{\beta_3} = \underline{\mu_4 - \overline{\mu}}$	
$\square \underline{\beta}_{\underline{0}}$ represent <u>overall mean</u>	
compare each category with the overall mean	
lesser orthogonal	
> Note: the choice of coding does not affect the R^2 , $\hat{\sigma}$ and overall <i>F</i> -test	
(to test $H_0: \underline{\beta_1} = \underline{\beta_2} = \underline{\beta_3} = 0$, the <u>three codings</u> have <u>same</u> $\underline{\omega}$ and $\underline{\Omega}$)	
the overall F-test is one-way ANOVA (ANalysis Of VAriance)	
\triangleright Q: how to work with quantitative predictors? \Rightarrow identical methodology	
as in <u>2 categories</u> case. $\underline{\mathbf{Q}}$: how to <u>interpret parameters</u> in the case?	

$$-\underline{\boldsymbol{\varepsilon}^{\prime T}\boldsymbol{\varepsilon}^{\prime}} = (Y' - X'\boldsymbol{\beta})^{T} (Y' - X'\boldsymbol{\beta}) = (Y - X\boldsymbol{\beta})^{T} S^{-T} S^{-1} (Y - X\boldsymbol{\beta}) = \underline{(Y - X\boldsymbol{\beta})^{T} \Sigma^{-1} (Y - X\boldsymbol{\beta})}$$


$$\Rightarrow \underline{\hat{\beta}} = (X'^T X')^{-1} X'^T Y' = \underline{(X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} Y}$$

$$\Rightarrow \underline{\operatorname{var}}(\hat{\boldsymbol{\beta}}) = \sigma^2 (\boldsymbol{X'}^T \boldsymbol{X'})^{-1} = \underline{\sigma^2 (\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X})^{-1}}$$

<u>GLS</u> is like <u>OLS</u> regressing <u> $Y'=S^{-1}Y$ on <u> $X'=S^{-1}X$ </u></u>

• The practical problem is that Σ may not be known. It's usually necessary to make some assumptions and examine the residuals to estimate Σ (check IRWLS)

Lecture Notes

