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Question 

What is Statistics?

哈利波特 Real Life

aim of statistics: provide insight by means of data

Statistics

Statisticians

Data

Information

占卜學

崔老妮

水晶球

未來的資訊

Website of my Linear Model course

http://www.stat.nthu.edu.tw/~swcheng/Teaching/stat5410/ 
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Data

Collection
Statistical Modeling

(empirical)

Data

Analysis

Decision

Making

• Statistics divides the study of data into five steps:

Basic Procedures of Statistics

Problem Formulation & 

Modeling (conceptual )
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When to use regression analysis (linear model)?

• Regression: a statistical tool for investigating the “linearity 

relationship” between x and y.

causal relationship: examine the effects of x on y, i.e. 

how the changes in x result in the change in y

Even where no sensible causal relationship exists 

between x and y, we may wish to relate them by some 

sore of mathematical equation
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• data type in regression analysis and some terminologies

A {response, output, dependent} variable Y is modeled or 

explained by p effects/functions of m {predictor, input, 

independent, regressor} variables X1,...,Xm

 Y :  “approximately” continuous

 X1,...,Xm : continuous and discrete (quantitative), 

categorical (qualitative)  (Q: example?)

 p=1, simple regression; p>1, multiple regression

 X1,...,Xm

all quantitative  multiple regression

quantitative+qualitative  analysis of covariance 

all qualitative  analysis of variance (ANOVA) 

 more than one Y, multivariate regression
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• linear model: 

 X1,...,Xm are regarded as deterministic, i.e., no random phenomenon (when 

they are random variables, regard the linear model as conditional on X1,...,Xm)

 g0(X1,...,Xm), ..., gp(X1,...,Xm): known functions of X1,...,Xm, called effects

 (unknown) parameters β0, …, βp enter linearly

 variation due to random error only appears on y-axis

• Rationale: a general model for the relationship between Y and X1,..., Xm, is:

Y = f(X1,...,Xm) + ε,  where f is unknown and arbitrary

Note: # of parameters in f is infinite, usually do not have enough data to estimate 

f directly (globally), we have to assume that it has some more restricted form

 local approximation of f may be achievable by a linear model

• Note: Because the predictors can be transformed and combined in any way, linear 

models are actually very flexible.

deterministic 
component

error: 
random 

component

mean 
function

variance 
function
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Matrix representation
• Given the data matrix, 

• We may write a linear model as follows (functional form): for i = 1, 2, ..., n, 

yi = β0 + β1 g1(xi1,...,xim) + β2 g2
(xi1,...,xim) + ... + βp−1 gp−1(xi1,...,xim) + εi, 

where gij = gj(xi1,...,xim)

 the expression is (i) ugly notation (ii) conceptually awkward

 matrix/vector notation is more elegant

Y X1 X2 ... Xm

y1 x11 x12 ... x1m

y2 x21 x22 ... x2m

... ...

yn xn1 xn2 ... xnm

a row: one group of observations

a column: one variable

(response or predictor)

a row: one group of observations

a column: response or effect

Y 1 g1 g2 ... gp−1

y1 1 g11 g12 ... g1p−1

y2 1 g21 g22 ... g2p−1

... ...

yn 1 gn1 gn2 ... gnp−1
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• Matrix form of the linear model: 

Y = X β + ε,

where

Y =            , X =                                          , β =                  , ε =              .

and E(ε) = 0 and var(ε) = σ2 I (Note: the assumption that errors are normally 

distributed is not required at the estimation stage)

a row: one group of 

observations

a column: response or 

effect

Y 1 g1 g2 ... gp−1

y1 1 g11 g12 ... g1p−1

y2 1 g21 g22 ... g2p−1

... ...

yn 1 gn1 gn2 ... gnp−1

= + + + + + ε

= + + + + + ε1

= + + + + + ε2

= + ...

= + + + + + εn
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β̂

β̂

∂

∂β
ǫTǫ =

• (ordinary) least square estimator

 assume ε are (i) uncorrelated (ii) equal variance (Var(ε) = σ2I)

 define the best as that minimizes sum of squared error: εTε =

εTε = (Y − Xβ)T (Y − Xβ) = YTY − 2βTXTY + βTXTXβ (∗)

 a second-order polynomial of β
 One method of finding the minimizer is to differentiate

(∗) w.r.t. β and set the derivatives equal to zero

 −2XTY + 2XTXβ = 0

 By calculus,      is the solution of 

XTXβ = XTY ⇐ called normal equation

 assume XTX is non-singular,

β̂ β̂X= (XTX)-1XTY  = X(XTX)-1XTY ≡ HY

 predicted values: = = HY

 residuals: = Y − = Y − = (I−H)Y

 residual sum of squares (RSS): =   [YT(I−H)T][(I−H)Y] = YT(I−H)Y

Ŷ

ε̂ β̂X

εε ˆˆ T

β̂X

Ŷ

Estimating β



p. 1-9

• mean and covariance matrix of OLS estimator .

=  (XTX)−1XTY is a p×1 vector of random variables, so

mean: E(    ) = (XTX)−1XTE(Y) = (XTX)−1XTXβ = β (i.e., unbiased)

Cov(    ) = (XTX)−1XTσ2I X(XTX)−1 = (XTX)-1σ2 ( irrelevant to Y and β 
Note: if we can control X, can decide the var-cov matrix before observing Y )

Since      is a random vectors, (XTX)−1σ2 is a variance-covariance matrix. 

se(    ) =
how to calculate the correlation between       and       ? 

σ̂)(
1

 XX
T

ii

-

β̂
β̂

β̂

β̂

β̂

i
β̂

j
β̂

i
β̂

Estimating σ2

• has the minimum variance among all quadratic unbiased estimators of σ2

)/(ˆ pnRSS −=σ•

• (FYI) if ε∼N(0, σ2I), the maximum likelihood estimator of σ2 is /n = RSS/n 

• estimate σ2 by /(n−p) = RSS/(n−p)  an unbiased estimatorεε ˆˆˆ 2 T=σ

εε ˆˆT

2σ̂

 OLS       results from orthogonal projection, makes sense geometrically

 (FYI) if ε∼N(0, σ2I),       is the maximum likelihood estimator

 Gauss-Markov thm states      is BLUE (“Best” Linear Unbiased Estimator) 

β̂
β̂

β̂
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goodness-of-fit: how well does the model fit the data?

• R2, coefficient of determination or percentage of variance explained

RSS is calculated from model with all independent variables, 

TSS from model without any independent variables

Interpretation of R2: “proportion of total variation in y that can be explained by the 

independent variables”

ŷ R=correlation between and y ; for 

simple regression, R=correlation

between x and y (from the geometry

viewpoint, ...)

 0 ≤ R2 ≤ 1, values closer to 1 indicate 

better fits. (what if n≈p?)

 What is a good value of R2? It depends.

• alternative measure for goodness of fit: 

 it’s related to standard error of estimates of β and prediction

 it’s measured in the unit of the response (cf., R2 is free of unit)

σ̂
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Normality assumption

• Note: up till now, haven’t assumed any distributional form for ε. If we want to 

perform any hypothesis tests or make any confidence intervals, we will need to do 

this. The usual assumption is:

ε ∼ N(0, σ2I) 

model: Y = Xβ + ε, ε ∼N(0, σ2I)

Y ∼ N(Xβ, σ2I) 

 Q: what does the model describe? e.g.,

yx=β0+β1x+εx, εx’s ~ i.i.d. N(0, σ2)

 E(yx)=β0+β1x

 yx’s are independent and yx ~ N(β0+β1x, σ2)  at x=xi, i=1,…,n.

β̂

• Some properties of linear models when ε∼N(0, σ2I) :

 distribution of Y [=Xβ + ε ] ∼ N(Xβ, σ2I)

 distribution of [=(XTX)-1XT Y ] ∼ N(β, (XTX)-1σ2)

 distribution of [=(I−H)Y=(I−H)ε] ∼ N(0, (I−H)σ2), which has a singular

covariance matrix I−H with rank n−p (Note: dim(   )=n−p)
ε̂

ε̂
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 mean response v.s. future observation (Q: what different?)

 Example: average yield when x=x0? and tomorrow’s yield when x=x0?

 same predicted value x0
T , but different distributions

 distribution of prediction error for mean response at x0

x0
T − x0

Tβ
 distribution of prediction error for future observations at x0

x0
T − ( x0

Tβ +ε )

2σ̂ εε ˆˆ T

β̂XŶ

∼ N(0, (x0
T(XTX)−1x0)σ2)

∼ N(0, (x0
T(XTX)−1x0 + 1 )σ2)

 distribution of RSS [=(n−p) = =εT(I−H)ε] ∼ σ2χ2
n−p

 distribution of [= = HY ] ∼ N(Xβ, Hσ2), which has a singular covariance 

matrix with rank p (Note: dim(   )=p)

 is independent of (Note: cov((XTX)−1XTY, (I−H)Y )=0)

 is independent of (Note: cov(H Y, (I−H)Y)=0)

 distribution of prediction for a new set of predictors, x0 = (g1(x10,…,xm0), …, 

gp(x10,…,xm0))
T

Ŷ

β̂ 2σ̂

Ŷ ε̂

β̂

β̂

β̂

model:
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hypothesis testings (for β )
• formulation of hypothesis testing from the view of comparing models (model spaces)

 a model space ≡ the space spanned by columns of some X (model matrix)

 consider a large model space, Ω, and a smaller model space, ω, where ω ⊂ Ω
(i.e., ω represents a subset/subspace of Ω). Suppose dimension (# of parameters) 

of Ω is p and dim(ω)=q, where p>q.

 to answer “which of the model spaces is more adequate” in statistical language

 perform the test H0: ω (Aβ=c)  v.s. H1: Ω\ω

• a geometric view of 

H0: ω v.s. H1: Ω\ω

Ω (dim = p)

ε̂Ω ((n−p)-dim)

ω (dim = q)

((n−q)-dim)ε̂ω

((p−q)-dim)YY ˆˆˆˆ ωΩΩω
−=− εε

Y (n-dim)

Ŷ Ω (p-dim)

(q-dim)Ŷ ω

the space that

(1)  ⊂ Ω
(2) ⊥ ω

(dim = p−q)

0•

Ω⊥ (dim = n−p)
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 suppose dimension (# of parameters) of Ω is p and dim(ω)=q. 

Under the null H0: ω,

(RSSω−RSSΩ)/σ2 ∼ χ2
p−q ,

RSSΩ /σ2 ∼ χ2
n−p

and they are independent. 

So, we have F = ∼ Fp−q,n−p .

Therefore, reject if F > Fp−q,n−p
(α ) (usually check if p-value < α)

 General form: because the degree of freedom of residuals in a model is the 

number of observations minus the number of parameters (in β), this test 

statistics can be written as:

F = ,

where dfω=dim(ω⊥)=n−q and dfΩ=dim(Ω⊥)=n−p.

 The test is widely used in regression and ANOVA. The beauty of this 

approach is you only need to know the general form. 

 This test is the likelihood-ratio test.

(RSSω − RSSΩ)/(p− q)

RSSΩ/(n− p)
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Q: are any of the predictors gi’s useful in predicting the response?

 Ω: , dim(Ω)= , dfΩ=
 ω: , dim(ω)= , dfω=
 H0: H1: 

 RSSΩ: RSSω:

 (the overall F ) F =

• Example 2: testing just one predictor
Q: Can one particular predictor, say Xi , be dropped from the model?

 Ω: , dim(Ω)= , dfΩ=
 ω: , dim(ω)= , dfω=
 H0: H1: 

 F =

alternative method t-test: ti = /se(     ) ∼ tn−p [Note. ti
2 ∼ F1,n−p, and ti

2=F ]iβ̂ iβ̂
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 (sequential) ANOVA (A: 3 levels; B: 4 levels)

 anova(y~1+A+B+A:B)

1) test ω1:model 1 (y~1) against Ω1:model 2 (y~1+A) [dfω − dfΩ =2]

2) test ω2:model 2 (y~1+A) against Ω2:model 4 (y~1+A+B) [dfω − dfΩ =3]

3) test ω3:model 4 (y~1+A+B) against Ω3:model 5 (y~1+A+B+A:B) [dfω − dfΩ =6]



 invariant to the choice of dummy variables if they generate same ω and Ω

 ANOVA could have different results when the order of effect sequence is changed, 

e.g., anova(y~1+B+A+A:B):

α) test ω1:model 1 (y~1) against Ω1:model 3 (y~1+B) [dfω − dfΩ =3]

β) test ω2:model 3 (y~1+B) against Ω2:model 4 (y~1+B+A) [dfω − dfΩ =2]

χ) test ω3:model 4 (y~1+B+A) against Ω3:model 5 (y~1+B+A+A:B) [dfω − dfΩ =6]

Y=β0+β1X1+β2X2+β3X3

Y=β0+β1X1+β3X3Y=β0+β1X1+β2X2

Y=β0+β1X1
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 Confidence region for Aβ, where A is a full rank d×p matrix and d≤p

A ∼ N(Aβ, A(XTX)−1ATσ 2)  [(A −Aβ)T[A(XTX)−1AT]−1(A −Aβ)]/σ 2 ∼ χ2
d,

(n−p) / σ 2 ∼ χ2
n−p ,

and they are independent.

[(A −Aβ)T[A(XTX)−1AT]−1(A −Aβ)] / (d ) ∼ Fd,n−p

 100(1-α)% confidence region of Aβ: collection of Aβ ’s (or β) that satisfy

[(A −Aβ)T[A(XTX)−1AT]−1(A −Aβ)] / (d ) ≤ Fd,n−p
(α )

The regions are often ellipsoidally shaped (Q: why?).

• Examples:

 confidence region for β, i.e, A=Ip×p

( −β)TXTX( −β) ≤ (p ) Fp,n−p
(α )

2σ̂

 confidence region of βi, βj, i.e, A =

β̂β̂

β̂ β̂ β̂

β̂β̂

• Model: Y = Xβ + ε; ε ∼ N(0, σ 2I); : OLS estimator  ∼ N(β, (XTX)−1σ 2)

2σ̂

β̂ β̂

general form β̂β̂ 2σ̂

2σ̂

2σ̂β̂β̂[(A −Aβ)T[A(XTX)−1AT]−1(A −Aβ)] ≤ (2 )F2,n−p
(α )

Confidence intervals and regions
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 confidence interval for βi, i.e, A=(0,...,0,1,0,...,0)

(   −βi)
2/(XTX)−1

ii ≤ F1,n−p
(α)  |(   −βi)/ | ≤ tn−p

(α/2)

alternative method: 

① ~ N(βi, σ 2(XTX)−1
ii), ② (n−p)      /σ 2  ∼ χ2

n−p, and ③ they are independent

 (   −βi)/ ∼ tn-p  C.I.: ± tn−p
(α/2) × .

( )ii
T 1

)(ˆ −XXσ

 confidence interval for prediction of mean response at x0

x0
T − x0

Tβ ∼ N(0, (x0
T(XTX)−1x0)σ 2)   (x0

T −x0
Tβ)/ ∼ tn−p

 C.I.: x0
T ± tn−p

(α/2) × .

( )ii
T 1

)(ˆ −XXσ

iβ̂ 2σ̂ iβ̂

iβ̂ 2σ̂

iβ̂ ( )ii
T 1

)(ˆ −XXσ iβ̂






 −

0

1

0
)(ˆ xXXx TTσβ̂ β̂






 −

0

1

0 )(ˆ xXXx TTσβ̂

 C.I. for prediction of future observation at x0

x0
T − (x0

Tβ + ε) ∼ N(0, (x0
T(XTX)−1x0 + 1)σ 2)

 C.I.: x0
T ± tn−p

(α/2) ×

 a general form for confidence interval: 

estimate ± (critical value) × (standard error of estimate)

β̂






 + −

0

1

0
)( 1 ˆ xXXx TTσβ̂
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• Q: Y = Xβ + ε,  what does mean?

Some matters needing attention about     :

 have units [e.g., fuel consumption data, fitted model:

fuel = 154.19 + (– 4.23)Tax + (0.47)Dlic + (−6.14)Income + (18.54)log2(Miles)]

 sign of : direction of the relationship between the term and the response

 interpretation of estimated value (see next two slides)

Interpreting parameter estimates

β̂
β̂

β̂

β̂

 better to also consider values

contained in its confidence interval

 causality or association

 the parameters β .
 some βi 's have physical interpretation, especially those from a conceptual 

model [e.g., attach weights x to a spring and measure the extension y] 

 unfortunately, such cases are rare

 usually, βi 's do not have such physical interpretation

 in the case, the model Y=Xβ+ε is only an empirical model, i.e., a 

convenience for representing a complex reality within the range of X

the real meaning of a particular βi is not obvious, interpretation is difficult

p. 1-20• Some interpretations of parameter estimates

 a naive interpretation: 

“A unit increase in Xi will cause an average change of      in Y ”

[e.g., Y: annual income, and X: years of education]

 Q: what if there exist lurking variables? 

[e.g., X: shoe size, Y: reading abilities, Z: age of child]

 causal conclusion is doubtful

 Q: what if the roles of predictor and response are mistakenly switched?

[e.g., Y: fire damage, and X: numbers of firefighters called out]

 Q: what if some important effects are not included in model?

Z

X Y

 X fixed.

 X random. true model:                                                    , 

fitted model:

iβ̂ ⇐ causality 

statement

 even though we have all important variables in the model 

and no lurking variables, there still are problems, e.g.:

y = β0+ β1 X1 +β2 X2+ε = β0+ (β1−β2) X1 +β2(X1+X2)+ε
 in a properly designed experiment, the naive interpretation is 

more reasonable (because of its use of orthogonal designs and 

randomization); but for observational data, it's often questionable.

Z=1
Z=0

Z=1
Z=0

Z=1

Z=0

(i)

(ii)

(iii)
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 an alternative interpretation

0ŷ

 Q: can other terms be held constant? e.g. 

 X1 and X2 are highly correlated

 consider the model E(Y)=β0+β1X1+β2X2+β3X1X2=β0+(β1+β3X2)X1+β2X2

“A unit increase in Xi with all the other (specified) terms held constant will be 

associated with an average change of      in Y ”iβ̂

 it requires the specification of the other terms/effects. 

 an interpretation from prediction viewpoint 

 estimates and tests of βi’s may significantly change according to what other 

effects are included. It makes the interpretation almost impossible. In some

cases, the problem can be removed by redefining the terms into new linear 

combinations that may be easier to interpret.

Q: what will happen in the analysis when 
strong collinearity exists between effects?

β̂
regarding the parameters and their estimates as fictional quantities, and 

concentrating on prediction enable a rather cautious interpretation of    :

given (g1,0,...,gi,0,...,gp−1,0) → ,  observe (g1,0,...,gi,0+1,...,gp−1,0) →
 prediction is more stable than parameter estimation

 directly interpretable and success may be measured in future

 dangers of extrapolation, be cautious when x0 is outside the range of X

iy β̂ˆ
0 +

p. 1-22

Mean structure

• idea: data are generated from an underlying system, which is assumed to have 

the form:

• regression approximates the mean structure f by a linear combination of 

(known) base functions gi(x1,…, xm)’s, i=1, …, p, i.e.,

when the structure of f is simple and almost linear, it can be approximated 

by a simple structure with fewer terms, e.g.,

 Q: nature is simple?

 Q: are there sufficient data to support/fit a complex model?

when f is complex and non-linear  need more terms

to get a good approximation

 more parameters, need more degrees of freedom, i.e., more data

 e.g., 2 levels, only linear effects; 3 levels, linear and quadratic effects 

 Q: what other complex models?

• base functions for quantitative and qualitative predictors xi’s are defined in 

different ways

y = f(x1, …, xm) + ε, where f is unknown.
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• one predictor case:

• two predictors x1, x2 case:

y = β0 + β1 x1 + β2 x2 + β11 x1
2 + β22 x2

2 + β12 x1x2 + ε     (d=2, 2nd-order model)
 the cross-product term x1x2 can be interpreted as an "interaction" effect, e.g.,

 models for more predictors can be similarly extended

 orthogonal polynomials

 polynomial terms can cause numerical instability (especially when d large) and 

collinearity

 example: 2nd-order model

= β0 + β1 + β2

= β0 + β1 + β2

Polynomial regression

y = β0 + β1 x + β2 x2 + ... + βd xd + ε

p. 1-24

• Recall. polynomial regression: suitable for smooth mean 
structure, but cannot capture local abrupt change (example?) 

broken stick (line) regression (segmented regression)

• suppose the break occurs at the known value c, define the 

base function (where c is called a knot): 

0,    if x ≤ c.

1, if x > c, 
dc(x) = {

= β0 + β1 + β2 + ε

 the two lines meet at c  continuous fit

 notice only 3 parameters in the model  one degree of 
freedom is saved because of the continuity restriction

(β0 -β2 c)+ (β1 + β2 ) x,    if x > c,

β0 + β1x, if x ≤ c, 
E(y) = {

• model: y = β0 + β1 x + β2 (x-c)dc(x) + ε
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dummy variable (indicator variable, coding)

• categorical (qualitative) predictors

 nominal v.s. ordinal

 examples: male/female, treatment/control, eye colors, blocks, ...

 qualitative in nature:

 Q: what properties can we explore for qualitative predictor? 

category i → yij , µi = E(yij)  can only study difference between µi’s

(cf., quantitative predictor)

 Q: how to fit these predictors into the format of linear regression model

Y = Xβ +ε?  Ans: dummy variables

• one dichotomous predictor: two categories

 for a dichotomous predictor C with two categories c1 and c2, define a dummy 

variable d:

 for a data set with response y, one quantitative predictor x, and one qualitative

predictor C (dummy variable d), possible models are:

model 1: y = β0 + β1d + ε,                model 2: y = β0 + β1x + ε, 

model 3: y = β0 + β1d + β2x + ε,      model 4: y = β0 + β1x + β2xd + ε, 

model 5: y = β0 + β1d + β2x + β3xd + ε

 values are symbols, no quantitative meaning

 no value exist between categories

1,    if C = c2 .

0, if C = c1 , 
d(C) = {

p. 1-26

 Q: how to interpret βi's in models 1~5?

 model 1:

 model 2:

 model 3:

 model 4:






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 model 5:



 alternative coding of dummy variable (better orthogonality)

Q: how to interpret βi's in models 1~5 under this coding?

 model 1:



 analysis strategy: start from the full model (model 5) if there are enough

degrees of freedom, and then test if some terms can be eliminated

1,      if C = c2 .

-1, if C = c1 , 
d(C) = {

 identical methodology applies for more than 2

categories and more quantitative predictors

← reference

← reference
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 ANalysis of COVAriance: testing model 3 (Ω) against model 2 (ω) 

(more than 2 categories and more quantitative predictors is 

allowed). The quantitative predictor is called covariate and is 

expected to have the same effect in all categories. The difference

between categories is assumed to be an additive effect.

 various coding of dummy variables: 4 categories c1, c2, c3, c4 example

 consider the model: 

 properties of treatment coding:



100c4

010c3

001c2

000c1

d3d2d1

treatment coding

300c4

−120c3

−1−11c2

−1−1−1c1

d3d2d1

Helmert coding

100c4

010c3

001c2

−1−1−1c1

d3d2d1

sum coding

• one polytomous predictor: more than two categories

 for k categories, k−1 dummy variables are needed to depict the difference

between categories (one parameter is used to represent constant term)
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 treats c1 as a reference

 it is convenient if a "standard" categories exists

 d1, d2, and d3 are mutually orthogonal, but not orthogonal to constant term

 properties of Helmert coding:

 constant term, d1, d2, and d3 are orthogonal when there are equal # of 

observations in each categories

 hard to interpret parameters

 may suitable for ordinal qualitative predictor


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 Note: the choice of coding does not affect the R2, and overall F-test

(to test H0: β1=β2=β3= 0, the three codings have same ω and Ω)

 the overall F-test is one-way ANOVA (ANalysis Of VAriance)

 Q: how to work with quantitative predictors?  identical methodology

as in 2 categories case. Q: how to interpret parameters in the case?

σ̂

 properties of sum coding:

 β0 represent overall mean

 compare each category with the overall mean

 lesser orthogonal


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• two qualitative predictors (say, A: 3 categories a1, a2, a3; B: 4 categories, b1, b2, b3, b4)

 number of different category combinations = 3×4 =12, 

denote their means as µij, i=1, 2, 3 and j=1, 2, 3, 4, i.e.,

 model 1:

 model 2:

 model 3:

 model 4:

 model 5:

 Q: how to depict the difference between µij’s?

consider the following linear models:

nij = number of observations in category A=ai and B=bj

Q: how to perform interaction coding? what is interaction? 

# of parameters: 1 + 2 + 3 + 6 = 12

interaction plot: replace µij’s

by cell means

2-factor interaction
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• identical methodology applies for more qualitative (3-factor interaction, 4-factor 

interaction, …) and quantitative predictors (similar modeling to what in LNp.1-26~27)

• transformation of response

Box-Cox transformation family:

 tλ(y) is continuous in λ: for fixed y>0, 

 λ=1  no transformation, λ=0  log, λ≠0 or 1  power transformation

 model: tλ(y) = Xβ + ε,   ε ∼N(0, σ2I)

 parameters: λ, β, σ
 can write down likelihood for estimation and testing of λ
 choice of transformation becomes a estimation/test problem

 the log-likelihood of λ is

L(λ) = (−n/2) log(RSSλ /n)+(λ-1) Σ log(yi),

where RSSλ = residual sum of square when using tλ(y) as response, i.e.,

Transformation

goodness of fit adjustment

log(y),       if λ=0. 

(yλ
-1)/λ, if λ≠0, 

tλ(y) = {
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 estimation of λ: choose λ to fit data well using maximum likelihood. 

 can compute L(λ) for various values of λ and compute exactly to 

maximize L(λ)

 but usually is not a nice round number, e.g., = -0.17. It would be 

hard to explain what this new response means. 

 to avoid this, maximize L(λ) over a grid of values, such as {-2, -1, -1/2, 

0, 1/2, 1, 2}. This helps with interpretation.

 for outside [−2, 2], pay more attention on whether

such transformation is required

 Q: why not just minimize RSSλ to estimate λ?

λ̂

λ̂λ̂

λ̂

 test of λ: is the transformation really necessary?

 we can answer the question form a C.I. for λ
 likelihood ratio test (H0: λ = λ0 vs. HA: λ ≠ λ0):

−2[L(λ0) – L( )] ~ χ1
2 under H0

 a 100(1-α)% C.I. for λ can be formed by: 

{λ | L(λ) > L( ) - (1/2) χ1
2(1-α) }

 is λ=1 in the C.I.? if so, may as well stay with 

no transformation.

 if rounding    , check that rounded value is in the C.I.λ̂

λ̂

λ̂

p. 1-34

• model: Y=Xβ +ε, E(ε)=0 and var(ε)=σ2I ε: uncorrelated and constant variance

Generalized Least Square (GLS)

• Consider the case var(ε)=σ2Σ, where Σ (≠I) is known but σ2 is unknown, i.e., we 

know the correlation and relative variance between the errors but we don't know the 

absolute scale

• Because Σn×n is symmetric and positive definite, we can write Σ=SST, where S is an 

n×n nonsigular matrix (by Cholesky or spectral decompositions) 

Y=Xβ +ε   S-1Y=S-1Xβ + S-1ε   Y'=X'β +ε' , where

Y' =S-1Y, X'=S-1X, ε'= S-1ε, and

E(ε')=0 and var(ε')=var(S-1ε)=S-1var(ε)S-T= S-1σ2SSTS-T =σ2I

 For Y' and X', the assumption in ordinary least square is satisfied

• GLS: find β that minimize

ε'Tε'=(Y'–X'β)T(Y'–X'β) = (Y-Xβ)TS-TS-1 (Y-Xβ) = (Y-Xβ)TΣ-1(Y-Xβ)

 = (X'TX')-1X'TY' = (XTΣ-1X)-1XTΣ-1Y

 var(     ) = σ2(X'TX')-1 = σ2(XTΣ-1X)-1

GLS is like OLS regressing Y'=S-1Y on X'=S-1X

β̂

β̂

• The practical problem is that Σ may not be known. It's usually necessary to make 

some assumptions and examine the residuals to estimate Σ (check IRWLS)
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• Sometimes, the errors are uncorrelated, but have unequal variance where the form 

of the inequality is known (Σ is diagonal, it's a special case of GLS), example:

Weighted Least Square (WLS)

error variance proportional to a function of predictors [e.g., var(εi)=xi
2σ2]

where wi's (∝ 1/var(εi)) are called weights. 

low weight ⇔ high variance;   high weight ⇔ low variance

• S=diag(1/      , ..., 1/       ), then Σ=SST

 OLS regress S-1Y (i.e.,          ) on S-1X (          ) (Note. the column

of ones, i.e., intercept needs to be replaced with       ) 

 convenient for regression package without a weighted options

xw iiyw ii

wi

w1 wn



• ε : uncorrelated, but not constant variance  Σ is diagonal. Write

data with replicates, which show a pattern of unequal variance [e.g., var(εi) ≈
sample variance of observations with same xi ]

the observed yi's are actually averages of several observations. [e.g., suppose yi is 

the average of ni observations, var(εi)=σ2/ni ]
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• iteratively re-weighted least squares (IRWLS): In all the previous examples, weights

(or Σ in GLS) are assumed known. Q: what if var(εi) is not completely known, what 

weights should we use? Q: where can you find the information of weights?

fit the mean model to estimate β
fit the variance model to estimate ρ

weightsresiduals

• Q: Why observations with smaller variance should be multiplied by heavier 

weight? intuitive interpretation?

 model the mean response for Y, E(Y)=Xβ
 model the variance in Y, var(Y)=f(X, ρ), where ρ are parameters for the 

variance model

 Example: var(εi)=ρ0+ρ1xi1

1. start with wi=1

2. use weighted least square to estimate β
3. use the residuals to estimate ρ0 and ρ1, perhaps by regressing residuals2 on x1

4. re-compute the weights and go to 2. Continue until convergence

Problems: converge? how is the inference about β affected? d.f.=? ...etc

 alternative approach: jointly estimate the mean and variance parameters using 

likelihood based method (in R, use gls() function in the nlme library)


