

Website of my Linear Model course

<http://www.stat.nthu.edu.tw/~swcheng/Teaching/stat5410/>

Question

What is Statistics?

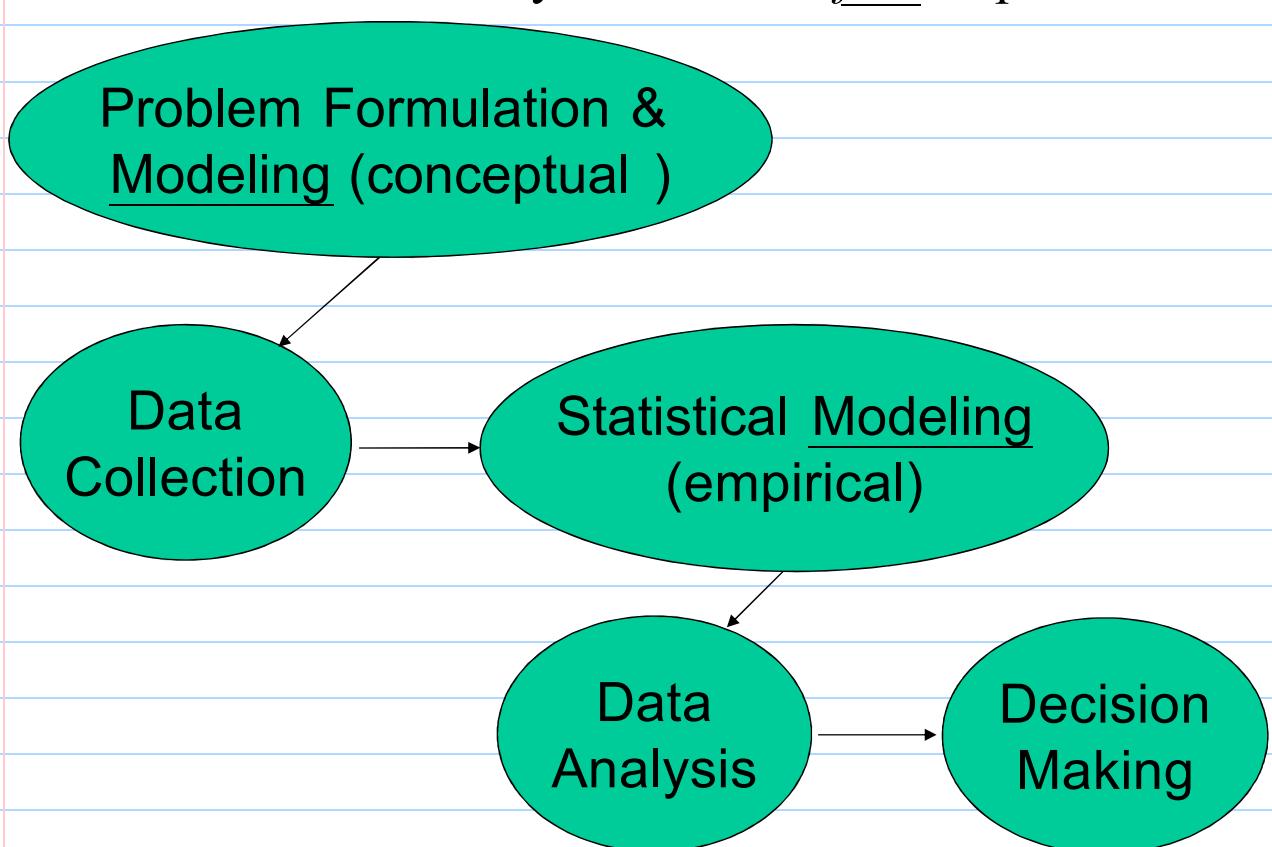
哈利波特	Real Life
占卜學	Statistics
崔老妮	Statisticians
水晶球	Data
未來的資訊	Information

aim of statistics: provide insight by means of data

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

Basic Procedures of Statistics

- Statistics divides the study of data into five steps:



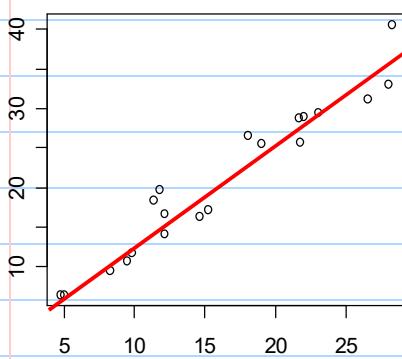
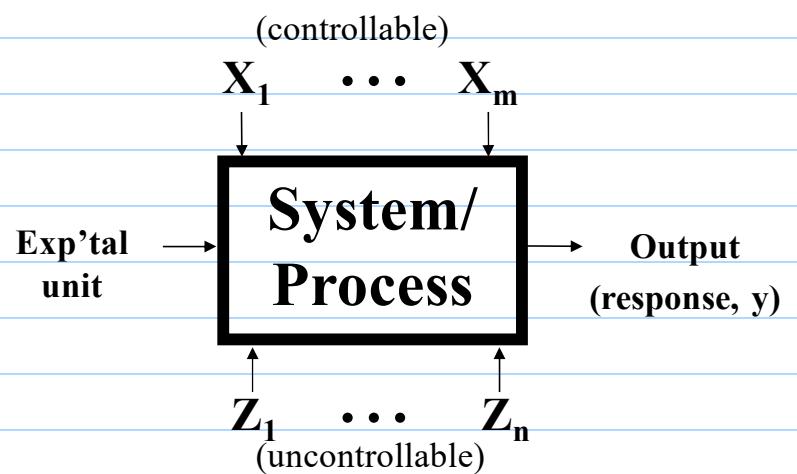
When to use regression analysis (linear model)?

- Regression: a statistical tool for investigating the “linearity relationship” between x and y .

➤ causal relationship: examine the effects of x on y , i.e. how the changes in x result in the change in y

➤ Even where no sensible causal relationship exists between x and y , we may wish to relate them by some sore of mathematical equation

Example



NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- data type in regression analysis and some terminologies

A {response, output, dependent} variable Y is modeled or explained by p effects/functions of m {predictor, input, independent, regressor} variables X_1, \dots, X_m

➤ Y : “approximately” continuous

➤ X_1, \dots, X_m : continuous and discrete (quantitative), categorical (qualitative) (Q: example?)

➤ $p=1$, simple regression; $p>1$, multiple regression

➤ X_1, \dots, X_m

all quantitative	⇒ multiple regression
quantitative+qualitative	⇒ analysis of covariance
all qualitative	⇒ analysis of variance (ANOVA)

➤ more than one Y , multivariate regression

- linear model:

$$\begin{aligned} E(Y|X_1, \dots, X_m) &= \sum_{i=0}^p \beta_i \cdot g_i \\ \text{Var}(Y|X_1, \dots, X_m) &= \text{Var}(\epsilon) = \sigma^2 \end{aligned}$$

$$Y = \sum_{i=0}^p \beta_i \cdot g_i(X_1, \dots, X_m) + \epsilon$$

↑
 deterministic component → mean function
 ↑
 error: random component → variance function

- X_1, \dots, X_m are regarded as deterministic, i.e., no random phenomenon (when they are random variables, regard the linear model as conditional on X_1, \dots, X_m)
- $g_0(X_1, \dots, X_m), \dots, g_p(X_1, \dots, X_m)$: known functions of X_1, \dots, X_m , called effects
- (unknown) parameters β_0, \dots, β_p enter linearly
- variation due to random error only appears on y-axis
- Rationale: a general model for the relationship between Y and X_1, \dots, X_m , is:

$$Y = f(X_1, \dots, X_m) + \epsilon, \text{ where } f \text{ is } \underline{\text{unknown}} \text{ and } \underline{\text{arbitrary}}$$

Note: # of parameters in f is infinite, usually do not have enough data to estimate f directly (globally), we have to assume that it has some more restricted form

- local approximation of f may be achievable by a linear model
- **Note:** Because the predictors can be transformed and combined in any way, linear models are actually very flexible.

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

Matrix representation

- Given the data matrix,

Y	X_1	X_2	...	X_m
y_1	x_{11}	x_{12}	...	x_{1m}
y_2	x_{21}	x_{22}	...	x_{2m}
...	...			
y_n	x_{n1}	x_{n2}	...	x_{nm}

a row: one group of observations
a column: one variable
(response or predictor)

- We may write a linear model as follows (functional form): for $i = 1, 2, \dots, n$,

$$y_i = \beta_0 + \beta_1 g_1(x_{i1}, \dots, x_{im}) + \beta_2 g_2(x_{i1}, \dots, x_{im}) + \dots + \beta_{p-1} g_{p-1}(x_{i1}, \dots, x_{im}) + \epsilon_i,$$

Y	1	g_1	g_2	...	g_{p-1}
y_1	1	g_{11}	g_{12}	...	g_{1p-1}
y_2	1	g_{21}	g_{22}	...	g_{2p-1}
...			...		
y_n	1	g_{n1}	g_{n2}	...	g_{np-1}

a row: one group of observations
a column: response or effect

where $g_{ij} = g_j(x_{i1}, \dots, x_{im})$

- the expression is (i) ugly notation (ii) conceptually awkward
- matrix/vector notation is more elegant

Y	$= \beta_0 \mathbf{x}_1 + \beta_1 \mathbf{x}_g_1 + \beta_2 \mathbf{x}_g_2 + \dots + \beta_{p-1} \mathbf{x}_g_{p-1} + \epsilon$	
y_1	$= 1 + g_{11} + g_{12} + \dots + g_{1p-1} + \epsilon_1$	a <u>row</u> : one <u>group</u> of observations
y_2	$= 1 + g_{21} + g_{22} + \dots + g_{2p-1} + \epsilon_2$	
\dots	\dots	\dots a <u>column</u> : <u>response</u> or effect
y_n	$= 1 + g_{n1} + g_{n2} + \dots + g_{np-1} + \epsilon_n$	

- Matrix form of the linear model:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

where

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}, \mathbf{X} = \begin{bmatrix} 1 & g_{11} & \dots & g_{1p-1} \\ 1 & g_{21} & \dots & g_{2p-1} \\ \dots & \dots & \dots & \dots \\ 1 & g_{n1} & \dots & g_{np-1} \end{bmatrix}, \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_{p-1} \end{bmatrix}, \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \dots \\ \epsilon_n \end{bmatrix}.$$

and $E(\boldsymbol{\epsilon}) = \mathbf{0}$ and $\text{var}(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{I}$ (Note: the assumption that errors are normally distributed is not required at the estimation stage)

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

Estimating $\boldsymbol{\beta}$

- (ordinary) least square estimator

- assume $\boldsymbol{\epsilon}$ are (i) uncorrelated (ii) equal variance ($\text{Var}(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{I}$)
- define the best $\hat{\boldsymbol{\beta}}$ as that minimizes sum of squared error: $\boldsymbol{\epsilon}^T \boldsymbol{\epsilon} = \sum_{i=1}^n \epsilon_i^2$

$$\boldsymbol{\epsilon}^T \boldsymbol{\epsilon} = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) = \mathbf{Y}^T \mathbf{Y} - 2\boldsymbol{\beta}^T \mathbf{X}^T \mathbf{Y} + \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\beta} \quad (*)$$

\Rightarrow a second-order polynomial of $\boldsymbol{\beta}$

- One method of finding the minimizer is to differentiate (*) w.r.t. $\boldsymbol{\beta}$ and set the derivatives equal to zero

$$\Rightarrow \frac{\partial}{\partial \boldsymbol{\beta}} \boldsymbol{\epsilon}^T \boldsymbol{\epsilon} = -2\mathbf{X}^T \mathbf{Y} + 2\mathbf{X}^T \mathbf{X} \boldsymbol{\beta} = \mathbf{0}$$

- By calculus, $\hat{\boldsymbol{\beta}}$ is the solution of

$$\mathbf{X}^T \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^T \mathbf{Y} \quad \Leftarrow \text{called normal equation}$$

- assume $\mathbf{X}^T \mathbf{X}$ is non-singular,

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} \Rightarrow \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} \equiv \mathbf{H} \mathbf{Y}$$

- predicted values: $\hat{\mathbf{Y}} = \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{H} \mathbf{Y}$

- residuals: $\hat{\boldsymbol{\epsilon}} = \mathbf{Y} - \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{Y} - \hat{\mathbf{Y}} = (\mathbf{I} - \mathbf{H}) \mathbf{Y}$

- residual sum of squares (RSS): $\hat{\boldsymbol{\epsilon}}^T \hat{\boldsymbol{\epsilon}} = [\mathbf{Y}^T (\mathbf{I} - \mathbf{H})^T] [(\mathbf{I} - \mathbf{H}) \mathbf{Y}] = \mathbf{Y}^T (\mathbf{I} - \mathbf{H}) \mathbf{Y}$

- OLS $\hat{\beta}$ results from orthogonal projection, makes sense geometrically
- (FYI) if $\epsilon \sim N(\mathbf{0}, \sigma^2 I)$, $\hat{\beta}$ is the maximum likelihood estimator
- Gauss-Markov thm states $\hat{\beta}$ is BLUE ("Best" Linear Unbiased Estimator)
- mean and covariance matrix of OLS estimator $\hat{\beta}$
- $\hat{\beta} = (X^T X)^{-1} X^T Y$ is a $p \times 1$ vector of random variables, so
- mean: $E(\hat{\beta}) = (X^T X)^{-1} X^T E(Y) = (X^T X)^{-1} X^T X \beta = \beta$ (i.e., unbiased)
- Cov($\hat{\beta}$) = $(X^T X)^{-1} X^T \sigma^2 I X (X^T X)^{-1} = (X^T X)^{-1} \sigma^2$ (\Rightarrow irrelevant to Y and β)
Note: if we can control X , can decide the var-cov matrix before observing Y)
- Since $\hat{\beta}$ is a random vectors, $(X^T X)^{-1} \sigma^2$ is a variance-covariance matrix.
- se($\hat{\beta}_i$) = $\sqrt{(X^T X)^{-1}_{ii} \hat{\sigma}^2}$
- how to calculate the correlation between $\hat{\beta}_i$ and $\hat{\beta}_j$?

Estimating σ^2

- estimate σ^2 by $\hat{\sigma}^2 = \hat{\epsilon}^T \hat{\epsilon} / (n-p) = RSS / (n-p) \Rightarrow$ an unbiased estimator
- $\hat{\sigma}^2$ has the minimum variance among all quadratic unbiased estimators of σ^2
- $\hat{\sigma} = \sqrt{RSS / (n-p)}$
- (FYI) if $\epsilon \sim N(\mathbf{0}, \sigma^2 I)$, the maximum likelihood estimator of σ^2 is $\hat{\epsilon}^T \hat{\epsilon} / n = RSS / n$

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

goodness-of-fit: how well does the model fit the data?

- R^2 , coefficient of determination or percentage of variance explained

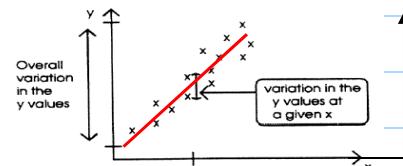
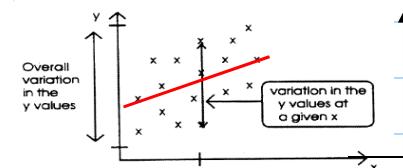
$$R^2 = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2} = \frac{\sum (\hat{y}_i - \bar{y})^2}{\sum (y_i - \bar{y})^2} = \left(\frac{\sum (y_i - \bar{y})(\hat{y}_i - \bar{y})}{\sqrt{\sum (y_i - \bar{y})^2 \sum (\hat{y}_i - \bar{y})^2}} \right)^2$$

RSS is calculated from model with all independent variables,

TSS from model without any independent variables

Interpretation of R^2 : "proportion of total variation in y that can be explained by the independent variables"

- R =correlation between \hat{y} and y ; for simple regression, R =correlation between x and y (from the geometry viewpoint, ...)
- $0 \leq R^2 \leq 1$, values closer to 1 indicate better fits. (what if $n \approx p$?)
- What is a good value of R^2 ? It depends.
- alternative measure for goodness of fit: $\hat{\sigma}$
- it's related to standard error of estimates of β and prediction
- it's measured in the unit of the response (cf., R^2 is free of unit)



Normality assumption

- Note: up till now, haven't assumed any distributional form for ϵ . If we want to perform any hypothesis tests or make any confidence intervals, we will need to do this. The usual assumption is:

$$\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$$

➤ model: $Y = X\beta + \epsilon, \epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$

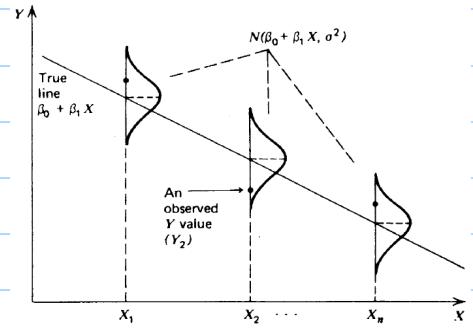
$$Y \sim N(X\beta, \sigma^2 \mathbf{I})$$

- Q: what does the model describe? e.g.,

$$y_x = \beta_0 + \beta_1 x + \epsilon_x, \epsilon_x \text{ 's } \sim \text{i.i.d. } N(0, \sigma^2)$$

$$\Rightarrow E(y_x) = \beta_0 + \beta_1 x$$

$\Rightarrow y_x$'s are independent and $y_x \sim N(\beta_0 + \beta_1 x, \sigma^2)$ at $x=x_i, i=1, \dots, n$.



- Some properties of linear models when $\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$:

➤ distribution of $\underline{Y} [=X\beta + \epsilon] \sim N(X\beta, \sigma^2 \mathbf{I})$

➤ distribution of $\hat{\beta} [= (X^T X)^{-1} X^T \underline{Y}] \sim N(\beta, (X^T X)^{-1} \sigma^2)$

➤ distribution of $\hat{\epsilon} [= (I - H)\underline{Y} = (I - H)\epsilon] \sim N(\mathbf{0}, (I - H)\sigma^2)$, which has a singular covariance matrix $I - H$ with rank $n - p$ (Note: $\dim(\hat{\epsilon}) = n - p$)

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

➤ distribution of $RSS [= (n - p) \hat{\sigma}^2 = \hat{\epsilon}^T \hat{\epsilon} = \epsilon^T (I - H) \epsilon] \sim \sigma^2 \chi^2_{n-p}$

➤ distribution of $\hat{Y} [= X\hat{\beta} = HY] \sim N(X\beta, H\sigma^2)$, which has a singular covariance matrix with rank p (Note: $\dim(\hat{Y}) = p$)

➤ $\hat{\beta}$ is independent of $\hat{\epsilon}^T$ (Note: $\text{cov}((X^T X)^{-1} X^T \underline{Y}, (I - H)\underline{Y}) = \mathbf{0}$)

➤ \hat{Y} is independent of $\hat{\epsilon}$ (Note: $\text{cov}(H\underline{Y}, (I - H)\underline{Y}) = \mathbf{0}$)

➤ distribution of prediction for a new set of predictors, $\underline{x}_0 = (g_1(x_{10}, \dots, x_{m0}), \dots, g_p(x_{10}, \dots, x_{m0}))^T$

cf. fitted model: $y = \sum_{j=1}^p \beta_j \cdot g_j(x_1, \dots, x_m) + \epsilon$

- mean response v.s. future observation (Q: what different?)

▫ Example: average yield when $x = x_0$? and tomorrow's yield when $x = x_0$?

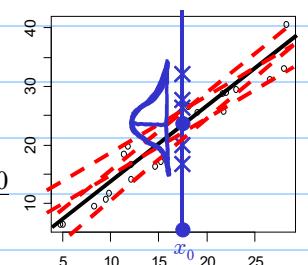
▫ same predicted value $\underline{x}_0^T \hat{\beta}$, but different distributions

- distribution of prediction error for mean response at \underline{x}_0

$$\underline{x}_0^T \hat{\beta} - \underline{x}_0^T \beta \sim N(\mathbf{0}, (\underline{x}_0^T (X^T X)^{-1} \underline{x}_0) \sigma^2)$$

- distribution of prediction error for future observations at \underline{x}_0

$$\underline{x}_0^T \hat{\beta} - (\underline{x}_0^T \beta + \epsilon) \sim N(\mathbf{0}, (\underline{x}_0^T (X^T X)^{-1} \underline{x}_0 + 1) \sigma^2)$$

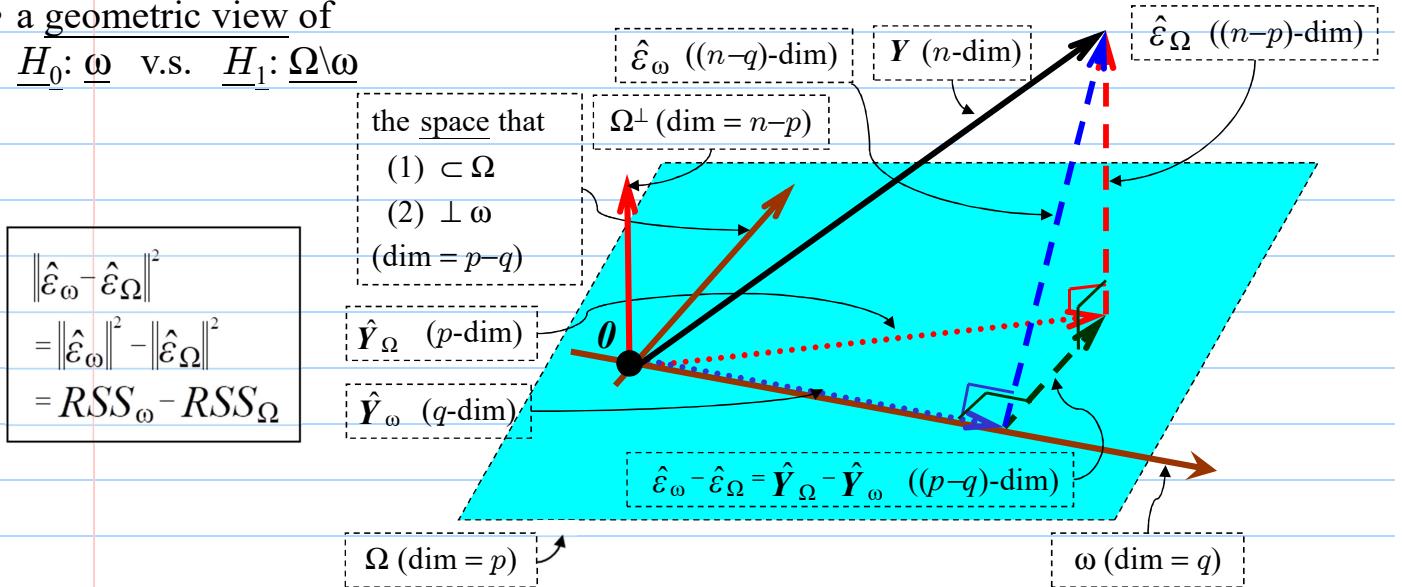


hypothesis testings (for β)

- formulation of hypothesis testing from the view of comparing models (model spaces)
 - a model space \equiv the space spanned by columns of some \underline{X} (model matrix)
 - consider a large model space, Ω , and a smaller model space, ω , where $\omega \subset \Omega$ (i.e., ω represents a subset/subspace of Ω). Suppose dimension (# of parameters) of Ω is p and $\dim(\omega)=q$, where $p>q$.
 - to answer “which of the model spaces is more adequate” in statistical language
 - ⇒ perform the test $H_0: \omega \text{ (} A\beta = c \text{) v.s. } H_1: \Omega \setminus \omega$

- a geometric view of

$H_0: \omega$ v.s. $H_1: \Omega \setminus \omega$



NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

➤ suppose dimension (# of parameters) of $\underline{\Omega}$ is p and dim(ω)= q .

Under the null H_0 : ω ,

$$(RSS_{\omega} - RSS_{\Omega})/\sigma^2 \sim \chi^2_{p-q},$$

$$RSS_{\Omega} / \sigma^2 \sim \chi^2_{n-p}$$

and they are *independent*.

So, we have $F = \frac{(RSS_\omega - RSS_\Omega)/(p - q)}{RSS_\Omega/(n - p)} \sim F_{p-q, n-p}$.

Therefore, reject if $F > \overline{F_{p-q,n-p}(\alpha)}$ (usually check if p-value < α)

➤ **General form:** because the degree of freedom of residuals in a model is the number of observations minus the number of parameters (in β), this test statistics can be written as:

$$F = \frac{(RSS_\omega - RSS_\Omega) / (df_\omega - df_\Omega)}{RSS_\Omega / df_\Omega} \sim F_{df_\omega - df_\Omega, df_\Omega},$$

where $df_{\omega} = \dim(\omega^\perp) = n - q$ and $df_{\Omega} = \dim(\Omega^\perp) = n - p$.

- The test is widely used in regression and ANOVA. The beauty of this approach is you only need to know the general form.
- This test is the likelihood-ratio test.

- Example 1: test of all predictors

➤ Q: are any of the predictors g_i 's useful in predicting the response?

- $\Omega: y = \beta_0 + \beta_1 g_1 + \cdots + \beta_{p-1} g_{p-1} + \epsilon$, $\dim(\Omega) = p$, $df_\Omega = n-p$
- $\omega: y = \beta_0 + \epsilon$, $\dim(\omega) = 1$, $df_\omega = n-1$
- $H_0: \beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0$ $H_1: \text{at least one of } \beta_1, \dots, \beta_{p-1} \text{ is not zero}$
- $RSS_\Omega: \hat{\epsilon}_\Omega^\top \hat{\epsilon}_\Omega = \sum_{i=1}^n (y_i - \hat{y}_{i,\Omega})^2$ $RSS_\omega: (Y - \bar{Y}\mathbf{1})^\top (Y - \bar{Y}\mathbf{1}) = \sum_{i=1}^n (y_i - \bar{y})^2$
- (the overall F) $F = \frac{(RSS_\omega - RSS_\Omega)/(df_\omega - df_\Omega)}{RSS_\Omega/df_\Omega} = \frac{[\sum (y_i - \bar{y})^2 - \sum (y_i - \hat{y}_i)^2]/(p-1)}{\sum (y_i - \hat{y}_i)^2/n-p}$

they are functionally related. c.f. $R^2 = 1 - \frac{RSS_\Omega}{RSS_\omega} = 1 - \frac{1}{1 + \frac{p-1}{n-p} F}$

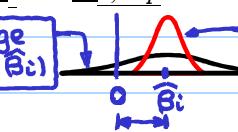
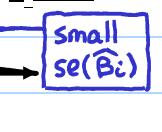
- Example 2: testing just one predictor

➤ Q: Can one particular predictor, say $g_i(\tilde{x})$, be dropped from the model?

- $\Omega: y = \beta_0 + \cdots + \beta_i g_i + \cdots + \beta_{p-1} g_{p-1} + \epsilon$, $\dim(\Omega) = p$, $df_\Omega = n-p$
- $\omega: y = \beta_0 + \cdots + \cancel{\beta_i g_i} + \cdots + \beta_{p-1} g_{p-1} + \epsilon$, $\dim(\omega) = p-1$, $df_\omega = n-p+1$
- $H_0: \beta_i = 0$ ($\beta_j \in \mathbb{R}$, for $j \neq i$) $H_1: \beta_i \neq 0$ ($\beta_j \in \mathbb{R}$, for $j \neq i$)
- $F = [(RSS_\omega - RSS_\Omega)/(df_\omega - df_\Omega)] / (RSS_\Omega/df_\Omega) \sim F_{df_\omega - df_\Omega, df_\Omega}$

➤ alternative method t -test: $t_i = \hat{\beta}_i / \text{se}(\hat{\beta}_i) \sim t_{n-p}$ [Note. $t_i^2 \sim F_{1, n-p}$, and $t_i^2 = F$]

$$t_i^2 = \left(\frac{\hat{\beta}_{i,\Omega}}{\sqrt{(\mathbf{X}_n^\top \mathbf{X}_n)^{-1}_{ii}} \hat{\sigma}_\Omega} \right)^2 = F \leftarrow RSS_\omega - RSS_\Omega = \left(\frac{\hat{\beta}_{i,\Omega}}{\sqrt{(\mathbf{X}_n^\top \mathbf{X}_n)^{-1}_{ii}}} \right)^2$$

large $\text{se}(\hat{\beta}_i)$  small $\text{se}(\hat{\beta}_i)$ 

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

➤ (sequential) ANOVA (A: 3 levels; B: 4 levels)

- anova($y \sim \underline{I} + \underline{A} + \underline{B} + \underline{A:B}$)

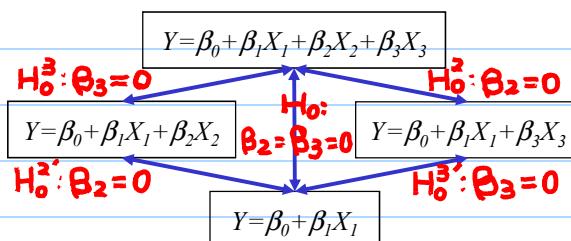
- test ω_1 : model 1 ($y \sim \underline{I}$) against Ω_1 : model 2 ($y \sim \underline{I} + \underline{A}$) [$df_\omega - df_\Omega = 2$]
- test ω_2 : model 2 ($y \sim \underline{I} + \underline{A}$) against Ω_2 : model 4 ($y \sim \underline{I} + \underline{A} + \underline{B}$) [$df_\omega - df_\Omega = 3$]
- test ω_3 : model 4 ($y \sim \underline{I} + \underline{A} + \underline{B}$) against Ω_3 : model 5 ($y \sim \underline{I} + \underline{A} + \underline{B} + \underline{A:B}$) [$df_\omega - df_\Omega = 6$]

- $F = \frac{(RSS_\omega - RSS_\Omega)/(df_\omega - df_\Omega)}{RSS_{\text{model 5}}/df_{\text{model 5}}} \sim F_{df_\omega - df_\Omega, df_{\text{model 5}}}$

invariant to the choice of dummy variables if they generate same ω and Ω

- ANOVA could have different results when the order of effect sequence is changed, e.g., anova($y \sim \underline{I} + \underline{B} + \underline{A} + \underline{A:B}$):

- test ω_1 : model 1 ($y \sim \underline{I}$) against Ω_1 : model 3 ($y \sim \underline{I} + \underline{B}$) [$df_\omega - df_\Omega = 3$]
- test ω_2 : model 3 ($y \sim \underline{I} + \underline{B}$) against Ω_2 : model 4 ($y \sim \underline{I} + \underline{B} + \underline{A}$) [$df_\omega - df_\Omega = 2$]
- test ω_3 : model 4 ($y \sim \underline{I} + \underline{B} + \underline{A}$) against Ω_3 : model 5 ($y \sim \underline{I} + \underline{B} + \underline{A} + \underline{A:B}$) [$df_\omega - df_\Omega = 6$]



Confidence intervals and regions

- Model: $\underline{Y} = \underline{X}\underline{\beta} + \underline{\varepsilon}$, $\underline{\varepsilon} \sim N(\mathbf{0}, \sigma^2 I)$; $\hat{\underline{\beta}}$: OLS estimator $\Rightarrow \hat{\underline{\beta}} \sim N(\underline{\beta}, (\underline{X}^T \underline{X})^{-1} \sigma^2)$

➤ Confidence region for $\underline{A}\underline{\beta}$, where \underline{A} is a full rank $d \times p$ matrix and $d \leq p$

$$\underline{A}\hat{\underline{\beta}} \sim N(\underline{A}\underline{\beta}, \underline{A}(\underline{X}^T \underline{X})^{-1} \underline{A}^T \sigma^2) \Rightarrow [(\underline{A}\hat{\underline{\beta}} - \underline{A}\underline{\beta})^T [\underline{A}(\underline{X}^T \underline{X})^{-1} \underline{A}^T]^{-1} (\underline{A}\hat{\underline{\beta}} - \underline{A}\underline{\beta})] / \sigma^2 \sim \chi^2_d,$$

$$(n-p) \hat{\sigma}^2 / \sigma^2 \sim \chi^2_{n-p},$$

and they are independent.

$$[(\underline{A}\hat{\underline{\beta}} - \underline{A}\underline{\beta})^T [\underline{A}(\underline{X}^T \underline{X})^{-1} \underline{A}^T]^{-1} (\underline{A}\hat{\underline{\beta}} - \underline{A}\underline{\beta})] / (d \hat{\sigma}^2) \sim F_{d, n-p}$$

➤ $100(1-\alpha)\%$ confidence region of $\underline{A}\underline{\beta}$: collection of $\underline{A}\underline{\beta}$'s (or $\underline{\beta}$) that satisfy

general form $[(\underline{A}\hat{\underline{\beta}} - \underline{A}\underline{\beta})^T [\underline{A}(\underline{X}^T \underline{X})^{-1} \underline{A}^T]^{-1} (\underline{A}\hat{\underline{\beta}} - \underline{A}\underline{\beta})] / (d \hat{\sigma}^2) \leq F_{d, n-p}(\alpha)$

The regions are often ellipsoidally shaped (Q: why?).

- Examples:

➤ confidence region for $\underline{\beta}$, i.e., $\underline{A} = \underline{I}_{p \times p}$

$$(\hat{\underline{\beta}} - \underline{\beta})^T \underline{X}^T \underline{X} (\hat{\underline{\beta}} - \underline{\beta}) \leq (p \hat{\sigma}^2) F_{p, n-p}(\alpha)$$

➤ confidence region of β_i, β_j , i.e., $\underline{A} = \begin{pmatrix} 0, \dots, 0, 1, 0, \dots, 0, 0, 0, \dots, 0 \\ 0, \dots, 0, 0, 0, \dots, 0, 1, 0, \dots, 0 \end{pmatrix}$

$$[(\underline{A}\hat{\underline{\beta}} - \underline{A}\underline{\beta})^T [\underline{A}(\underline{X}^T \underline{X})^{-1} \underline{A}^T]^{-1} (\underline{A}\hat{\underline{\beta}} - \underline{A}\underline{\beta})] \leq (2 \hat{\sigma}^2) F_{2, n-p}(\alpha)$$

NTHU STAT 5230, 2025, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

➤ confidence interval for β_i , i.e., $\underline{A} = (0, \dots, 0, 1, 0, \dots, 0)$

$$(\hat{\beta}_i - \beta_i)^2 / (\underline{X}^T \underline{X})_{ii}^{-1} \leq \hat{\sigma}^2 F_{1, n-p}(\alpha) \Rightarrow |(\hat{\beta}_i - \beta_i) / (\hat{\sigma} \sqrt{(\underline{X}^T \underline{X})_{ii}^{-1}})| \leq t_{n-p}(\alpha/2)$$

alternative method:

① $\hat{\beta}_i \sim N(\beta_i, \sigma^2 (\underline{X}^T \underline{X})_{ii}^{-1})$, ② $(n-p) \hat{\sigma}^2 / \sigma^2 \sim \chi^2_{n-p}$, and ③ they are independent

$$\Rightarrow (\hat{\beta}_i - \beta_i) / (\hat{\sigma} \sqrt{(\underline{X}^T \underline{X})_{ii}^{-1}}) \sim t_{n-p} \Rightarrow \text{C.I.: } \hat{\beta}_i \pm t_{n-p}(\alpha/2) \times \hat{\sigma} \sqrt{(\underline{X}^T \underline{X})_{ii}^{-1}}.$$

➤ confidence interval for prediction of mean response at \underline{x}_0

$$\underline{x}_0^T \hat{\underline{\beta}} - \underline{x}_0^T \underline{\beta} \sim N(\mathbf{0}, (\underline{x}_0^T (\underline{X}^T \underline{X})^{-1} \underline{x}_0) \sigma^2) \Rightarrow (\underline{x}_0^T \hat{\underline{\beta}} - \underline{x}_0^T \underline{\beta}) / (\hat{\sigma} \sqrt{\underline{x}_0^T (\underline{X}^T \underline{X})^{-1} \underline{x}_0}) \sim t_{n-p}$$

$$\Rightarrow \text{C.I.: } \underline{x}_0^T \hat{\underline{\beta}} \pm t_{n-p}(\alpha/2) \times \hat{\sigma} \sqrt{\underline{x}_0^T (\underline{X}^T \underline{X})^{-1} \underline{x}_0}$$

➤ C.I. for prediction of future observation at \underline{x}_0

$$\underline{x}_0^T \hat{\underline{\beta}} - (\underline{x}_0^T \underline{\beta} + \underline{\varepsilon}) \sim N(\mathbf{0}, (\underline{x}_0^T (\underline{X}^T \underline{X})^{-1} \underline{x}_0 + 1) \sigma^2)$$

$$\Rightarrow \text{C.I.: } \underline{x}_0^T \hat{\underline{\beta}} \pm t_{n-p}(\alpha/2) \times \hat{\sigma} \sqrt{1 + \underline{x}_0^T (\underline{X}^T \underline{X})^{-1} \underline{x}_0}$$

➤ a general form for confidence interval:

estimate \pm (critical value) \times (standard error of estimate)

Interpreting parameter estimates

- Q: $Y = X\beta + \varepsilon$, what does $\hat{\beta}$ mean?

Some matters needing attention about $\hat{\beta}$:

➤ $\hat{\beta}$ have units [e.g., fuel consumption data, fitted model]:

$$\text{fuel} = 154.19 + (-4.23)\text{Tax} + (0.47)\text{Dlic} + (-6.14)\text{Income} + (18.54)\log_2(\text{Miles})$$

➤ sign of $\hat{\beta}$: direction of the relationship between the term and the response

➤ interpretation of estimated value (see next two slides)

➤ better to also consider values contained in its confidence interval

➤ causality or association

➤ the parameters β

- some β_i 's have physical interpretation, especially those from a conceptual model [e.g., attach weights x to a spring and measure the extension y]

⇒ unfortunately, such cases are rare

- usually, β_i 's do not have such physical interpretation

⇒ in the case, the model $Y = X\beta + \varepsilon$ is only an empirical model, i.e., a convenience for representing a complex reality within the range of X ⇒

the real meaning of a particular β_i is not obvious, interpretation is difficult

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- Some interpretations of parameter estimates

➤ a naive interpretation:

“A unit increase in X_i will cause an average change of $\hat{\beta}_i$ in Y ” ⇔ causality statement
[e.g., Y : annual income, and X : years of education]

■ Q: what if there exist lurking variables?

[e.g., X : shoe size, Y : reading abilities, Z : age of child]

⇒ causal conclusion is doubtful



■ Q: what if the roles of predictor and response are mistakenly switched?

[e.g., Y : fire damage, and X : numbers of firefighters called out]

■ Q: what if some important effects are not included in model?

■ X fixed. $E(\hat{\beta}_1) = \beta_1 + (\mathbf{X}_1^T \mathbf{X}_1)^{-1} \mathbf{X}_1^T \mathbf{X}_2 \beta_2$

■ X random. true model: $E(Y | \mathbf{X}_1, \mathbf{X}_2) = \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \beta_2$,

fitted model: $E(Y | \mathbf{X}_1) = \mathbf{X}_1 \beta_1$

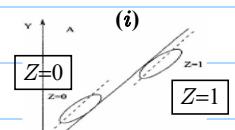
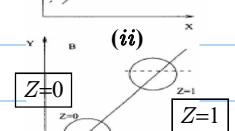
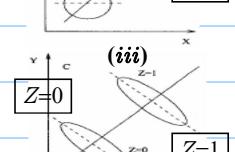
$$E(Y | \mathbf{X}_1) = \mathbf{X}_1 \beta_1 + E(\mathbf{X}_2 | \mathbf{X}_1) \beta_2$$

$$\text{Var}(Y | \mathbf{X}_1) = \sigma^2 + \beta_2^T \text{Var}(\mathbf{X}_2 | \mathbf{X}_1) \beta_2$$

■ even though we have all important variables in the model and no lurking variables, there still are problems, e.g.:

$$y = \beta_0 + \beta_1 \underline{X}_1 + \beta_2 \underline{X}_2 + \varepsilon = \beta_0 + (\beta_1 - \beta_2) \underline{X}_1 + \beta_2 (\underline{X}_1 + \underline{X}_2) + \varepsilon$$

■ in a properly designed experiment, the naive interpretation is more reasonable (because of its use of orthogonal designs and randomization); but for observational data, it's often questionable.



➤ an alternative interpretation

“A unit increase in X_i with all the other (specified) terms held constant will be associated with an average change of $\hat{\beta}_i$ in Y ”

▪ Q: can other terms be held constant? e.g.

▫ X_1 and X_2 are highly correlated

▫ consider the model $E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 = \beta_0 + (\beta_1 + \beta_3 X_2) X_1 + \beta_2 X_2$

▪ it requires the specification of the other terms/effects.

Q: what will happen in the analysis when strong collinearity exists between effects?

⇒ estimates and tests of β_i 's may significantly change according to what other effects are included. It makes the interpretation almost impossible. In some cases, the problem can be removed by redefining the terms into new linear combinations that may be easier to interpret.

➤ an interpretation from prediction viewpoint

regarding the parameters and their estimates as fictional quantities, and concentrating on prediction enable a rather cautious interpretation of $\hat{\beta}$:

given $(g_{1,0}, \dots, g_{i,0}, \dots, g_{p-1,0}) \rightarrow \hat{y}_0$, observe $(g_{1,0}, \dots, g_{i,0} + 1, \dots, g_{p-1,0}) \rightarrow \hat{y}_0 + \hat{\beta}_i$

▪ prediction is more stable than parameter estimation

▪ directly interpretable and success may be measured in future

▪ dangers of extrapolation, be cautious when x_0 is outside the range of X

NTHU STAT 5230, 2025, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

Mean structure

- idea: data are generated from an underlying system, which is assumed to have the form: $y = f(x_1, \dots, x_m) + \varepsilon$, where f is unknown.
- regression approximates the mean structure f by a linear combination of (known) base functions $g_i(x_1, \dots, x_m)$'s, $i=1, \dots, p$, i.e.,

$$\underline{f} \leftarrow \sum_{i=1}^p \beta_i \cdot g_i(x_1, \dots, x_m)$$

➤ when the structure of f is simple and almost linear, it can be approximated by a simple structure with fewer terms, e.g.,

$$E(y) = \underline{f} \approx \beta_0 + \beta_1 \underline{x_1} + \dots + \beta_m \underline{x_m}$$

▪ Q: nature is simple?

▪ Q: are there sufficient data to support/fit a complex model?

➤ when f is complex and non-linear ⇒ need more terms to get a good approximation

▪ more parameters, need more degrees of freedom, i.e., more data

▪ e.g., 2 levels, only linear effects; 3 levels, linear and quadratic effects

▪ Q: what other complex models?

- base functions for quantitative and qualitative predictors x_i 's are defined in different ways

Polynomial regression

- one predictor case: $y = \beta_0 + \beta_1 \underline{x} + \beta_2 \underline{x}^2 + \dots + \beta_d \underline{x}^d + \epsilon$

- two predictors x_1, x_2 case:

$$y = \beta_0 + \beta_1 \underline{x}_1 + \beta_2 \underline{x}_2 + \beta_{11} \underline{x}_1^2 + \beta_{22} \underline{x}_2^2 + \beta_{12} \underline{x}_1 \underline{x}_2 + \epsilon \quad (d=2, \text{ 2nd-order model})$$

➤ the cross-product term $\underline{x}_1 \underline{x}_2$ can be interpreted as an "interaction" effect, e.g.,

$$E(y) = \beta_0 + \beta_1 \underline{x}_1 + \beta_2 \underline{x}_2 + \beta_3 \underline{x}_1 \underline{x}_2, \text{ where } \underline{x}_1, \underline{x}_2 \in \{-1, 1\}$$

$$\underline{x}_1 = +1 \implies E(y) = (\beta_0 + \beta_1) + (\beta_2 + \beta_3) \underline{x}_2$$

$$\underline{x}_1 = -1 \implies E(y) = (\beta_0 - \beta_1) + (\beta_2 - \beta_3) \underline{x}_2$$

➤ models for more predictors can be similarly extended

$$y = \beta_0 + \sum_{i=1}^m \beta_{1,i} \underline{x}_i + \sum_{i=1}^m \beta_{2,i} \underline{x}_i^2 + \sum_{1 \leq i < j \leq m} \beta_{3,ij} \underline{x}_i \underline{x}_j + \epsilon$$

- orthogonal polynomials

➤ polynomial terms can cause numerical instability (especially when d large) and collinearity

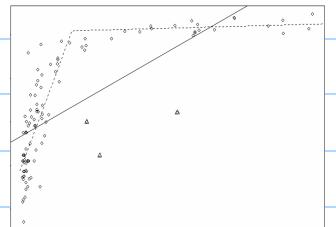
➤ example: 2nd-order model



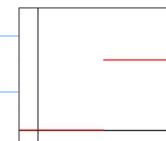
NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

broken stick (line) regression (segmented regression)

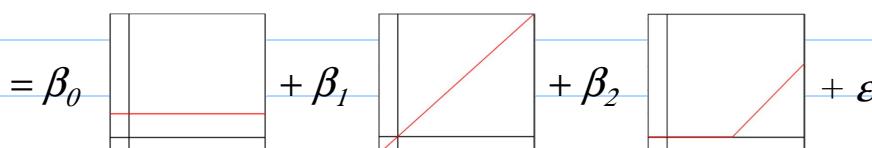
- Recall, polynomial regression: suitable for smooth mean structure, but cannot capture local abrupt change (example?)
- suppose the break occurs at the known value c , define the base function (where c is called a knot):



$$d_c(x) = \begin{cases} 1, & \text{if } x > c, \\ 0, & \text{if } x \leq c. \end{cases}$$



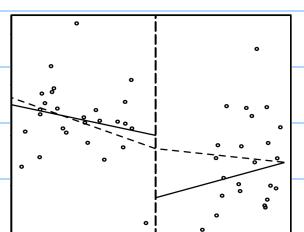
- model: $y = \beta_0 + \beta_1 \underline{x} + \beta_2 (x - c) d_c(x) + \epsilon$



$$E(y) = \begin{cases} \beta_0 + \beta_1 x, & \text{if } x \leq c, \\ (\beta_0 - \beta_2 c) + (\beta_1 + \beta_2) x, & \text{if } x > c, \end{cases}$$

➤ the two lines meet at c \Rightarrow continuous fit

➤ notice only 3 parameters in the model \Rightarrow one degree of freedom is saved because of the continuity restriction



dummy variable (indicator variable, coding)

- categorical (qualitative) predictors

- nominal v.s. ordinal

- examples: male/female, treatment/control, eye colors, blocks, ...

- qualitative in nature: ■ values are symbols, no quantitative meaning
 ■ no value exist between categories

- **Q:** what properties can we explore for qualitative predictor?

category $i \rightarrow y_{ij}$, $\mu_i = E(y_{ij}) \Rightarrow$ can only study difference between μ_i 's
(cf., quantitative predictor)

- **Q:** how to fit these predictors into the format of linear regression model

$Y = X\beta + \epsilon$? \Rightarrow Ans: dummy variables

- one dichotomous predictor: two categories

- for a dichotomous predictor C with two categories c_1 and c_2 , define a dummy variable d :

$$d(C) = \begin{cases} 0, & \text{if } C = c_1, \\ 1, & \text{if } C = c_2. \end{cases}$$

- for a data set with response y , one quantitative predictor x , and one qualitative predictor C (dummy variable d), possible models are:

model 1: $y = \beta_0 + \beta_1 d + \epsilon$, model 2: $y = \beta_0 + \beta_1 x + \epsilon$,

model 3: $y = \beta_0 + \beta_1 d + \beta_2 x + \epsilon$, model 4: $y = \beta_0 + \beta_1 x + \beta_2 x d + \epsilon$,

model 5: $y = \beta_0 + \beta_1 d + \beta_2 x + \beta_3 x d + \epsilon$

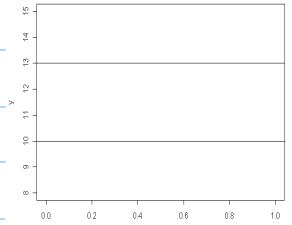
NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- **Q:** how to interpret β_i 's in models 1~5?

- model 1: $y = \beta_0 + \beta_1 d + \epsilon$

$C = c_1$: $\mu_1 = E(y|d=0) = \beta_0$

$C = c_2$: $\mu_2 = E(y|d=1) = \beta_0 + \beta_1 \Rightarrow \frac{\beta_0}{\beta_1} = \mu_2 - \mu_1$

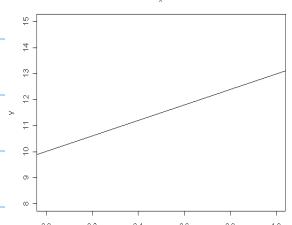


- model 2: $y = \beta_0 + \beta_1 x + \epsilon$

- model 3: $y = \beta_0 + \beta_1 d + \beta_2 x + \epsilon$

$C = c_1$: $\mu_{1,x} = E(y|d=0, x) = \beta_0 + \beta_2 x$

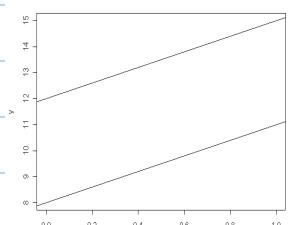
$C = c_2$: $\mu_{2,x} = E(y|d=1, x) = (\beta_0 + \beta_1) + \beta_2 x$



$\beta_0 = \mu_{1,0}$ (intercept in c_1 group)

$\Rightarrow \beta_1 = \mu_{2,x} - \mu_{1,x}$ (difference of intercepts)

$\beta_2 = \text{slope}$ (same slope in two categories)



- model 4: $y = \beta_0 + \beta_1 x + \beta_2 (d \cdot x) + \epsilon$

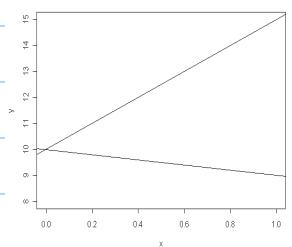
$C = c_1$: $\mu_{1,x} = E(y|d=0, x) = \beta_0 + \beta_1 x$

$C = c_2$: $\mu_{2,x} = E(y|d=1, x) = \beta_0 + (\beta_1 + \beta_2) x$

$\beta_0 = \mu_{1,0} = \mu_{2,0}$ (same intercept in two categories)

$\Rightarrow \beta_1 = \text{slope of category } c_1$

$\beta_2 = \text{difference in slopes}$



■ model 5: $y = \beta_0 + \beta_1 \underline{d} + \beta_2 \underline{x} + \beta_3 (\underline{d} \cdot \underline{x}) + \epsilon$

$$\underline{C} = \underline{c}_1 : \underline{\mu}_{1,x} = E(y|\underline{d} = 0, \underline{x}) = \underline{\beta}_0 + \underline{\beta}_2 \underline{x}$$

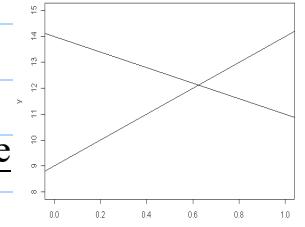
$$\underline{C} = \underline{c}_2 : \underline{\mu}_{2,x} = E(y|\underline{d} = 1, \underline{x}) = (\underline{\beta}_0 + \underline{\beta}_1) + (\underline{\beta}_2 + \underline{\beta}_3) \underline{x}$$

$\underline{\beta}_0 = \underline{\mu}_{1,0}$ (intercept of category \underline{c}_1) \leftarrow reference

$\Rightarrow \underline{\beta}_2 = \text{slope of category } \underline{c}_1 \leftarrow \text{reference}$

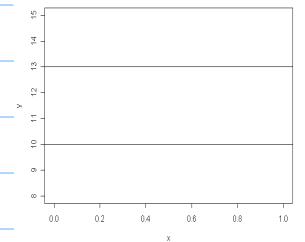
$\underline{\beta}_1 = \text{difference in intercepts}$

$\underline{\beta}_3 = \text{difference in slopes}$



➤ alternative coding of dummy variable (better orthogonality)

$$d(\underline{C}) = \begin{cases} -1, & \text{if } \underline{C} = \underline{c}_1, \\ 1, & \text{if } \underline{C} = \underline{c}_2. \end{cases}$$



Q: how to interpret β_j 's in models 1~5 under this coding?

■ model 1: $y = \beta_0 + \beta_1 \underline{d} + \epsilon$

$$\underline{C} = \underline{c}_1 : \underline{\mu}_1 = E(y|\underline{d} = -1) = \underline{\beta}_0 - \underline{\beta}_1 \Rightarrow \underline{\beta}_0 = (\underline{\mu}_1 + \underline{\mu}_2)/2$$

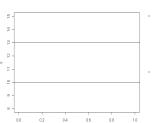
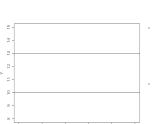
$$\underline{C} = \underline{c}_2 : \underline{\mu}_2 = E(y|\underline{d} = 1) = \underline{\beta}_0 + \underline{\beta}_1 \Rightarrow \underline{\beta}_1 = (\underline{\mu}_2 - \underline{\mu}_1)/2$$

➤ analysis strategy: start from the full model (model 5) if there are enough degrees of freedom, and then test if some terms can be eliminated

➤ identical methodology applies for more than 2 categories and more quantitative predictors

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

➤ ANalysis of COVariance: testing model 3 (Ω) against model 2 (ω) (more than 2 categories and more quantitative predictors is allowed). The quantitative predictor is called covariate and is expected to have the same effect in all categories. The difference between categories is assumed to be an additive effect.



• one polytomous predictor: more than two categories

➤ for k categories, $k-1$ dummy variables are needed to depict the difference between categories (one parameter is used to represent constant term)

➤ various coding of dummy variables: 4 categories $\underline{c}_1, \underline{c}_2, \underline{c}_3, \underline{c}_4$ example

treatment coding

	d_1	d_2	d_3
c_1	0	0	0
c_2	1	0	0
c_3	0	1	0
c_4	0	0	1

Helmert coding

	d_1	d_2	d_3
c_1	-1	-1	-1
c_2	1	-1	-1
c_3	0	2	-1
c_4	0	0	3

sum coding

	d_1	d_2	d_3
c_1	-1	-1	-1
c_2	1	0	0
c_3	0	1	0
c_4	0	0	1

➤ consider the model: $y = \beta_0 + \beta_1 \underline{d}_1 + \beta_2 \underline{d}_2 + \beta_3 \underline{d}_3 + \epsilon$

■ properties of treatment coding:

$$C = c_1 : \underline{\mu}_1 = E(y|\underline{d}_1 = 0, \underline{d}_2 = 0, \underline{d}_3 = 0) = \underline{\beta}_0 \quad \underline{\beta}_0 = \underline{\mu}_1$$

$$C = c_2 : \underline{\mu}_2 = E(y|\underline{d}_1 = 1, \underline{d}_2 = 0, \underline{d}_3 = 0) = \underline{\beta}_0 + \underline{\beta}_1 \quad \underline{\beta}_1 = \underline{\mu}_2 - \underline{\mu}_1$$

$$C = c_3 : \underline{\mu}_3 = E(y|\underline{d}_1 = 0, \underline{d}_2 = 1, \underline{d}_3 = 0) = \underline{\beta}_0 + \underline{\beta}_2 \quad \Rightarrow \underline{\beta}_2 = \underline{\mu}_3 - \underline{\mu}_1$$

$$C = c_4 : \underline{\mu}_4 = E(y|\underline{d}_1 = 0, \underline{d}_2 = 0, \underline{d}_3 = 1) = \underline{\beta}_0 + \underline{\beta}_3 \quad \underline{\beta}_3 = \underline{\mu}_4 - \underline{\mu}_1$$

- treats c_1 as a reference
- it is convenient if a "standard" categories exists
- d_1, d_2 , and d_3 are mutually orthogonal, but not orthogonal to constant term
- properties of Helmert coding: $y = \beta_0 + \beta_1 \underline{d_1} + \beta_2 \underline{d_2} + \beta_3 \underline{d_3} + \epsilon$

$$\underline{C = c_1} : \underline{\mu_1} = E(y | \underline{d_1} = -1, \underline{d_2} = -1, \underline{d_3} = -1) = \underline{\beta_0 - \beta_1 - \beta_2 - \beta_3}$$

$$\underline{C = c_2} : \underline{\mu_2} = E(y | \underline{d_1} = 1, \underline{d_2} = -1, \underline{d_3} = -1) = \underline{\beta_0 + \beta_1 - \beta_2 - \beta_3}$$

$$\underline{C = c_3} : \underline{\mu_3} = E(y | \underline{d_1} = 0, \underline{d_2} = 2, \underline{d_3} = -1) = \underline{\beta_0 + 2\beta_2 - \beta_3}$$

$$\underline{C = c_4} : \underline{\mu_4} = E(y | \underline{d_1} = 0, \underline{d_2} = 0, \underline{d_3} = 3) = \underline{\beta_0 + 3\beta_3}$$

$$\underline{\beta_0} = \frac{\underline{\mu_1} + \underline{\mu_2} + \underline{\mu_3} + \underline{\mu_4}}{4} \equiv \bar{\mu}$$

$$\underline{\beta_1} = \frac{\underline{\mu_2} - \underline{\mu_1}}{2}$$

$$\Rightarrow \underline{\beta_2} = \frac{\underline{\mu_3} - ((\underline{\mu_1} + \underline{\mu_2})/2)}{3}$$

$$\underline{\beta_3} = \frac{\underline{\mu_4} - ((\underline{\mu_1} + \underline{\mu_2} + \underline{\mu_3})/3)}{4}$$

- constant term, d_1 , d_2 , and d_3 are orthogonal when there are equal # of observations in each categories
- hard to interpret parameters
- may suitable for ordinal qualitative predictor

NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- properties of sum coding: $y = \beta_0 + \beta_1 \underline{d_1} + \beta_2 \underline{d_2} + \beta_3 \underline{d_3} + \epsilon$

$$\underline{C = c_1} : \underline{\mu_1} = E(y | \underline{d_1} = -1, \underline{d_2} = -1, \underline{d_3} = -1) = \underline{\beta_0 - \beta_1 - \beta_2 - \beta_3}$$

$$\underline{C = c_2} : \underline{\mu_2} = E(y | \underline{d_1} = 1, \underline{d_2} = 0, \underline{d_3} = 0) = \underline{\beta_0 + \beta_1}$$

$$\underline{C = c_3} : \underline{\mu_3} = E(y | \underline{d_1} = 0, \underline{d_2} = 1, \underline{d_3} = 0) = \underline{\beta_0 + \beta_2}$$

$$\underline{C = c_4} : \underline{\mu_4} = E(y | \underline{d_1} = 0, \underline{d_2} = 0, \underline{d_3} = 1) = \underline{\beta_0 + \beta_3}$$

$$\underline{\beta_0} = \frac{\underline{\mu_1} + \underline{\mu_2} + \underline{\mu_3} + \underline{\mu_4}}{4} \equiv \bar{\mu}$$

$$\Rightarrow \underline{\beta_1} = \underline{\mu_2 - \bar{\mu}}$$

$$\underline{\beta_2} = \underline{\mu_3 - \bar{\mu}}$$

$$\underline{\beta_3} = \underline{\mu_4 - \bar{\mu}}$$

- $\underline{\beta_0}$ represent overall mean

- compare each category with the overall mean

- lesser orthogonal

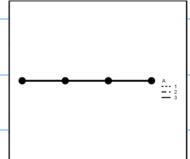
➤ Note: the choice of coding does not affect the R^2 , $\hat{\sigma}$ and overall F -test
(to test $H_0: \beta_1 = \beta_2 = \beta_3 = 0$, the three codings have same ω and Ω)

➤ the overall F -test is one-way ANOVA (ANalysis Of VAriance)

➤ Q: how to work with quantitative predictors? \Rightarrow identical methodology
as in 2 categories case. Q: how to interpret parameters in the case?

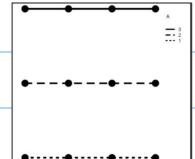
- two qualitative predictors (say, A: 3 categories a_1, a_2, a_3 ; B: 4 categories, b_1, b_2, b_3, b_4)
 - number of different category combinations = $3 \times 4 = 12$,
 - denote their means as μ_{ij} , $i=1, 2, 3$ and $j=1, 2, 3, 4$, i.e.,

$$y_{ijk} = \mu_{ij} + \epsilon_{ijk}, \quad k = 1, 2, \dots, n_{ij},$$

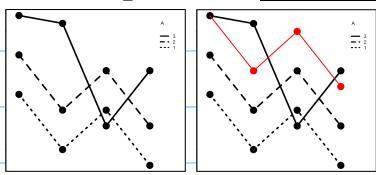


- Q: how to depict the difference between μ_{ij} 's?
 consider the following linear models:

- model 1: $E(y_{ijk}) = \beta_0$
- model 2: $E(y_{ijk}) = \beta_0 + \beta_1 d_1^A + \beta_2 d_2^A$
- model 3: $E(y_{ijk}) = \beta_0 + \beta_1 d_1^B + \beta_2 d_2^B + \beta_3 d_3^B$
- model 4: $E(y_{ijk}) = \beta_0 + \beta_1 d_1^A + \beta_2 d_2^A + \beta_3 d_1^B + \beta_4 d_2^B + \beta_5 d_3^B$

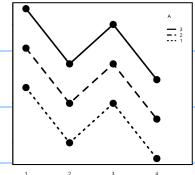


Q: how to perform interaction coding? what is interaction?



interaction plot: replace μ_{ij} 's
by cell means

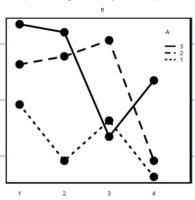
$$\bar{y}_{ij} = \sum_{k=1}^{n_{ij}} y_{ijk} / n_{ij}$$



- model 5:

$$E(y_{ijk}) = \beta_0 + \beta_1 d_1^A + \beta_2 d_2^A + \beta_3 d_1^B + \beta_4 d_2^B + \beta_5 d_3^B + \sum_{i=1}^2 \sum_{j=1}^3 \beta_{ij} d_{ij}$$

of parameters: $1 + 2 + 3 + 6 = 12$



NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

- identical methodology applies for more qualitative (3-factor interaction, 4-factor interaction, ...) and quantitative predictors (similar modeling to what in LNP.1-26~27)

Transformation

- transformation of response

➤ Box-Cox transformation family: $t_\lambda(y) = \begin{cases} (y^\lambda - 1)/\lambda, & \text{if } \lambda \neq 0, \\ \log(y), & \text{if } \lambda = 0. \end{cases}$

- $t_\lambda(y)$ is continuous in λ : for fixed $y > 0$,

$$\lim_{\lambda \rightarrow 0} t_\lambda(y) = \lim_{\lambda \rightarrow 0} (y^\lambda - 1)/\lambda = \lim_{\lambda \rightarrow 0} (y^\lambda \log(y))/1 = \log(y)$$

- $\lambda = 1 \Rightarrow$ no transformation, $\lambda = 0 \Rightarrow$ log, $\lambda \neq 0$ or $1 \Rightarrow$ power transformation

- model: $t_\lambda(y) = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$

▫ parameters: $\lambda, \boldsymbol{\beta}, \sigma$

▫ can write down likelihood for estimation and testing of λ

▫ choice of transformation becomes a estimation/test problem

- the log-likelihood of λ is

$$L(\lambda) = \underbrace{(-n/2) \log(RSS_\lambda/n)}_{\text{goodness of fit}} + \underbrace{(\lambda-1) \sum \log(y_i)}_{\text{adjustment}}$$

where $RSS_\lambda =$ residual sum of square when using $t_\lambda(y)$ as response, i.e.,

$$RSS_\lambda = [t_\lambda(y)]^T (I - H) t_\lambda(y)$$

- estimation of λ : choose λ to fit data well using maximum likelihood.

- can compute $L(\lambda)$ for various values of λ and compute $\hat{\lambda}$ exactly to maximize $L(\lambda)$
- but usually $\hat{\lambda}$ is not a nice round number, e.g., $\hat{\lambda} = -0.17$. It would be hard to explain what this new response means.
- to avoid this, maximize $L(\lambda)$ over a grid of values, such as $\{-2, -1, -1/2, 0, 1/2, 1, 2\}$. This helps with interpretation.
- for λ outside $[-2, 2]$, pay more attention on whether such transformation is required
- Q: why not just minimize RSS_{λ} to estimate λ ?

- test of λ : is the transformation really necessary?

- we can answer the question from a C.I. for λ
- likelihood ratio test ($H_0: \lambda = \lambda_0$ vs. $H_A: \lambda \neq \lambda_0$):

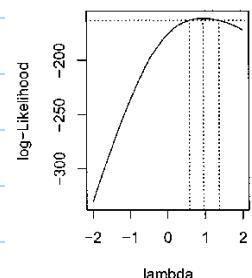
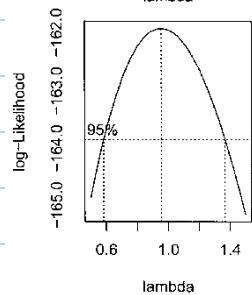
$$-2[L(\lambda_0) - L(\hat{\lambda})] \sim \chi^2_1 \text{ under } H_0$$

- a $100(1-\alpha)\%$ C.I. for λ can be formed by:

$$\{\lambda \mid L(\lambda) > L(\hat{\lambda}) - (1/2) \chi^2_1(1-\alpha)\}$$

- is $\lambda=1$ in the C.I.? if so, may as well stay with no transformation.

- if rounding $\hat{\lambda}$, check that rounded value is in the C.I.



NTHU STAT 5230, 2025, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

Generalized Least Square (GLS)

- model: $\underline{Y} = \underline{X}\beta + \varepsilon$, $E(\varepsilon) = \mathbf{0}$ and $\text{var}(\varepsilon) = \sigma^2 I$ $\Rightarrow \varepsilon$ uncorrelated and constant variance
- Consider the case $\text{var}(\varepsilon) = \sigma^2 \Sigma$, where $\Sigma (\neq I)$ is known but σ^2 is unknown, i.e., we know the correlation and relative variance between the errors but we don't know the absolute scale
- Because $\Sigma_{n \times n}$ is symmetric and positive definite, we can write $\Sigma = \underline{S}\underline{S}^T$, where \underline{S} is an $n \times n$ nonsingular matrix (by Cholesky or spectral decompositions)

$$\underline{Y} = \underline{X}\beta + \varepsilon \Rightarrow \underline{S}^{-1}\underline{Y} = \underline{S}^{-1}\underline{X}\beta + \underline{S}^{-1}\varepsilon \Rightarrow \underline{Y}' = \underline{X}'\beta + \varepsilon', \text{ where}$$

$$\underline{Y}' = \underline{S}^{-1}\underline{Y}, \underline{X}' = \underline{S}^{-1}\underline{X}, \varepsilon' = \underline{S}^{-1}\varepsilon, \text{ and}$$

$$E(\varepsilon') = \mathbf{0} \text{ and } \text{var}(\varepsilon') = \text{var}(\underline{S}^{-1}\varepsilon) = \underline{S}^{-1}\text{var}(\varepsilon)\underline{S}^{-T} = \underline{S}^{-1}\sigma^2 \underline{S}\underline{S}^T \underline{S}^{-T} = \sigma^2 I$$

\Rightarrow For \underline{Y}' and \underline{X}' , the assumption in ordinary least square is satisfied

- GLS: find β that minimize

$$\varepsilon'^T \varepsilon' = (\underline{Y}' - \underline{X}'\beta)^T (\underline{Y}' - \underline{X}'\beta) = (\underline{Y} - \underline{X}\beta)^T \underline{S}^{-T} \underline{S}^{-1} (\underline{Y} - \underline{X}\beta) = (\underline{Y} - \underline{X}\beta)^T \Sigma^{-1} (\underline{Y} - \underline{X}\beta)$$

$$\Rightarrow \hat{\beta} = (\underline{X}'^T \underline{X}')^{-1} \underline{X}'^T \underline{Y}' = (\underline{X}^T \Sigma^{-1} \underline{X})^{-1} \underline{X}^T \Sigma^{-1} \underline{Y}$$

$$\Rightarrow \text{var}(\hat{\beta}) = \sigma^2 (\underline{X}'^T \underline{X})^{-1} = \sigma^2 (\underline{X}^T \Sigma^{-1} \underline{X})^{-1}$$

GLS is like OLS regressing $\underline{Y}' = \underline{S}^{-1}\underline{Y}$ on $\underline{X}' = \underline{S}^{-1}\underline{X}$

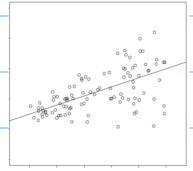
- The practical problem is that Σ may not be known. It's usually necessary to make some assumptions and examine the residuals to estimate Σ (check IRWLS)

Weighted Least Square (WLS)

- Sometimes, the errors are uncorrelated, but have unequal variance where the form of the inequality is known ($\Rightarrow \Sigma$ is diagonal, it's a special case of GLS), example:
 - error variance proportional to a function of predictors [e.g., $\text{var}(\varepsilon_i) = x_i^2 \sigma^2$]
 - data with replicates, which show a pattern of unequal variance [e.g., $\text{var}(\varepsilon_i) \approx \text{sample variance of observations with same } x_i$]
 - the observed y_i 's are actually averages of several observations. [e.g., suppose y_i is the average of n_i observations, $\text{var}(\varepsilon_i) = \sigma^2/n_i$]

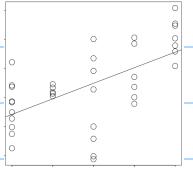
- ε : uncorrelated, but not constant variance $\Rightarrow \Sigma$ is diagonal. Write

$$\Sigma = \begin{pmatrix} 1/w_1 & 0 & \cdots & 0 \\ 0 & 1/w_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1/w_n \end{pmatrix} \Rightarrow \Sigma^{-1} = \begin{pmatrix} w_1 & 0 & \cdots & 0 \\ 0 & w_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & w_n \end{pmatrix}$$



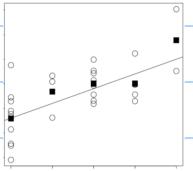
where w_i 's ($\propto 1/\text{var}(\varepsilon_i)$) are called weights.

low weight \Leftrightarrow high variance; high weight \Leftrightarrow low variance



- $\Sigma = \text{diag}(1/\sqrt{w_1}, \dots, 1/\sqrt{w_n})$, then $\Sigma = \mathbf{SS}^T$

\Rightarrow OLS regress $\mathbf{S}^{-1}Y$ (i.e., $\sqrt{w_i} y_i$) on $\mathbf{S}^{-1}X$ ($\sqrt{w_i} x_i$) (Note. the column of ones, i.e., intercept needs to be replaced with $\sqrt{w_i}$)

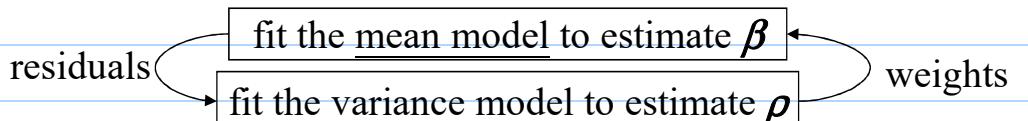


\Rightarrow convenient for regression package without a weighted options

NTHU STAT 5230, 2025, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

- **Q:** Why observations with smaller variance should be multiplied by heavier weight? intuitive interpretation?
- iteratively re-weighted least squares (IRWLS): In all the previous examples, weights (or Σ in GLS) are assumed known. **Q:** what if $\text{var}(\varepsilon_i)$ is not completely known, what weights should we use? **Q:** where can you find the information of weights?
 - model the mean response for Y , $E(Y) = X\beta$
 - model the variance in Y , $\text{var}(Y) = f(X, \rho)$, where ρ are parameters for the variance model



- Example: $\text{var}(\varepsilon_i) = \rho_0 + \rho_1 x_i$

1. start with $w_i = 1$
2. use weighted least square to estimate β
3. use the residuals to estimate ρ_0 and ρ_1 , perhaps by regressing residuals² on x_i
4. re-compute the weights and go to 2. Continue until convergence

Problems: converge? how is the inference about β affected? d.f.=? ...etc

- alternative approach: jointly estimate the mean and variance parameters using likelihood based method (in R, use glss() function in the n1me library)