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Website of my Linear Model course

http://www.stat.nthu.edu.tw/~swcheng/Teaching/stat5410/

What 1s Statistics?

oL A Real Life
IR % Statistics
B Statisticians
K e B Data
A R ehF Information

aim of statistics: provide insight by means of data
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Basic Procedures of Statistics

« Statistics divides the study of data into five steps:

=
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When to use regression analysis (linear model)?

» Regression: a statistical tool for investigating the “linearity
relationship” between x and y.

» causal relationship: examine the effects of x on y, i.e.
how the changes in x result in the change in y

» Even where no sensible causal relationship exists
between x and y, we may wish to relate them by some

sore of mathematical equation

(controllable)

Example
L _ Xl o0 0 Xm
? System/
] Output
] Process (response, y)
i ! !
Zl e 0o 0 Z
(uncontrollable)

» data type in regression analysis and some terminologies

A {response, output, dependent} variable Y'1s modeled or
explained by p effects/functions of m {predictor, input,
independent, regressor} variables X, Xy, X X

> Y: “approximately” continuous

» X,,..., X, : continuous and discrete (quantitative),
categorical (qualitative) (Q: example?)

» p=1, simple regression; p>1, multiple regression

> XX,
all quantitative = multiple regression
quantitative+qualitative = analysis of covariance
all qualitative = analysis of variance (ANOVA)

» more than one Y, multivariate regression




* linear model:

p
EY[X1,..., Xm) YZZBi'Qi(X17"°7Xm) + €

=210 Bi - 9i lezo - ) eurror'
terministic . 1
Var(Y| X, X deterministic mean variance
¥iXy,. .., Xm) component > fypction random — g0 ction
= Var(e) = o2 component

> X,,...,X,, are regarded as deterministic, i.e., no random phenomenon (when
they are random variables, regard the linear model as conditional on X,...,X )

> Go(X s X)) ooes (X5, X,,): known functions of X,..., X, , called effects

> (unknown) parameters f3, ..., B, enter linearly

» variation due to random error only appears on y-axis

 Rationale: a general model for the relationship between Yand X ,..., X, is:

Y= f(X,,...X,) + & where f is unknown and arbitrary

Note: # of parameters in f is infinite, usually do not have enough data to estimate
f directly (globally), we have to assume that it has some more restricted form

» local approximation of fmay be achievable by a linear model

 Note: Because the predictors can be transformed and combined in any way, linear
models are actually very flexible.

Matrix representation
* (@Given the data matrix,

| .
Y. X X . X, a row: one group of observations
1
Y« T T Ty .
i " a column: one variable
e e e -
e (response or predictor)
:
1
yn : xnl an xnm

»  We may write a linear model as follows (functional form): fori=1, 2, ..., n,

v, =B+ B gl(xila---axim) ™ ﬁzgz(%la---,xim) Tt ,6;;—1 gp;l(xila--')xim) TE,

Y : 1 9 9 - G a row: one group of observations
bl .

g Ju 9o Jip-t a column: response or effect

Y, E 1 921 92 o Gpm1

Yp 1 9n1 9n2 gnp—l

where 9i= gi(_xﬁ,...,a:im)

» the expression is (1) ugly notation (i1) conceptually awkward
» matrix/vector notation is more elegant




(B 8 Ba C So.
Y i= U1 + v)(91 + &XQQ o Jr“'xgp_1 + £
Y §= 1 + gn g t .. F i1 |t & a row: one group of
Ys E: 1 + gy + G + .. Gt |+ & observations
§= + a column: response or
yn E: 1 + gnl + gnZ + .+ gnp—l + £n effeCt
« Matrix form of the linear model:
Y =XB + ¢
where
Y1 1 911 -+ 91p-1 Bo €1
: 1 S — 81 €
y=| 72 Lx=| DT e T Les] 2
| Yn ——gni—— Inp—1 | | Bp—l _ | €n

and E(&) = 0 and var(&) = &¢I (Note: the assumption that errors are normally
distributed 1s not required at the estimation stage)

Estimating (8

* (ordinary) least square estimator

> assume £ are (i) uncorrelated (ii) equal variance (Var(&) = &)

» define the best ,B as that minimizes sum of squared error: €'€=731"_1 € 12

ge=Y-XP'(Y-XP=YY-2B8XY+[FX'XS D

= a second-order polynomial of 8

» One method of finding the minimizer is to differentiate
(D w.r.t. B and set the derivatives equal to zero

= ZeTe=2XTY+2X"Xp =0
» By calculus, ﬂ is the solution of
XTXB = XTX O called normal equation

> assume X7X is non-singular,
B = XTX)'XTY = XB = XX'X)'XY = HY
> predicted values: Y = X,[;’ =HY
» residuals: E=Y-XpP=Y-Y= (I-HYY
> residual sum of squares (RSS): €' & = [YI(I-H)T|[(I-H)Y] = Y/(I-H)Y




» OLS ,3 results from orthogonal projection, makes sense geometrically P

> (FYD) if &[IN(0, 1), ,é is the maximum likelihood estimator
» Gauss-Markov thm states ,é is BLUE (“Best” Linear Unbiased Estimator)

* mean and covariance matrix of OLS estimator ,B

A

[ = (XTX)'XTY is a px1 vector of random variables, so
>mean: E(B)=(XTX)" X E(Y) = (XTX)"' X"XB = B (i.e., unbiased)

> Cou QA ) = (XTX)' XTI X(XTX)!' =(XTX) ' (= irrelevant to Yand 8 =

Note: if we can control X, can decide the var-cov matrix before observing Y)

Since [ is a random vectors, (X7X)~! & is a variance-covariance matrix.

>&('BA2') = V(XTX )_liié-

»how to calculate the correlation between ,8Z and ,éj ?

Estimating &

estimate & by §° = £’ &/(n—p) = RSS/(n—p) = an unbiased estimator

0” has the minimum variance among all quadratic unbiased estimators of &

& =RSS /(n-p)

(FYI) if ££IN(0, A*), the maximum likelihood estimator of & is &' & /n = RSS/n
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goodness-of-fit: how well does the model fit the data?

* R?, coefficient of determination or percentage of variance explained
2
2 D155 _ 4 _ R R N e > (yi — 9) (@i — 9)
VE i - 925 (@i — 5)?

TSS Swi—-02 Swi-9)°

RSS is calculated from model with all independent variables,

7SS from model without any independent variables

Interpretation of R?: “proportion of total variation in y that can be explained by the
independent variables”

» R=correlation between y and y ; for
simple regression, R=correlation
between x and y (from the geometry
viewpoint, ...)

» 0<R’<1, values closer to 1 indicate
better fits. (what if n=p?)

» What is a good value of R?? It depends.

» alternative measure for goodness of fit: 0

> it’s related to standard error of estimates of £ and prediction

> it’s measured in the unit of the response (cf., R? is free of unit)
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Normality assumption

* Note: up till now, haven’t assumed any distributional form for & If we want to
perform any hypothesis tests or make any confidence intervals, we will need to do
this. The usual assumption is: v

0N D)
»model: Y= XS+ & €[N(0 &)
YONXB &)
= Q: what does the model describe? e.g.,
Y=BtBrrE, &’s ~1.id. N(O, )
= E(y,) :ggﬁl_
= y,’s are independent and y, ~ N(G 5z, &) atx=x, i=1,...,n.

* Some properties of linear models when €[IN(0, &) :
»> distribution of Y [=XfB+ £] JN(X, &A1)
» distribution of B [=(XTX)"'XTY] IN(B, (XTX) ')

» distribution of £ [=(I-H)Y=(I-H)&| [JN(0, (I-H) ), which has a singular
covariance matrix I-H with rank n—p (Note: dim(£)=n—p)
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» distribution of RSS [=(n-p) g > = £" £ ='(I-H)d UR¥,,

> distribution of ¥y [= X‘QE HY | ON(XpB, H), which has a singular covariance
matrix with rank p  (Note: dim(Y")=p)

> ﬁ_’ is independent of g > (Note: cov((X"X)"' X"Y, (I-H)Y)=0)

> Y isindependentof ¢ (Note: cov(H Y, (I-H)Y)=0)

» distribution of prediction for a new set of predictors, o= (g,(Z;gs- - -sT;0)s -+ -5

gp(ﬁlO’ mO))T
S model: y = Bi-gi(x1, ., xm) 1€
& C gt Vi il g

= mean response v.s. future observation (Q: what different?)

o Example: average yield when z=x,? and tomorrow’s yield when z=z,?

o same predicted value %Tﬁ, but different distributions

= distribution of prediction error for mean response at x,,

"B - z,"B ON(Q, (2,/(X"X) 'z, P)

= distribution of prediction error for future observations at

30
1

20
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hypothesis testings (for )

 formulation of hypothesis testing from the view of comparing models (model spaces)

> a model space = the space spanned by columns of some X (model matrix)

» consider a large model space, Q, and a smaller model space, w, where w [] Q
(i.e., wrepresents a subset/subspace of Q). Suppose dimension (# of parameters)

of Q is p and dim(w)=q, where p>q.
» to answer “which of the model spaces is more adequate” in statistical language
= perform the test Hy: W (Af=c) v.s. H;: Q\w

* a geometric view of
Hyw vs. Hi: Q\w

' the s space that

_______________________

oo
2) Dw
A A (dim =p—q)
o ©Q T
=[g. | - Vo (-dim) =20l L7 Nt
60) —————————————————————————

=RSS,-RSSq | iy, (g-dim)d

___________________

______________________________________

p. 1-14

> suppose dimension (# of parameters) of Q is p and dim(w)=g.
Under the null H,: w,

(RSS,~RSS)l? 0y
RSSq/POR,.,

p=q’

and they are independent.
RSSq/(n — p) pmgnTp -
Therefore, reject if F > F, (@) (usually check if p-value < @)

p=qg,n=p

So, we have F =

» General form: because the degree of freedom of residuals in a model is the
number of observations minus the number of parameters (in ), this test
statistics can be written as:

(RSS, — RSSq)/(dfw — dfa)
RSSq/dfq
where d f =dim(w")=n—q and d fo=dim(Q1)=n-p.

» The test is widely used in regression and ANOVA. The beauty of this
approach is you only need to know the general form.

> This test is the likelihood-ratio test.

F=

~ Fag, —dfa dfa




» Example 1: test of all predictors p. 115

»Q: are any of the predictors g,’s useful in predicting the response?
= O y=Fo+Pigit++ Bpigprte ,dim(@Q=p ,dfe=n-p
n W Y=PRo+ & , dim(w)= 1 ,df,=n-1
. HOI B|=ABT:_A= .- -n= Bp-|=o Hli at /ea.s.f' 2"3 05-:. ﬁl,"',bp.q is !_ﬂz 2€ero
- RSSy: €aka=Z(4:-F.a) RSS, (Y-V1)(Y-V1)= 3 (4:-3)
. (the overall F) F= (RSS., — RSSq)/(df, — dfa) _ [x(4-3 )3'2(38-32)21 /<p-1)

RSSq/dfo - 2 /n-
they are S (4i-%:Y/n-p
related, R-l-gs5o =1 (1+-=-F)

* Example 2: testing just one predictor
»>Q: Can one particular predictor, say g;(z ), be dropped from the model?

s Qiy =B+ -+ Bigit+ -+ Bpo1gp—1 +€,dm(Q)=p ,dfo=N-P
sy =Po+ A+ A+ Bp-19p—1 + €, dim(W=p-1 , df NPt
= Hy: Bi=0 (B3€R,Sorjsi) H;: Bix0 (B3€R.For %)

« F=[(RSS,, — RSS/(wa — df%) /@SSQ%Fdfw_df%de .

n.

» alternative method ¢-test: = ,B /sel ,3 ) Ut,—, [Note. t* 20F, Lin—ps and t;>=F']

lage a1 small
SZ%C‘ %ﬁ Se(a&)

o B

;n

A. 2’
t= ('Tg'.&—g* =F <« RSS,- RSSn— )z
J (XaXa)y On, (exerctse)—f ﬂ)u
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» (sequential) ANOVA (4: 3 levels; B: 4 levels)
= anova(y~1+A+B+A:B)
1) test w;:model 1 (y~1) against Q,;:model 2 (y~1+4) [df,,— df5=2]
2) test wy:model 2 (y~1+4) against Q,:model 4 (y~I+A4+B) [df.,— dfy,=3]
3) test g);:model 4 (y~1+A4+B) againsE Q.:model 5 (y~1+A4+B+A:B) [df,,—dfo=6]

o (RSS, — RSSo)/(df. — dfa)
— RSSmodel S/dmedel 5

o invariant to the choice of dummy variables if they generate same w and Q

~ Fdfw _dfﬂadfmodel 5

» ANOVA could have different results when the order of effect sequence is changed,
e.g., anova(y~I+B+A4+A:B):
a) test w;:model 1 (y~1) against Q,:model 3 (y~I+B) [df,,—df5=3]
B) test g)z_:model 3 (y~I+B) against Q,:model 4 (y~1+B+A) [df,— dfo=2]
X) test @;:model 4 (y~1+B+A4) againsf Q.:model 5 (y~1+B+A4+A4:B) [df ,— dfo =6]

3 Y=L+ BX,+ X+ B X R
Ho'@s=0 —f ———Hg'Ba=0
Y=L+ B,X,+ X, B2z Bs_o Y=L+ B,X,+B;X;
H3:B220 —— /5’63=0
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Confidence intervals and regions
« Model: Y= X8+ & £0N(0, 02]); 3 : OLS estimator = g ON(B, (XTX)'0?)

> Confidence region for Af where A is a full rank dXp matrix and d<p
ABONAB, AXTX) ' AT0?) = [(AB-ABTAXTX) AT (AB-AP) a2 D 2,
(n-p) g% 02 0),, .

and they are independent.
[(AB-APTAXTX) ' AT (AB-AP)/ (dG°) UE,,.,
» 100(1-0)% confidence region of AS: collection of AS’s (or f) that satisfy

general form | [(AB-ABTAXTIX)'ATI"(AB-AP)] ! (d G < Fy, @

The regions are often ellipsoidally shaped (Q: why?).

* Examples:
> confidence region for B i.e, A=I,,

B-B"X'X(B-B<@ps?)F,, '

. . —_ 07”'7071707'”707 s Uy
» confidence region of §, 5, i.e, A = < O 0,00, 0.

[(AB-APTAXTX) AT (AB-AP1< (26 ))F,, @

p. 1-18

» confidence interval for @, i.e, A=(0....,0,1,0,...,0)
(B=BYIKTXY ", < 6F,, @ = 1B -BIof 0207 < 1,0

alternative method:
@ B~ N(B, oAXTX)1), ® (n—p)F*/02 O Xn—p» and @ they are independent

= (Bfﬁi)/ (@\/( TX)_lii) U, = C.L: ﬁ + ¢, @ x(am)

» confidence interval for prediction of mean response at z,
z,'B- z,"B ON(O0, (z,(X"X)"'z,)0%) = (z,'B _%T:@/(ﬁ\/ onT(XTX)_l %j Ut,,
= CL: z8 + t, (@ x (@\/ IBOT(XTX)_lxoj

» C.IL for prediction of future observation at z,
2B = (x)"B+ & O N0, (z,(X"X) 'z, +1)0?)
= ClL: g/ % t, (@ x (@\/ 1+a:0T(XTX)_1x0]

» a general form for confidence interval:
estimate * (critical value) X (standard error of estimate)
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Interpreting parameter estimates
« Q:Y=Xp+ & what does B mean?
Some matters needing attention about 43 :

> JQ have units [e.g., fuel consumption data, fitted model:
fuel = 154.19 + (— 4.23)Tax + (0.47)Dlic + (=6.14)Income + (18.54)log,(Miles)]

> sign of B : direction of the relationship between the term and the response
» interpretation of estimated value (see next two slides)

> better to also consider values
contained in its confidence interval

» causality or association

» the parameters

= some f's have physical interpretation, especially those from a conceptual
model [e.g., attach weights = to a spring and measure the extension y]

= unfortunately, such cases are rare

= usually, £'s do not have such physical interpretation

= in the case, the model Y=X/t+¢& is only an empirical model, i.e., a
convenience for representing a complex reality within the range of X =

the real meaning of a particular £ is not obvious, interpretation is difficult

» Some interpretations of parameter estimates p. 1-20

» anaive interpretation:
“A unit increase in X; will cause an average change of 5 inY” [
[e.g., Y: annual income, and X: years of education]

causality
statement

= Q: what if there exist lurking variables?
[e.g., X: shoe size, Y. reading abilities, Z: age of child]
= causal conclusion is doubtful X e Y
» Q: what if the roles of predictor and response are mistakenly switched?
[e.g., Y: fire damage, and X: numbers of firefighters called out]
= Q: what if some important effects are not included in model?
o X fixed. B(3,) = B; + (XTX1) " XT X0, i 4
o X random. true model: E(Y | X1, X3) = X18; + X208, , Ezﬂ )szl
fitted model: E(Y | X1) = X108, -
E(Y | X1) = X1, + B(X | X1)B, 1
Var(Y | X1) = 0%+ 82 Var(Xy | X1) B, EEI /%/}Z’Z’:I
= even though we have all important variables in the model [
and no lurking variables, there still are problems, e.g.:

y=5+ B X, +5 Xpre= B+ (B=L) X, +B(X Xy +e >
= in a properly designed experiment, the naive interpretation is —
more reasonable (because of its use of orthogonal designs and
randomization); but for observational data, it's often questionable.




> an alternative interpretation p. 121

“ A unit increase in X, with all the other (specified) terms held constant will be

associated with an avérage change of ,8 inY”

= Q: can other terms be held constant? e.g.
o X, and X, are highly correlated
o consider the model E(Y)=4,+8 X, +5X,+L5.X, X,=LH( B+ BX) X, + X,
= it requires the specification of the other terms/effects.
Q: what will happen in the analysis when
strong collinearity exists between effects?
= estimates and tests of ’s may significantly change according to what other
effects are included. It makes the interpretation almost impossible. In some
cases, the problem can be removed by redefining the terms into new linear
combinations that may be easier to interpret.

» an interpretation from prediction viewpoint
regarding the parameters and their estimates as fictional quantities, and
concentrating on prediction enable a rather cautious interpretation of I@:

gIVen (g gs-+9; 0o-s9p-1,0) = 3?0 , observe (g g,--»g; 0t LseesGpm10) = @0 + B@
= prediction 1s more stable than parameter estimation o
= directly interpretable and success may be measured in future

= dangers of extrapolation, be cautious when z, is outside the range of X

p. 1-22

Mean structure

» idea: data are generated from an underlying system, which is assumed to have
the form: y =flx;, ..., x,) T & where f is unknown.

* regression approximates the mean structure / by a linear combination of
(known) base functions g(x,,..., x,,)’s, i=1, ..., p, 1.e.,

[ Zfﬂ@-&(wb...,xm)

» when the structure of f'is simple and almost linear, it can be approximated
by a simple structure with fewer terms, e.g.,

= Q: nature is simple?

= Q: are there sufficient data to support/fit a complex model?

» when f1s complex and non-linear = need more terms
to get a good approximation

» more parameters, need more degrees of freedom, 1.e., more data

x ¢.g., 2 levels, only linear effects; 3 levels, linear and quadratic effects

= Q: what other complex models?
* base functions for quantitative and qualitative predictors x,’s are defined in
different ways
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Polynomial regression
» one predictor case: y=RtBxtBx’t. .+ Bxite
* two predictors z,, x, case:
V=Bt Bix+ Boxyt Byxpt Booxt+ Bpxpx,+ € (d=2, 2"-order model)
» the cross-product term x,x, can be interpreted as an "interaction" effect, e.g.,
E(y) = po+ Prz1 + @ﬂ_—l-_@a:lxg, where z1, 25 € {—1,1}
1 =+1= E(y) = (Bo+ B1) + (B2 + B3) z2
11 =—1= E(y) = (Bo — B1) + (B2 — B3) 22
» models for more predictors can be similarly extended
y=Po+ 221161,1' Ti + 22‘1152,1' x_? + 21§i<j§mﬁ3a’ij Ly tTe
« orthogonal polynomials

» polynomial terms can cause numerical instability (especially when d large) and

collinearity
> example: 2"-order model
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broken stick (line) regression (segmented regression)

* Recall. polynomial regression: suitable for smooth mean
structure, but cannot capture local abrupt change (example?)

* suppose the break occurs at the known value ¢, define the
base function (where c is called a knof):

I, if x>c, ]
L=,

if x <c.

+ model: y =B+ Bx + By (x-c)d,(x) + €

=5, + [ + 0, + &

B+ B, if x <c,
By -6+ (B, + B)x, if x>, , .
» the two lines meet at ¢ = continuous fit TS

» notice only 3 parameters in the model = one degree of /
freedom is saved because of the continuity restriction :

EQ) =
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dummy variable (indicator variable, coding)
» categorical (qualitative) predictors

» nominal v.s. ordinal

» examples: male/female, treatment/control, eye colors, blocks, ...

» qualitative in nature: = values are symbols, no quantitative meaning
» no value exist between categories

» Q: what properties can we explore for qualitative predictor?

category i — y; , 4= E(y;) = can only study difference between L’s
(cf., quantitative predictor)

»> Q: how to fit these predictors into the format of linear regression model
Y=XpB+£ = Ans: dummy variables

* one dichotomous predictor: two categories

» for a dichotomous predictor C with two categories ¢, and ¢,, define a dummy

variable d: { if C=¢,
d©) =
fC=c,.

» for a data set with response y, one quantitative predictor x, and one qualitative
predictor C (dummy variable d), possible models are:
model 1: y = f,+ Bd + & model 2: y = f,+ Bx + ¢,
model 3: y = B+ Bid + B+ &  modeld: y =+ B + Bud + &,
model 5: y = f,+ Bid + Bx + Byxd + €

p. 1-26

» Q: how to interpret S's in models 1~5?

mmodel 1: y=po+Pid+e
C=c: m=EQyld=0)=p5 L= m
C=c:  w=Eyd=1)=5+b5 ~ pi = pa—iu
» model2: y=p50+ Pz +e
« model 3: ¥ =00+ Bid+ B2z +€ B
C=c: z=EQyld=02z)=pF+ P
C=cy:  poqz=E(yld=12)=(Bo+p1)+ Pz
Bo = 1,0 (intercept in c; group)
= pf = E — p1, (difference of intercepts) -
B2 = slope (same slope in two categories)
= model 4: ¥ = Bo+ 1z + B2(d-x) + e
C=ci:  jps=EQyld=0,2)=p5 + 5z
C=c: pors=E{yld=12)=Fo+ (81 +B2)z ] e
Bo = p1,0=p2,0 (same intercept in two categories) :
= E = @ o@tegory C1 7\ ]

= difference in slopes
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« model 5:  y =0+ fid+ Boz + Pa(d-x) + €

C=c:  pue=E@d=02)=p+ fo -
C=c:  pou=EQ@ld=La)=Bo+B)+ B+ Bl -
Bo = o (intercept of category c1) « reference
B2 = slope of category ¢1 — reference
& = difference in intercepts
Bz = difference in slopes
» alternative coding of dummy variable (better orthogonality)

dc—{_—]’ if C=c,
©=. if C=c,.

Q: how to interpret B's in models 1~5 under this coding?
s model 11 y =8y + Bid+e
C=c1: m=Eyd=-1)=p5 -0 Bo = (1t p)/2
C=c: pa=E(yld=1)=0+p = B = (p2—pm)/2
» analysis strategy: start from the full model (model 5) if there are enough
degrees of freedom, and then test if some terms can be eliminated

» identical methodology applies for more than 2
categories and more quantitative predictors
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» ANalysis of COVAriance: testing model 3 (Q) against model 2 (w)
(more than 2 categories and more quantitative predictors is
allowed). The quantitative predictor is called covariate and is
expected to have the same effect in all categories. The difference
between categories 1s assumed to be an additive effect.
* one polytomous predictor: more than two categories
» for k categories, k—1 dummy variables are needed to depict the difference
between categories (one parameter is used to represent constant term)

» various coding of dummy variables: 4 categories ¢ 1> €25 C35 €4 €Xample
treatment coding Helmert coding sum coding

o
o
N

d‘

ws
__Q‘
o
N
o
%
o
o
N
o
s

1

¢, | -1 |-1] -1 o | -1] -1 | -1

c, 0
0 c, |1 | -1]-1 c, | 1 0 0
0
1

Cy

s c; | 0 2 -1 Cy 0 1 0

| 0|0 |3 | 0] 0|1

S |lo|~|
(=2 BN IR )

C4

> consider the model:  y = By + B1di + Pada + B3ds + €
» properties of treatment coding:
C=c: p1=E(yldi =0,dy =0,d3 = 0) = fy Bo =
C=cy: E(yldy = 1,dy = 0,d3 = 0) = o + 51 B1 = p2—
C=cs: N3—E(y|d1—0d2 L,d3=0)=Fo+p2 = B2 = ps—m
( ) = Bo+ B3 Bs = pa—p

C:C4I Ey|d1—0d2—0d3—1




o treats ¢, as a reference p-1:29

o it is convenient if a "standard" categories exists

o d;, d,, and d; are mutually orthogonal, but not orthogonal to constant term

= properties of Helmert coding: y = By + B1dy + Bada + PBads + €

C=c1: m=Eyldi=-1dy=-1l,d3=-1)=08—51— 0~ 0
C=cy: pp=Eyld=1d=-1,d3=-1)=p5o+ 81— P2~ f3
C=c3: pz = E(yld, =0,dp =2,d3 = —1) = By + 282 — B3
C=cy: psa=E(ylds=0,do=0,d3 =3)= o+ 353
Y 10 S i 1 B i £ S L S
@ - 4 = ¢
B = Mz;ﬂ
= s — (i + 12)/2)
fr = 3
pra — ((pa + p2 + p3)/3)
B3 =

— 4
o constant term, d,, d,, and d; are orthogonal when there are equal # of
observations in each categories

o hard to interpret parameters

o may suitable for ordinal qualitative predictor

= properties of sum coding: ¥ = Bo + f1dy + Pads + B3ds + € p-1:30
C=c: m=FEy|ld=-1,d=-1d3=-1)=0—B1—— 3
C=cy: p2 = E(yldy =1,ds = 0,d3 = 0) = By + 51
C=c3: pz = E(yldy =0,dy = 1,d3 = 0) = By + B2
C=cy: pa=Ey|d=0,dy=0,d3=1)= 5+ B3

H1 + p2 + (3 + g

fo = ) =i
= B = p—Q

Po = ps—fi

Bs = pa—p

o [3, represent overall mean

o compare each category with the overall mean

o lesser orthogonal

> Note: the choice of coding does not affect the R2, ¢ and overall F-test
(to test Hy: B,=L,=p5= 0, the three codings have same wand Q)

> the overall F-test is one-way ANOVA (ANalysis Of VAriance)

» Q: how to work with quantitative predictors? = identical methodology

as in 2 categories case. Q: how to interpret parameters in the case?




p. 1-31
* two qualitative predictors (say, 4: 3 categories a,, a,, a;; B: 4 categories, b,, b,, b;, b,)

» number of different category combinations = 3x4 =12, -
denote their means as Hy» i=1,2,3and j=1, 2, 3, 4, i.e.,
Yijk :&%—eijk, k= 1,2,...,711']',
n; = number of observations in category A=q, and B=b,

» Q: how to depict the difference between 4,’s?
consider the following linear models:

» model 1: E(yijr) = Bo

« model 2: E(yijr) = Bo + 51@ + 52@

« model 3: E(yijx) = o + Srdi + Bodf + Bsdf

= model 4: E(yijr) = Bo + prdy + Bady + B3df + Bady + Bsdf
Q: how to perform interaction coding? what is interaction?

. . . . . 5 ~
. . interaction plot: replace [;’s \/\

by cell means

———————————

. \ N
- RN S AN

wmodel 5: o | 2-factor interaction
2 3
E(yije) = Bo + Prdi" + Bads + Badf + Badf + Bsdy + > > Bijfdi;
i=1 j=1
# of parameters: 1 +2+3+6=12 ’

p. 1-32
« identical methodology applies for more qualitative (3-factor interaction, 4-factor
interaction, ...) and quantitative predictors (similar modeling to what in LNp.1-26~27)

Transformation

* transformation of response

» Box-Cox transformation family: #,(y) =

{ 0*A-1)/A, if AA0,
log(y),  if A=0.
= #,(y) is continuous in A: for fixed y>0,

lim £3(y) = lim (y* = 1)/A = lim (y*log(y))/1 = log(y)
= A=1 = no transformation, A=0 = log, A#Z0 or 1 = power transformation
= model: L) =XB+ & €N, &I

o parameters:_j, B o
o can write down likelihood for estimation and testing of A
o choice of transformation becomes a estimation/test problem
» the log-likelihood of A is
L(A) =(—1/2) log(RSS, /A1) Zlog(v,),
goodness of fit adjustment

where RSS, = residual sum of square when using ¢,(y’) as response, 1.€.,

RSSy = [ta()]" (I — H)tr(y)




= estimation of A: choose A to fit data well using maximum likelihood. p-1-33

o can compute L(A) for various values of A and compute i exactly to
maximize L(A)

o but usually i 1s not a nice round number, e.g., A=-0.17. Tt would be
hard to explain what this new response means.

o to avoid this, maximize L(A) over a grid of values, such as {-2, -1, —-1/2,
0, 1/2, 1, 2}. This helps with interpretation.

o for i outside [-2, 2], pay more attention on whether
such transformation is required

o Q: why not just minimize RSS) to estimate A?

—200

= test of A: is the transformation really necessary?

log-Likelihood
-300 -250

o we can answer the question form a C.I. for A |
o likelihood ratio test (Hy: A = Ay vs. H: A ZAy): e

-2 -1 0 1 2

~2[L(Ay) = L( A)]~ x,* under H,

o a 100(1-a)% C.I. for A can be formed by:
Al LD > LA) - (172) x,°)(A-a) }
o is A=1 in the C.1.? if so, may as well stay with
no transformation.

log-Likefihood

-165.0 -164.0 -163.0 —-162.0

0.6 1.0 14

o 1f rounding A , check that rounded value is in the C.I.

lambda

p. 134

Generalized Least Square (GLS)
» model: Y=XB+¢& E(£€=0 and var(§)=¢I = & uncorrelated and constant variance

« Consider the case var(&=c# 2, where 2 (#I) is known but ¢ is unknown, i.e., we
know the correlation and relative variance between the errors but we don't know the
absolute scale

* Because 2, is symmetric and positive definite, we can write 2=S87, where § is an

ZnXn

nxn nonsigular matrix (by Cholesky or spectral decompositions)
Y=Xg+& = S'Y=S"'Xp+S8 ¢ = Y=X'f+&', where
Y'=S"Y, X'=§S"'X, &=8"'¢ and
E(£)=0 and var(&)=var(S~'€)=S"'var(&)S =S FSS'S T =FI
= For ¥’ and X’, the assumption in ordinary least square is satisfied
» GLS: find B that minimize
ETe=Y-X'PDI(Y-X'P) = (Y-XPIS 'S (Y-XPB) = (Y-XP)'Z(Y-XP
= B = X"X)IXTY' = (X' ZIX) XISy
= var( QA ) = XX 1= FXTZT'X)!
GLS is like OLS regressing ¥'=S"'¥ on X'=§"'X

 The practical problem is that 2 may not be known. It's usually necessary to make

some assumptions and examine the residuals to estimate 2 (check IRWLS)




p. 135

Weighted Least Square (WLS)

* Sometimes, the errors are uncorrelated, but have unequal variance where the form
of the inequality is known (=2'is diagonal, it's a special case of GLS), example:

»error variance proportional to a function of predictors [e.g., var(&)=x2c"]

»data with replicates, which show a pattern of unequal variance [e.g., var(&) =
sample variance of observations with same x; |

»>the observed y's are actually averages of several observations. [e.g., suppose y; is
the average of n, observations, var(&)=/n; ]

« &:uncorrelated, but not constant variance = 2 is diagonal. Write

1/wq o ... 0 wy 0 -+ 0
— 0 1/wp --- O — -1 Q Qz L Q
0 0 - 1/wp 0 0 - wp

where w;'s (U 1/var(&)) are called weights.
low weight < high variance; high weight < low variance

« S=diag(14fw,, ..., 1/Jw,), then Z=SST

— OLS regress S~'¥ (i.e., yw, v, ) on S~'X (Jw. x, ) (Note. the column
of ones, i.e., intercept needs to be replaced with \/;,-)

= convenient for regression package without a weighted options

p. 1-36
* Q: Why observations with smaller variance should be multiplied by heavier
weight? intuitive interpretation?

* iteratively re-weighted least squares (IRWLS): In all the previous examples, weights
(or 2'in GLS) are assumed known. Q: what if var(€) is not completely known, what
weights should we use? Q: where can you find the information of weights?

» model the mean response for ¥, E(Y)=Xf

» model the variance in ¥, var(¥Y)=f(X, p), where pare parameters for the
variance model

. fit the mean model to estimate 3
r651duals<

: ; weights
fit the variance model to estimate p 8

» Example: var(g)=p0,*0,x;,
1. start with w=1

2. use weighted least square to estimate

3. use the residuals to estimate p, and p,, perhaps by regressing residuals? on x,

4. re-compute the weights and go to 2. Continue until convergence

Problems: converge? how is the inference about Saffected? d.f.=? ...etc

» alternative approach: jointly estimate the mean and variance parameters using
likelihood based method (in R, use gls () function in the n1me library)




