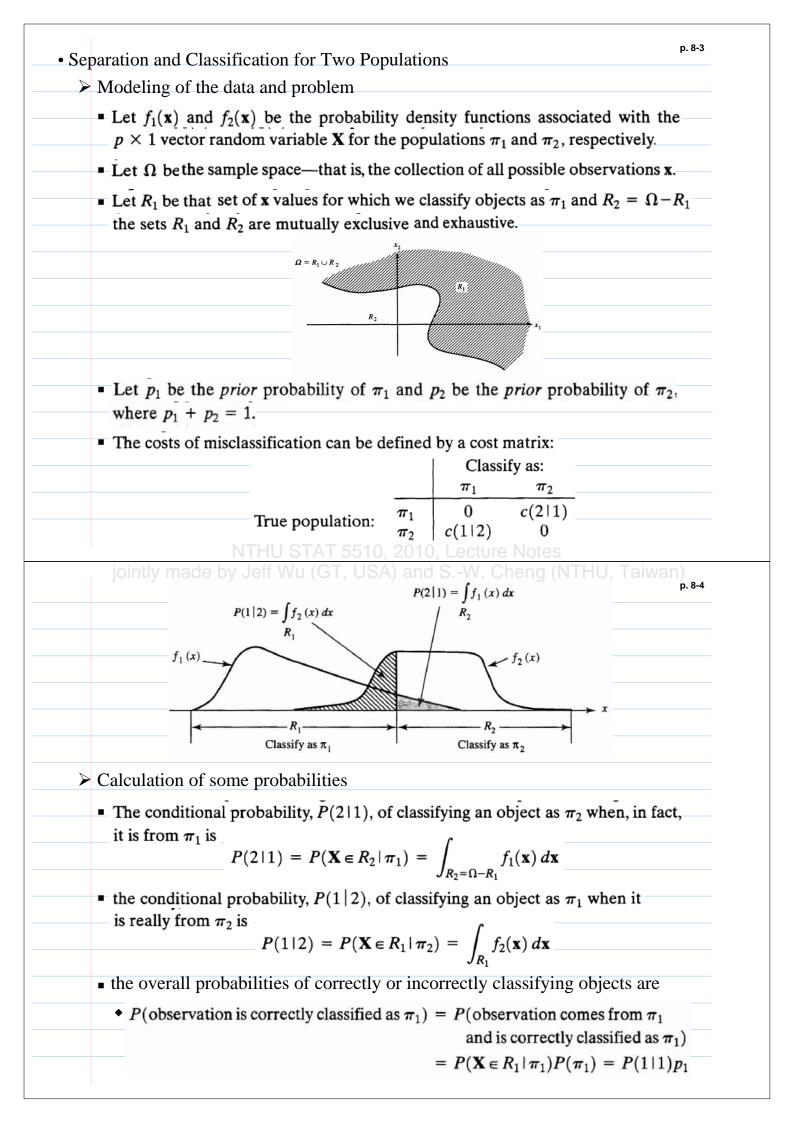
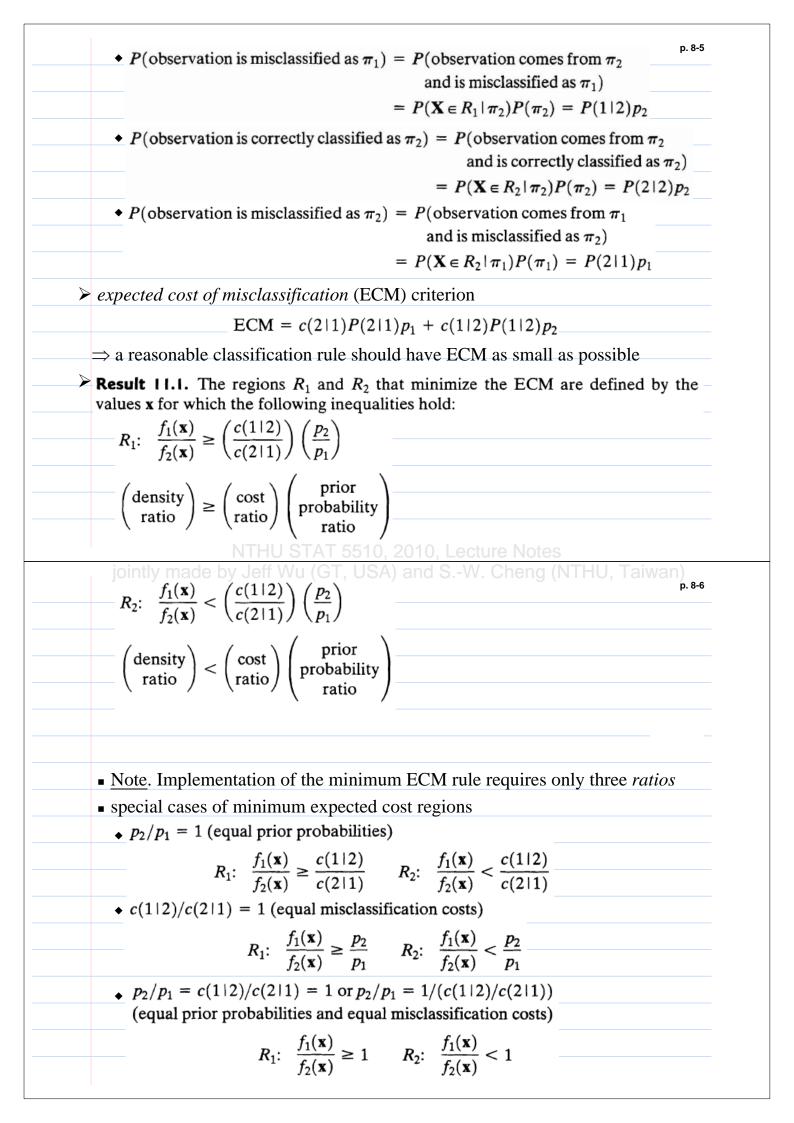
	rimination A	
• Data and Probl	em:	category
observed data/ training sample:	$\mathbf{X}_{(n \times p)} = \begin{bmatrix} x_{11} & x \\ x_{21} & x \\ \vdots \\ x_{n1} & x \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
future observation	/test sample: $(x_{f1} \ x_{f1})$	$x_{f_2} \dots x_{f_p}$?
new object (v → discriminat classification	whose category is <i>u</i> ion analysis also kn , or <i>numerical taxo</i>	n, to determine a rule that can be used to assign a nknown) to one of the pre-specified categories own as pattern recognition, (statistical) nomy
examples for Population	lations π_1 and π_2	Measured variables X
 5. Purchasers of a new product and laggards (those "slow" to purchase). 6. Successful or unsuccessful (fail to graduate) college students. 		Education, income, family size, amount of
9. Alcoholics and nonalcoholics.		Activity of monoamine oxidase enzyme, activity of adenylate cyclase enzyme.
	NTHU STA	F 5510, 2010, Lecture Notes
Q: Why the some possibl	categories of some	T, USA) and SW. Cheng (NTHU, Taiwan) objects are known, some unknown? Here are ^{p. 8}
		-
 perfect 		d destroying the object
		, •
 unavailab 	le or expensive info	ormation
	le or expensive info	

- take "prior probabilities of occurrence" into account
 - example. There tend to be more financially sound firms than bankrupt firm. If we really believe that the prior probability of a financially distressed and ultimately bankrupted firm is very small, then one should classify a randomly selected firm as non-bankrupt unless the data overwhelmingly favor bankruptcy.
- consider the cost
 - Suppose that classifying a π_1 object as belonging to π_2 represents a more serious error than classifying a π_2 object as belonging to π_1 . Then, one should be cautious about making the former assignment
 - example. Diagnosis of a potentially fatal illness





• other criteria
• total probability of misclassification (TPM)
TPM =
$$P(\text{misclassifying a } \pi_1 \text{ observation } \sigma \text{ misclassified})$$

 $= P(\text{observation comes from } \pi_1 \text{ and is misclassified})$
 $= P_1 \left(\int_{R_2} f_1(\mathbf{x}) \, d\mathbf{x} + p_2 \int_{R_1} f_2(\mathbf{x}) \, d\mathbf{x} \right)$
 $\Rightarrow \text{ equivalent to minimizing ECM when costs of misclassification are equal}$
• "posterior" probability approach
 $P(\pi_1 | \mathbf{x}_0) = \frac{P(\pi_1 \text{ occurs and we observe } \mathbf{x}_0)}{P(\text{we observe } \mathbf{x}_0 | \pi_1)P(\pi_1)}$
 $= \frac{P(\mathbf{x} \circ \text{observe } \mathbf{x}_0 | \pi_1)P(\pi_1) + P(\text{we observe } \mathbf{x}_0 | \pi_2)P(\pi_2)}{P(\text{we observe } \mathbf{x}_0 | \pi_1)P(\pi_1) + P(\text{we observe } \mathbf{x}_0 | \pi_2)P(\pi_2)}$
 $= \frac{P(\pi_2 | \mathbf{x}_0) = 1 - P(\pi_1 | \mathbf{x}_0) = \frac{P_2 f_2(\mathbf{x}_0)}{P_1 f_1(\mathbf{x}_0) + P_2 f_2(\mathbf{x}_0)}$
 $\Rightarrow \text{ classifying an observation } \mathbf{x}_0 \text{ as } \pi_1 \text{ when } P(\pi_1 | \mathbf{x}_0) > P(\pi_2 | \mathbf{x}_0)$
 $\Rightarrow \text{ equivalent to minimizing ECM when costs of misclassification are equal}$
 $NTHU STAT 5510. 2010. \text{ lecture Notes}$
 $\rightarrow \text{ now, further assume that } f_1(\mathbf{x}) \text{ and } f_2(\mathbf{x}) \text{ are multivariate normal densities,}$
 $= f_1(\mathbf{x}) \text{ with mean vector } \mu_2 \text{ and covariance matrix } \Sigma_1.$
 $= f_2(\mathbf{x}) \text{ with mean vector } \mu_2 \text{ and covariance matrix } \Sigma_2.$
 $\geq \text{ Classification of Normal Populations When } \Sigma_1 = \Sigma_2 = \Sigma$
• Suppose that the joint densities of $\mathbf{X}^* = [X_1, X_2, \dots, X_p]$ for populations π_1 and π_2 are given by
 $f_1(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\Sigma_1|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu_2)^2 \Sigma^{-1}(\mathbf{x} - \mu_2)\right] = \left(\frac{C(12)}{C(211)}\right) \left(\frac{P_2}{P_1}\right)$
 $R_3: \exp\left[-\frac{1}{2}(\mathbf{x} - \mu_1)^2 \Sigma^{-1}(\mathbf{x} - \mu_1) + \frac{1}{2}(\mathbf{x} - \mu_2)^2 \Sigma^{-1}(\mathbf{x} - \mu_2)\right] = \left(\frac{C(12)}{C(211)}\right) \left(\frac{P_2}{P_1}\right)$
 $R_4: \exp\left[-\frac{1}{2}(\mathbf{x} - \mu_1)^2 \Sigma^{-1}(\mathbf{x} - \mu_1) + \frac{1}{2}(\mathbf{x} - \mu_2)^2 \Sigma^{-1}(\mathbf{x} - \mu_2)\right] < \left(\frac{C(12)}{C(211)}\right) \left(\frac{P_2}{P_1}\right)$
 $R_5: \exp\left[-\frac{1}{2}(\mathbf{x} - \mu_1)^2 \Sigma^{-1}(\mathbf{x} - \mu_1) + \frac{1}{2}(\mathbf{x} - \mu_2)^2 \Sigma^{-1}(\mathbf{x} - \mu_2)\right] < \left(\frac{C(12)}{C(211)}\right) \left(\frac{P_2}{P_1}\right)$
 $R_4: \operatorname{dotate } \mathbf{x}_0 \text{ tor } \mathbf{y} \text{ intermination minimizes the ECM is as follows: A$

