Discrimination Analysis

» Data and Problem:

category
X1 X12 Xip 1
observed data/ X =% *2 *2p 1
training sample: (nxp) : : :
Xn1 Xn2 xnp k
future observation/test sample: (z;; Ty)  ?

o Nonwaen

» objective: use certain observed measurements X of some objects whose
categories or grouping are known, to determine a rule that can be used to assign a
new object (whose category is unknown) to one of the pre-specified categories

» discrimination analysis also known as pattern recognition, (statistical)
classification, or numerical taxonomy

» examples for k=2

Populations 7r; and

Measured variables X

Education, income, family size, amount of
previous brand switching.

Entrance examination scores, high school grade-
point average, number of high school activities.

Activity of monoamine oxidase enzyme, activity
of adenylate cyclase enzyme.

5. Purchasers of a new product and
laggards (those “slow” to purchase).

6. Successful or unsuccessful (fail to
graduate) college students.

9. Alcoholics and nonalcoholics.

> Q: Why the categories of some objects are known, some unknown? Here are ***
some possible conditions:
= incomplete knowledge of “future” performance

» “perfect” information required destroying the object
= Unavailable or expensive information

» a good classification procedure should
= result in few misclassifications

= take “prior probabilities of occurrence” into account

+ example. There tend to be more financially sound firms than bankrupt
firm. If we really believe that the prior probability of a financially
distressed and ultimately bankrupted firm is very small, then one should
classify a randomly selected firm as non-bankrupt unless the data

overwhelmingly favor bankruptcy.

= consider the cost

« Suppose that classifying a m, object as belonging to , represents a more
serious error than classifying a , object as belonging to «,. Then, one
should be cautious about making the former assignment

+ example. Diagnosis of a potentially fatal illness




« Separation and Classification for Two Populations
» Modeling of the data and problem

= Let fi(x) and f,(x) be the probability density functions associated with the

p X 1 vector random variable X for the populations 7r; and m;, respectively.
= Let ) bethe sample space—that is, the collection of all possible observations x.

= Let R, be that set of x values for which we classify objects asm and R, = Q—R;
the sets R; and R, are mutually exclusive and exhaustive.

.

£ %

W

2=RUR,

i

= Let 151 be the prior probability of m; and p, be the prior probability of ;,
where p; + p» = 1.

= The costs of misclassification can be defined by a cost matrix:
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» Calculation of some probabilities
= The conditional_probabﬂity, }3(2 11), of classifying an obj—ect as m; when, in fact,

it is from 7, is

P(211) = P(Xe R,y m) = [hn_ﬂ fi(x) dx

= the conditional probability, P(1 | 2), of classifying an object as 7; when it
is really from =, is

P(112) = P(XeR,|m,) = '[sz(x)dx

= the overall probabilities of correctly or incorrectly classifying objects are

¢ P(observation is correctly classified as ;) = P(observation comes from
and is correctly classified as ;)

= P(XeRylm)P(m) = P(111)p,




¢ P(observation is misclassified as 7r;) = P(observation comes from 7,

and is misclassified as 7, )

¢ P(observation is correctly classified as 7r,) = P(observation comes from 7,

and is correctly classified as ;)
= P(Xe Ry|lm)P(m,) = P(212)p,
P(observation comes from
and is misclassified as ;)

= P(X e Rylm)P(m) = P(211)p,
» expected cost of misclassification (ECM) criterion
ECM = ¢(211)P(211)p; + ¢(112)P(112)p,
— a reasonable classification rule should have ECM as small as possible

> Result 11.1. The regions R; and R, that minimize the ECM are defined by the
values x for which the following inequalities hold:

® = () (3)

¢ P(observation is misclassified as m,) =

prior
probability

(densuy cost
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ratio = ratio

fa(x) C
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R, fi(x) C ) P

» Note. Implementation of the minimum ECM rule requires only three ratios
= special cases of minimum expected cost regions
+ P2/p1 = 1 (equal prior probabilities)

R.: f1(x) - c(112) Ro: fi(x) c(lIZ)
YRm T @) T R S @)
¢ ¢(112)/¢(211) = 1 (equal misclassification costs)
hx) | P ChX) P
hL(x) P Ra fa(x) = D1
o P2/p1 = c(112)/c(211) = Lorpy/p1 = 1/(c(112)/c(211))
(equal prior probabilities and equal misclassification costs)
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> other criteria
» total probability of misclassification (TPM)
TPM = P(misclassifying a 7, observation or misclassifying a 7, observation)
= P(observation comes from 7| and is misclassified)
+ P(observation comes from 7, and is misclassified)

= P1f H(x)dx + p, [ fu(x)dx
Ry R,

= equivalent to minimizing ECM when costs of misclassification are equal

= “posterior” probability approach

P(7r; occurs and we observe Xxg)
P(we observe x;)
P(we observe x| ;) P(7r;)
P(we observe x|y )P(m,) + P(we observe xy|m,)P(m,)
_ p1fi(xo)
p1fi(x0) + P2fa(x0)

P(mi1xp) =

P2f2(xq)
p1fi(X0) + p2fa(x0)

= Classifying an observation xy as 7y when P(m;1xy) > P(m;1xq)

= equivalent to minimizing ECM when costs of misclassification are equal

P(Ts"zlx.o) =1- P(W1|XQ) =

« Classification with Two Multivariate Normal Populations e

> now, further assume that fi(x) and f,(x) are multivariate normal densities,
= f,(x) with mean vector pt; and covariance matrix ¥,
» f>(x) with mean vector s, and covariance matrix X,.

» Classification of Normal Populations When %, = 3, = X
= Suppose that the joint densities of X' = [X;, X3, ..., X,] for populations 7; and 7,
are given by

1
) = ez e

= minimum ECM regions become

112
R;: exp[—%(x - )T (x — py) + %(X - M) 7 (x — ‘“2)] = (EEZIID (E)

P[“lz”(" — )27 (x - l“':'):| fori =1,2

112
Ry: exp[*%(x - )T (x - y) + %(x )3 #2)}‘: (EEZIID (%)

sResult 11.2. Let the populations 7; and 7, be described by multivariate normal
densities of the form (11-10). Then the allocation rule that minimizes the ECM is as

follows: Allocate x, to 7, if
[ %) 0= 5 (M1~ 2 1T H2) = c(211) /) \ ;

Allocate xj to 7, otherwise.

proof.
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« In practical situation, m,,p,, and X are usually unknown = replacing

the population parameters by their counterparts (Q: how?)

® Suppose, then, that we have n; observations of the multivariate random vari-

able X' = [X, X, ..., X,] from 7, and n, measurements of this quantity from m,,
with n; + n, — 2 = p. Then the respective data matrices are

r
X1t X21
r
X] X22
X]_ = .]2 X2 = :
(nyXp) : (naxp) ,.
r
x].ﬂ] xzﬂz

the sample mean vectors and covariance matrices are

”’1;:1“1 (px

_124mj D) (X1 — %)’

(p><1) p
Ly LS
X; = — X2j, S, = (%2 — X3) (X2; — X3)'
(px1) M2 ke mp—1 j=1 ! !

Since it is assumed that the parent populations have the same covariance matrix 2.,
the sample covariance matrices S, and S, are combined (pooled) to derive a single,
unbiased estimate of X%

— _1 nz_l
Spoo]eﬂ_[(n _1) + (ny - 1):\ l:(fh —1)+(nz—1)j|sz

. .. . p. 8-10
= The Estimated Minimum ECM Rule for Two Normal Populations

Allocate x to 7 if

o ) o _ _ 112
(X; — X5) Spclaoledxﬂ — %(xl - X;) Sp(lgoled (X, +x3) = lnl:(zE2|1§) (ﬁ)]

Allocate x, to 7, otherwise.

o If [c(112) )
(cam) (&)=
then In(1) = 0, and the estimated minimum ECM rule for two normal populations
amounts to comparing the scalar variable X3=10g10 (AHF-like antigen)
¥ = (X1 = X2)'SpooleaX = &'X
evaluated at x5, with the number

S = b e
I T

]
by o
T 17T T 1

-~ 1 - —_ ra—1 — —_ — 1 —_ _—
m = 5(11 — X3) Spooled (X1 + Xz)' 5O+ )
where

¥ = (%1 — %2)'Spoolea X1 = 8'X; .

Yo = (X — %) SpeoieaXz = 4'X; iy
+ the estimated minimum ECM rule is to L

(1) creating two univariate populations for the y values by taklng an
appropriate linear combination of the observations from two populations

(2) aSS|gn a new observation xg to m; or m, dependlng upon whether
Jo = a'x, falls to the right or left of the midpoint m between the two
univariate means y, and y,

=> it is called linear discriminant analysis

®» Normals
© Obligatory carriers




