NTHU STAT 5191, 2010 Lecture Notes

> other criteria "
» total probability of misclassification (TPM)
TPM = P(misclassifying a 7, observation or misclassifying a 7, observation)
= P(observation comes from 7r; and is misclassified )= P(xc—m) P(xe&l Xéﬂ’)
+ P(observation comes from 7, and is rmsclasmﬁed)

=D [szl(x)dx + p2 Alfz(x) dKHECM m LNP-&'S

= equivalent to minimizing ECM when costs of misclassification are equal

“posterior” probability approach
Py 1xg) = P(r; occurs and we observe x;)
P P(we observe Xo)=P(obsewnt o 8 Yo €Ti)+P(obserre %o
P(we observe xq| 7)) P(;) & Xo€Th)
P(we observe xqlm)P(m,) + P(we observe xy |7, ) P(7,)
p1fi(xo) R regron &S (Xo >>__.
P1f1(10) + P2f2(%0) v Resutts !l | LN, ﬁ)

)85
P(1T2|X0) =1- P(?T]_lxo) = plfl(xiz)fi—(x;zfz(xn $%>>B-f2(ﬁ)

Classifying an observation x, as 7; when P(w;|xy) > P(m;1xy)

= equivalent to minimizing ECM when costs of misclassification are equal

« Classification with Two Multivariate Normal Populations P

> now, further assume that fi(x) and f»(x) are multivariate normal densities,
= fi(x) with mean vector p; and covariance matrix %,

= f>(x) with mean vector u, and covariance matrix ¥,.

» Classification of Normal Populations Wher‘ 3, =23, = EI

= Suppose that the joint densities of X’ = [ X, X3, ..., X,] for populations 7; and m,
are given by

1
1) = G ?

= minimum ECM regions become
112
f((x) GXP[ = )T (x = py) + %(x - p2)' 27 (x - Mﬂj—" (EEZHD (E)
112
f;(xyaxp[—%(x — )T (x - py) + %(X — ) 27N (x - ﬂl)} < (EEZI 1;) (E)

I

pl(_) sResult 11.2. Let the populations 7; and 7, be described by multivariate normal
densities of the form (11-10). Then the allocation rule that minimizes the ECM is as
follows: Allocate x, to 7y if

~ c(112)
(1= 1) 2 %0 = 'l(ﬂl p2)' 25 (1 + pa) = '“[( (211)) (_)]
Allocate x nf. to 7, otherwise. 1y /N 2 X

proof. Ja[6d ~-—J—[x:"x-ll\5:5( Xi/"'*/‘iij"‘r]*‘l'[ X3 WA T

exp[——;w(x — )T (x — ,u,-)] fori =1,2
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. . . . . p. 8-9
« In practical situation, m,,m,, and X are usually unknown = replacing

the population parameters by their counterparts (Q: how?)

= Suppose, then, that we have n; observations of the multivariate random vari-

able X' = [X, X,,..., X,] from 7, and n, measurements of this quantity from m,,
with n; + n, — 2 = p. Then the respective data matrices are
Y
X11 X321 X Po:P
[
X, = | * X, =| | dotzser- |
(ﬂl)@ : (ny : X %
’ .
/Q L xi ny xznZ 2 3

the sample mean vectors and covariance matrices are
& ™

1 1
X =— D> X, 8§ = (x; — Xy) (xq; — Xy)'
{lel) n E 1j (pxlp] ny — 1 -2:1 1j 1 1j 1

1 % 1 %
X, =— D> X, § = (x2; — X3) (x2; — X3)'
(px1) M2 j5 ! (pxp) Ny — 1 j=1 ! !

Since it is assumed that the parent populations have the same covariance matrix 2.,
the sample covariance matrices S, and S, are combined (pooled) to derive a single,
unbiased estimate of % m>> N2,

= The Estimated Minimum ECM Rule for Two Normal Populations P10

Allocate xg to ary if 7 ° 7 (112)
— \Io— x %, )'S: X X -
(i‘i)_ xz) SP&‘:’]’F_XE{I — Xz) Spgoled(xl + XZ) = ln[(c(2|1)) (ﬁ)jl

Alloca{'g Xp to/'grzg' otherwise. functron % 'bnimn‘;, 5qu[_€
o If c(llZ)) (Pz)
) — = Y48 /_\
(cam) () - clsfocitor,
then In(1) = 0, and the estimated minimum ECM rule for two normal p0pu1;4)ns
amounts to comparing the scalar variable Xa=l0g10 (AHF-like antigen)
5= (% — %) Sphoeax = g X prjedled defmect by Spectod
— (X1 = %2) Spooled® 22X o the direiting
X3, evaluated at xy, with the number . _
» 1 —_ - 'a—1 — —_ — 1 — _—
m = E (Xl - leastpmleg(xl + Xz]— 2 (yl 'i;‘)’z
here 3, = (%, = %)) Spootea X1 = @', a >~

E = (il - ig)'s;,éolediz = ﬁ,iz -‘. ' ! Dgwrycarri
+ the estimated minimum ECM rule is to

2 (1) creating two univariate populations for the y vakie B taking an

&_)—( % appropriate linear combination of the observations frof Q populations
=X - : : .
"(2) assign a new observation x, to mt; or mt, depending upon whether

3o = a'x, falls to the right or left of the midpoint m between the two
univariate means y, and the SMPCQ 1 spa 1S

= itis calle discriminant analysis SQPWZZo( mip B, Ry Ay a PéVLQl
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p. 8-11

> Fisher’s approach to classification with two populations

= Fisher’s idea was to transform the multivariate variables X;, ..., X, toa
univariate variable Y, which is a linear function of the X variables, I.e.,

VMV)*@TfW@_ a1 X1+ a2 Xo + - +apX pa-aTX/—(x{'“,xP)—T

such that the Y observations derived from the two populatloﬁs were@gparated
as much as possible

= A fixed linear combination of the x’s takes the values Vi1s V12 -+ - » Y(my) fOr the

+ observations from the first population and the values y,1, ¥, ..., y@ or the obser-

"/'WU vations from the second population. The separation of these two sets of univariate
y’s is assessed in terms of the difference between y, and y,. expressed in standard

7)@/;1(/" .deviation units. That is, e 'b'-f&it. n ny
2()’1} - n)?+ > (- %)

* =1 =1
separation where 53 = * /
n,+n,—2
Uy — M- 2 Na=|
(

'%ﬁ‘he pooled estimate of the variance. = Ty o5 2y T H2-2 Sy"

11.3. The linear combination y = a'x = (X; — X,) S;2,.aX maximizes the
j eeJ:\, ‘( 1 — Xp) pooled 64’ )z;)
<; ) squared distance % (W , I .
¥4 “pbetween sample means of y _ (a'ﬂi; - a'iﬂz) _ (EG) i
Wy, /‘vyz (sample variance of y)\%\‘\‘hm— 2'S;000eq @ a'S;o0leq @

VoA m’(’hm

over all possible coefficient vectors a where d = (X; — X,). The maximum Ofp-t;lé
ratiois D? = (X, — iz)lsaooled(il X3).
proof. By Wf/”’W Lemma ™ [J\/ 2‘/?‘

=C- %a’ masimum ua/u. ad’Sw d

= allocation rule based on Fisher’s discriminant functlon
Allocate x to my if j’o = (i1 - iZ)'S[_)éoledxo

-~ 1 — — — i i
= m = 5(X; — X;)'Spo0led (X1 + X2)

= s fe i
Allocate xot0 m i o < mak by 1k LDF minimiae
- wu(lk)=3; gEWM).
LR = 22=loy) Ps‘hvv’s LDF masamize
% R A _Sepoition”
% 7 >do not
m . norvnw\f
% wm
P PN 55
L % & f

evelgped under the
. have a common

= Note. Fisher’s linear discriminant fu
assumptlon that the two population,whatever their for
covariance matrix.
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L . . Y2 ox p.8-13
> Is classification a good idea for your data? Xy
= Fro two populations, the maximum relative $&paration that can be obtained

by considering linear combinations of the multivariate observations is equal
to the distance D?

= Note. D? can be used to test whether the population means differ significantly
(Hotelling’s T2 test)

= a test for differences in mean vectors can be viewed as a test for the
“significance” of the separation that can be achieved

= Note. Significant separation does not necessarily imply good classification. By
contrast, if the separation is not significant, the search for a useful
classification rule will probably prove fruitless

1

R . = (x-p)I(x-p)2
« Classification of Normal Populations When %, # 3, |/®) PR CETIA #

> Result 11.4. Let the populations 7; and 7, be described by multivariate normal
densities with mean vectors and covariance matrices g, %; and u,,X,, respec-
lﬁ‘)‘xﬂaﬁﬁely The allocation rule that mmumzes the expected cost of misclassification is

BT e miod s e iy ¢ = ] (202 (2)
5(%%&@1\0’6 (c(llZ)) (EZ_):

Ry: _le(z-l - ) x + (uiE7 - wpEr)x — k <n c(211)
where p3 1
k = “1 (l l|) 2 (ri2T g — pi23tpy)< Fundiow db PW

| 22|

p.8-14

= it is called quadratic classification because of the quadratlc term

c/..P. L Ex (=t - 1)7& S G4 ﬂfL’% +£t°‘ ‘Xdﬂé
I7L¢ﬂ/l, o .
» Quadratic classification rule )

Allocate x; to 7 if

1
—Exo(sl — 851 xg + (%87} — %851)xp — k(4%

_ c(112)\ { p2 51,55
‘“’[(c(zm) (p_ﬂ
DR s

Allocate x, to 7, otherwise.
- Evaluating classification functions =. $200° v, <|

» one important wa ofjudging the performance of any classification procedure is
Twm][:to calculateﬁ(@ rate,” or misclassification probabilities

total probability of misclassification (population
T—'\/?Qém/wg, y : p!“ﬁ )

F1(9) = Ny, 8%)

> t te (d @ t "}6 TaeNO densit Q, !
apparent error rate (_ o not dependent on pop ensi |es) y %o
APER = proportion of items in the training set that are mlsclassmeqk,w 5i.£

made by S.-W. Cheng (NTHU, Taiwan)



NTHU STAT 5191, 2010 Lecture Notes

p. 8-15

Q; 6/0¢$ nNx Yef/e A Predicted membership
PP ? m M
Actual ™ M Qud= n — me ny
membership o, @Q; Ty — Mg 4\l ‘ "
£
APER = MM tram_ M My 1, i Mur

n+n a!ﬂﬂ'/)m N2 /.+Vh+/)2. AN DS JC(’—‘ ‘)
= it is easy to calculate and ¢an be calculated for any classification procedure

= It tends to underestimate the AER because the data used to build the
classification function are also used to evaluate it

= One procedure is to split the total sample into a training sample and a
validation sample, but it required large sample and the information in the
validation sample is not used to construct the classification function

» cross-validation method (leave-one-out method)

1. Start with the #; group of observations. Omit one observation from this
group, and develop a classification function based on the remaining n; — 1, n,
observations.

2. Classify the “holdout” observation, using the function constructed in Step 1.

3. Repeat Steps 1 and 2 until all of the 7; observations are classified. Let n(m be
the number of holdout (/) observations misclassified in this group.

p. 8-16

4. Repeat Steps 1 through 3 for the 7, observations. Let n; M] be the number of
holdout observations misclassified in this group.

" nlH)

P11y = 1M . W) 4 ) p

" Baen ==L

(H) 1+ n (H
Paiz) = 24 n /)m Ny ! sy

2 = -+
g " T
< Reading: textbook, 11.1, 11.2, 11.3, 11.4 14
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