Γ

other criteria
• other criteria
• total probability of misclassification (TPM)
TPM = P(misclassifying a π₁ observation or misclassifying a π₂ observation)
= P(observation comes from π₁ and is misclassified)
= p₁
$$\int_{R_2} f_1(\mathbf{x}) d\mathbf{x} + p_2 \int_{R_1} f_2(\mathbf{x}) d\mathbf{x} \xleftarrow{\frown} ECM_{P_2} (M_2 B_2 C_2)$$
= equivalent to minimizing ECM when costs of misclassification are equal
• "posterior" probability approach
P($\pi_1(\mathbf{x}_0) = \frac{P(\pi_1 \operatorname{occurs and we observe \mathbf{x}_0)}{P(we observe \mathbf{x}_0 | \pi_1)P(\pi_1)} + P(observe \mathbf{x}_0 = \pi_1)P(\pi_1) (K_2 K_2 K_2 K_1) + P(observe X_2 K_2 K_1) + P(observe X_2 K_2 K_1) + P(observe X_2 K_2 K_1) + P(we observe \mathbf{x}_0 | \pi_1)P(\pi_1) + P(\mathbf{w} observe \mathbf{x}_0 | \pi_2)P(\pi_2) = \frac{P_1 f_1(\mathbf{x}_0) + P_1 f_2(\mathbf{x}_0) + P$

NTHU STAT 5191, 2010

made by S.-W. Cheng (NTHU, Taiwan)

NTHU STAT 5191, 2010

	B. Jaco no	n. votlait	Fredicted	membership	
	Q: aves iun	ns regience	π_1	π_2	
	- Pilz	π. Γ	 	$\boxed{n_1} = n_1 - n_1$	n.
	membershi		$n_{10} = n_0 = n_{00}$		$\frac{c}{1}$ n_1
		P "2	$n_{2M} - n_2 - n_{2C}$	<u>S(12)</u>	<i>n</i> ₂
	4 DE	$n_{1M} + n_2$	M N2 N2M	ni Mm	
	APE	$n_1 = \frac{n_1 + n_2}{n_1 + n_2}$	A JAIHAZ AZ	n n+n2, ni	1 f(2/1)
	• it is easy to c	alculate and ca	an be calculated	for any classificati	on procedure
	- it tends to un	derestimate th	AFR because	the data used to bu	ild the
	classification	function are al	lso used to evalu	ate it	nd the
	• one procedur	re is to split the	e total sample in	to a training sampl	e and a
	validation sar	mple, but it req	uired large sam	ole and the information	tion in the
	validation sar	mple is not use	d to construct th	e classification fun	ction
\succ	cross-validatio	on method (leav	ve-one-out meth	od)	
	1. Start with	the π_1 group	of observations	. Omit one observ	ation from this
	group, and	develop a class	ification function	h based on the rema	uning $n_1 - 1$, n_2
	observation	ns.			
	2. Classify the	"holdout" obse	ervation, using th	e function construct	ed in Step 1.
					· · · · (H) ·
	the number	of holdout (11)		-	
	 4. Repeat Step holdout obs 	ps 1 through 3 servations miscl	for the π_2 obser assified in this gr	vations. Let $n_{2M}^{(H)}$ be oup.	p. 8-16 the number of
	 4. Repeat Step holdout obs 	ps 1 through 3 servations miscl	for the π_2 obser assified in this gr	vations. Let $n_{2M}^{(H)}$ be oup.	p. 8-16 the number of
	4. Repeat Step holdout obs $\hat{P}(2 1) = \frac{7}{2}$	ps 1 through 3 servations miscl $n_{1M}^{(H)}$	for the π_2 obser assified in this gr	vations. Let $n_{2M}^{(H)}$ be oup. $n_{M}^{(H)} + n_{M}^{(H)}$	the number of $\vec{\rho}$
	4. Repeat Step holdout obs $\hat{P}(2 1) = \frac{r}{2}$	ps 1 through 3 servations miscl $\frac{n_{1M}^{(H)}}{n_1}$	for the π_2 obser assified in this gr $\hat{E}(AER) =$	vations. Let $n_{2M}^{(H)}$ be oup. $\frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$	the number of $P_{\rm P}$
	the number 4. Repeat Step holdout obs $\hat{P}(2 1) = \frac{r}{2}$ $\hat{P}(1 2) = \frac{r}{2}$	ps 1 through 3 servations miscl $\frac{n_{1M}^{(H)}}{n_1}$	for the π_2 obser lassified in this gr $\hat{E}(\text{AER}) =$	vations. Let $n_{2M}^{(H)}$ be oup. $\frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$	the number of P_{2}
	the number 4. Repeat Step holdout obs $\hat{P}(2 1) = \frac{r}{r}$ $\hat{P}(1 2) = \frac{r}{r}$	ps 1 through 3 servations miscl $\frac{n_{1M}^{(H)}}{n_1}$ $\frac{n_{2M}^{(H)}}{n_2}$	for the π_2 obser assified in this gr $\hat{E}(AER) =$	vations. Let $n_{2M}^{(H)}$ be oup. $\frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$ $\frac{n_1^{(H)} + n_2^{(H)}}{n_1 + n_2}$	the number of P_{2} P_{2
> Read	the number 4. Repeat Stepholdout obs $\hat{P}(2 1) = \frac{r}{2}$ $\hat{P}(1 2) = \frac{r}{2}$ ling: textbook, 11.1	ps 1 through 3 servations miscl $\frac{n_{1M}^{(H)}}{n_1}$ $\frac{n_{2M}^{(H)}}{n_2}$ $1, 11, 2, 11, 3, 11, 4$	for the π_2 obser assified in this gr $\hat{E}(AER) =$	vations. Let $n_{2M}^{(H)}$ be oup. $\frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$ $\frac{n_1^{(H)} + n_2^{(H)}}{n_1 + n_2}$	the number of P_{2} P_{2
• Read	the number 4. Repeat Stepholdout obs $\hat{P}(2 1) = \frac{r}{2}$ $\hat{P}(1 2) = \frac{r}{2}$ ling: textbook, 11.1	ps 1 through 3 servations miscl $\frac{n_{1M}^{(H)}}{n_1}$ $\frac{n_{2M}^{(H)}}{n_2}$ $1, 11.2, 11.3, 11.4$	for the π_2 obser lassified in this gr $\hat{E}(AER) =$	vations. Let $n_{2M}^{(H)}$ be oup. $\frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$ $\frac{n_1^{(H)} + n_2^{(H)}}{n_1 + n_2}$	the number of $P_{2}^{p.8-16}$ $P_{2}^{p.8-16$
• Read	the number 4. Repeat Stepholdout obs $\hat{P}(2 1) = \frac{r}{2}$ $\hat{P}(1 2) = \frac{r}{2}$ ling: textbook, 11.1	ps 1 through 3 servations miscl $\frac{n_{1M}^{(H)}}{n_1}$ $\frac{n_{2M}^{(H)}}{n_2}$ $1, 11.2, 11.3, 11.4$	for the π_2 obser lassified in this gr $\hat{E}(AER) =$	vations. Let $n_{2M}^{(H)}$ be oup. $\frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$ $\frac{n_1^{(H)} + n_2^{(H)}}{n_1 + n_2}$	the number of P_{2} P_{2
• Read	4. Repeat Stepholdout obs $\hat{P}(2 1) = \frac{r}{2}$ $\hat{P}(1 2) = \frac{r}{2}$ ling: textbook, 11.1	ps 1 through 3 servations miscl $\frac{n_{1M}^{(H)}}{n_1}$ $\frac{n_{2M}^{(H)}}{n_2}$ $1, 11.2, 11.3, 11.4$	for the π_2 observations in assified in this gr $\hat{E}(AER) =$ P_1	vations. Let $n_{2M}^{(H)}$ be oup. $\frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$ $\frac{n_1^{(H)} + n_2^{(H)}}{n_1 + n_2}$	the number of P_{2} P_{2
• Read	4. Repeat Step holdout obs $\hat{P}(2 1) = \frac{r}{2}$ $\hat{P}(1 2) = \frac{r}{2}$ ling: textbook, 11.1	ps 1 through 3 servations miscl $\frac{n_{1M}^{(H)}}{n_1}$ $\frac{n_{2M}^{(H)}}{n_2}$ $1, 11.2, 11.3, 11.4$	for the π_2 obser lassified in this gr $\hat{E}(AER) =$	vations. Let $n_{2M}^{(H)}$ be oup. $\frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$ $\frac{n_1^{(H)} + n_2^{(H)}}{n_1 + n_2}$	the number of P_{2} P_{2
• Read	4. Repeat Step holdout obs $\hat{P}(2 1) = \frac{r}{2}$ $\hat{P}(1 2) = \frac{r}{2}$ ling: textbook, 11.1	ps 1 through 3 servations miscl $\frac{n_{1M}^{(H)}}{n_1}$ $\frac{n_{2M}^{(H)}}{n_2}$ 1, 11.2, 11.3, 11.4	for the π_2 obser lassified in this gr $\hat{E}(AER) =$	vations. Let $n_{2M}^{(H)}$ be oup. $\frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$ $\frac{n_1 + n_2}{n_1 + n_2}$	p. 8-16 the number of P_{2} P_{2
• Read	4. Repeat Stepholdout obs $\hat{P}(2 1) = \frac{r}{2}$ $\hat{P}(1 2) = \frac{r}{2}$ ling: textbook, 11.1	ps 1 through 3 servations miscl $\frac{n_{1M}^{(H)}}{n_1}$ $\frac{n_{2M}^{(H)}}{n_2}$ 1, 11.2, 11.3, 11.4	for the π_2 obser lassified in this gr $\hat{E}(AER) =$ P_1	vations. Let $n_{2M}^{(H)}$ be oup. $\frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$ $\frac{n_1^{(H)} + n_2^{(H)}}{n_1 + n_2}$	the number of P_{2} P_{2
• Read	4. Repeat Step holdout obs $\hat{P}(2 1) = \frac{r}{2}$ $\hat{P}(1 2) = \frac{r}{2}$ ling: textbook, 11.1	ps 1 through 3 servations miscl $\frac{n_{1M}^{(H)}}{n_1}$ $\frac{n_{2M}^{(H)}}{n_2}$ 1, 11.2, 11.3, 11.4	for the π_2 obser lassified in this gr $\hat{E}(AER) =$	vations. Let $n_{2M}^{(H)}$ be oup. $\frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$ $\frac{n_1^{(H)} + n_2^{(H)}}{n_1 + n_2}$	p. 8-16 the number of P_2 n_2
• Read	the number 4. Repeat Stepholdout obs $\hat{P}(2 1) = \frac{r}{2}$ $\hat{P}(1 2) = \frac{r}{2}$ ling: textbook, 11.1	ps 1 through 3 servations miscl $\frac{n_{1M}^{(H)}}{n_1}$ $\frac{n_{2M}^{(H)}}{n_2}$ $1, 11.2, 11.3, 11.4$	for the π_2 obser lassified in this gr $\hat{E}(AER) =$ P_1	vations. Let $n_{2M}^{(H)}$ be oup. $\frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$ $\frac{n_1 + n_2}{n_1 + n_2}$	p. 8-16 the number of P_{2} P_{2
• Read	4. Repeat Stepholdout obs $ \hat{P}(2 1) = \frac{r}{2} $ $ \hat{P}(1 2) = \frac{r}{2} $ ling: textbook, 11.1	ps 1 through 3 servations miscl $\frac{n_{1M}^{(H)}}{n_1}$ $\frac{n_{2M}^{(H)}}{n_2}$ 1, 11.2, 11.3, 11.4	for the π_2 obser lassified in this gr $\hat{E}(AER) =$ P_1	vations. Let $n_{2M}^{(H)}$ be oup. $\frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$ $\frac{n_1^{(H)} + n_2^{(H)}}{n_1 + n_2}$	p. 8-16 the number of P_{2} n_{2
• Read	4. Repeat Step holdout obs $\hat{P}(2 1) = \frac{7}{2}$ $\hat{P}(1 2) = \frac{7}{2}$ ling: textbook, 11.1	ps 1 through 3 servations miscl $\frac{n_{1M}^{(H)}}{n_1}$ $\frac{n_{2M}^{(H)}}{n_2}$ 1, 11.2, 11.3, 11.4	for the π_2 obser lassified in this gr $\hat{E}(AER) =$ P_1	vations. Let $n_{2M}^{(H)}$ be oup. $\frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$ $\frac{n_1^{(H)} + n_2^{(H)}}{n_1 + n_2}$	p.8-16 the number of P_2 n_2
★ Read	the number 4. Repeat Stepholdout obs $\hat{P}(2 1) = \frac{r}{2}$ $\hat{P}(1 2) = \frac{r}{2}$ ling: textbook, 11.1	ps 1 through 3 servations miscl $\frac{n_{1M}^{(H)}}{n_1}$ $\frac{n_{2M}^{(H)}}{n_2}$ $1, 11.2, 11.3, 11.4$	for the π_2 obser lassified in this gr $\hat{E}(AER) =$ P_1	vations. Let $n_{2M}^{(H)}$ be oup. $\frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$ $\frac{n_1^{(H)}}{n_1 + n_2} + \frac{n_1^{(H)}}{n_1} + \frac{n_1^{(H)}}{n_1}$	p.8-16 the number of P_2 n_2
Read	4. Repeat Stepholdout obs $\hat{P}(2 1) = \frac{r}{2}$ $\hat{P}(1 2) = \frac{r}{2}$ ling: textbook, 11.1	ps 1 through 3 servations miscl $\frac{n_{1M}^{(H)}}{n_1}$ $\frac{n_{2M}^{(H)}}{n_2}$ 1, 11.2, 11.3, 11.4	for the π_2 obser lassified in this gr $\hat{E}(AER) =$ P_1	vations. Let $n_{2M}^{(H)}$ be oup. $\frac{n_{1M}^{(H)} + n_{2M}^{(H)}}{n_1 + n_2}$ $\frac{n_1^{(H)} + n_2^{(H)}}{n_1 + n_2}$	p. 8-16 the number of P_{2} P_{2