Sample Canonical Variables and Canonical Correlations \triangleright Data: $\mathbf{X} = \begin{bmatrix} \mathbf{X}^{(1)} \mid \mathbf{X}^{(2)} \end{bmatrix}$ $= \begin{vmatrix} x_{11}^{(1)} & x_{12}^{(2)} & \cdots & x_{1p}^{(1)} & x_{11}^{(2)} & x_{12}^{(2)} & \cdots & x_{1q}^{(1)} \\ x_{21}^{(1)} & x_{22}^{(1)} & \cdots & x_{2p}^{(1)} & x_{21}^{(2)} & x_{22}^{(2)} & \cdots & x_{2q}^{(2)} \\ \vdots & \vdots \\ \mathbf{x}_{11}^{(1)} & \mathbf{x}_{11}^{(1)} & \cdots & \mathbf{x}_{11}^{(1)} & \mathbf{x}_{21}^{(2)} & \mathbf{x}_{22}^{(2)} & \cdots & \mathbf{x}_{2q}^{(2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{x}_{n}^{(1)} & \mathbf{x}_{11}^{(1)} & \cdots & \mathbf{x}_{11}^{(1)} & \mathbf{x}_{22}^{(2)} & \mathbf{x}_{22}^{(2)} & \cdots & \mathbf{x}_{2q}^{(2)} \\ \end{vmatrix} = \begin{bmatrix} \mathbf{x}_{1}^{(1)} & \mathbf{x}_{1}^{(2)} & \mathbf{x}_{1}^{(2)} \\ \vdots & \vdots \\ \mathbf{x}_{n}^{(1)} & \mathbf{x}_{n}^{(2)} & \mathbf{x}_{n}^{(2)} \end{bmatrix}$ > Finding canonical variables and canonical correlations replace population distribution by empirical distribution • replace Σ by **S** (or **S**_n) • replay ρ by **R** • then, the rests the same as above Scatter plots of the first (\hat{U}_1, \hat{V}_1) pair may reveal atypical observations \mathbf{x}_j requiring further study. If the canonical correlations $\hat{\rho}_2^*$, $\hat{\rho}_3^*$, ... are also moderately large, scatter plots of the pairs $(\hat{U}_2, \hat{V}_2), (\hat{U}_3, \hat{V}_3), \dots$ may also be helpful in this respect. p. 7-10 Additional Sample Descriptive Measures > Matrices of Errors of Approximations • Since $\hat{\mathbf{U}} = \hat{\mathbf{A}} \mathbf{x}^{(1)}$ and $\hat{\mathbf{V}} = \hat{\mathbf{B}} \mathbf{x}^{(2)}$ we can write $\mathbf{x}^{(1)} = \hat{\mathbf{A}}^{-1} \hat{\mathbf{U}}_{(p \times 1)} \quad \mathbf{x}^{(2)}_{(q \times 1)} = \hat{\mathbf{B}}^{-1} \hat{\mathbf{V}}_{(q \times 1)}$ Because sample $\operatorname{Cov}(\hat{\mathbf{U}}, \hat{\mathbf{V}}) = \hat{\mathbf{A}} \mathbf{S}_{12} \hat{\mathbf{B}}'$, sample $\operatorname{Cov}(\hat{\mathbf{U}}) = \hat{\mathbf{A}} \mathbf{S}_{11} \hat{\mathbf{A}}' = \mathbf{I}_{(p \times p)}$, and sample $\operatorname{Cov}(\hat{\mathbf{V}}) = \hat{\mathbf{B}} \mathbf{S}_{22} \hat{\mathbf{B}}' = \mathbf{I}_{(q \times q)}$, $\mathbf{S}_{12} = \hat{\mathbf{A}}^{-1} \begin{bmatrix} \rho_1^* & 0 & \cdots & 0 \\ 0 & \widehat{\rho_2^*} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \widehat{\rho_p^*} \end{bmatrix} \mathbf{0} \begin{bmatrix} (\hat{\mathbf{B}}^{-1})' = \widehat{\rho_1^*} \hat{\mathbf{a}}^{(1)} \hat{\mathbf{b}}^{(1)'} + \widehat{\rho_2^*} \hat{\mathbf{a}}^{(2)} \hat{\mathbf{b}}^{(2)'} \\ + \cdots + \widehat{\rho_p^*} \hat{\mathbf{a}}^{(p)} \hat{\mathbf{b}}^{(p)'} \end{bmatrix}$ $\mathbf{S}_{11} = (\hat{\mathbf{A}}^{-1})(\hat{\mathbf{A}}^{-1})' = \hat{\mathbf{a}}^{(1)}\hat{\mathbf{a}}^{(1)'} + \hat{\mathbf{a}}^{(2)}\hat{\mathbf{a}}^{(2)'} + \dots + \hat{\mathbf{a}}^{(p)}\hat{\mathbf{a}}^{(p)'}$ $\mathbf{S}_{22} = (\hat{\mathbf{B}}^{-1})(\hat{\mathbf{B}}^{-1})' = \hat{\mathbf{b}}^{(1)}\hat{\mathbf{b}}^{(1)} + \hat{\mathbf{b}}^{(2)}\hat{\mathbf{b}}^{(2)} + \dots + \hat{\mathbf{b}}^{(q)}\hat{\mathbf{b}}^{(q)}$ Since $\mathbf{x}^{(1)} = \hat{\mathbf{A}}^{-1}\hat{\mathbf{U}}$ and $\hat{\mathbf{U}}$ has sample covariance I, the first r columns of $\hat{\mathbf{A}}^{-1}$ contain the sample covariances of the first r canonical variates $\hat{U}_1, \hat{U}_2, \ldots, \hat{U}_r$ with their component variables $X_1^{(1)}, X_2^{(1)}, \ldots, X_p^{(1)}$. Similarly, the first r columns of $\hat{\mathbf{B}}^{-1}$ contain the sample covariances of $\hat{V}_1, \hat{V}_2, \ldots, \hat{V}_r$ with their component variables.

p. 7-9

• Total (standardized) sample variance in first set
= tr (**R**₁₁) = tr (
$$\hat{\mathbf{a}}_{1}^{(1)} \hat{\mathbf{a}}_{2}^{(1)} + \hat{\mathbf{a}}_{1}^{(2)} \hat{\mathbf{a}}_{2}^{(2)} + \dots + \hat{\mathbf{a}}_{2}^{(p)} \hat{\mathbf{a}}_{1}^{(p)}) = p$$

Total (standardized) sample variance in second set
= tr (**R**₂₂) = tr ($\hat{\mathbf{b}}_{1}^{(1)} \hat{\mathbf{b}}_{2}^{(1)} + \hat{\mathbf{b}}_{2}^{(2)} \hat{\mathbf{b}}_{2}^{(2)} + \dots + \hat{\mathbf{b}}_{2}^{(p)} \hat{\mathbf{b}}_{2}^{(q)}) = q$
• the contribution of the first *r* canonical variates to the total sample variance:
tr ($\hat{\mathbf{a}}_{1}^{(1)} \hat{\mathbf{a}}_{2}^{(1)} + \hat{\mathbf{a}}_{2}^{(2)} \hat{\mathbf{a}}_{2}^{(2)} + \dots + \hat{\mathbf{a}}_{2}^{(r)} \hat{\mathbf{a}}_{2}^{(r)}) = \sum_{i=1}^{r} \sum_{k=1}^{r} i_{k=1}^{r} i_{k}^{r} i_{$

