

• Set $U = \mathbf{a}' \mathbf{X}^{(1)}$ and $V = \mathbf{b}' \mathbf{X}^{(2)}$ for some pair of coefficient vectors \mathbf{a} and \mathbf{b} .
• $\operatorname{Var}(U) = \mathbf{a}' \operatorname{Cov}(\mathbf{X}^{(1)})\mathbf{a} = \mathbf{a}' \boldsymbol{\Sigma}_{11} \mathbf{a}$
$\operatorname{Var}(V) = \mathbf{b}' \operatorname{Cov}(\mathbf{X}^{(2)})\mathbf{b} = \mathbf{b}' \mathbf{\Sigma}_{22} \mathbf{b}$
$\operatorname{Cov}(U, V) = \mathbf{a}' \operatorname{Cov}(\mathbf{X}^{(1)}, \mathbf{X}^{(2)}) \mathbf{b} = \mathbf{a}' \mathbf{\Sigma}_{12} \mathbf{b}$
 We shall seek coefficient vectors a and b such that
$C_{orr}(U,V) = \frac{\mathbf{a}' \boldsymbol{\Sigma}_{12} \mathbf{b}}{(\boldsymbol{\bullet})}$
$\operatorname{Con}(\mathcal{O}, \mathcal{V}) = \frac{1}{\sqrt{\mathbf{a}' \boldsymbol{\Sigma}_{11} \mathbf{a}}} \sqrt{\mathbf{b}' \boldsymbol{\Sigma}_{22} \mathbf{b}} $
is as large as possible.
 The first pair of canonical variables, or first canonical variate pair, is the pair of linear combinations U₁, V₁ having unit variances, which maximize the correlation (*)
 The second pair of canonical variables, or second canonical variate pair, is the pair of linear combinations U₂, V₂ having unit variances, which maximize the correlation (*) among all choices that are uncorrelated with the first pair of canonical variables.
 The kth pair of canonical variables, or kth canonical variate pair, is the pair of linear combinations U_k, V_k having unit variances, which maximize the correlation (❖) among all choices uncorrelated with the previous k - 1 canonical variable pairs.
made by SW. Cheng (NTHU, Taiwan)
Result 10.1. Suppose $p \le q$ and let the random vectors $\mathbf{X}^{(1)}_{(p \times 1)}$ and $\mathbf{X}^{(2)}_{(q \times 1)}$ have
$\operatorname{Cov}(\mathbf{X}^{(1)}) = \sum_{\substack{(p \times p) \\ (p \times p)}} \operatorname{Cov}(\mathbf{X}^{(2)}) = \sum_{\substack{(q \times q) \\ (q \times q)}} \operatorname{and} \operatorname{Cov}(\mathbf{X}^{(1)}, \mathbf{X}^{(2)}) = \sum_{\substack{(p \times q) \\ (p \times q)}} \operatorname{where} \Sigma \operatorname{has} \operatorname{full}$
and $V = \mathbf{b}' \mathbf{V}^{(2)}$ Then
and $v = \mathbf{U} \mathbf{X}^{\vee}$. Then
$\max_{\mathbf{a},\mathbf{b}} \operatorname{Corr}(U,V) = \rho_1$
attained by the linear combinations (first canonical variate pair)
$U_1 = \mathbf{e}_1' \mathbf{\Sigma}_{11}^{-1/2} \mathbf{X}^{(1)}$ and $V_1 = \mathbf{f}_1' \mathbf{\Sigma}_{22}^{-1/2} \mathbf{X}^{(2)}$
\mathbf{a}_1' \mathbf{b}_1'
The kth pair of canonical variates, $k = 2, 3,, p$,
$U_k = \mathbf{e}'_k \boldsymbol{\Sigma}_{11}^{-1/2} \mathbf{X}^{(1)}$ $V_k = \mathbf{f}'_k \boldsymbol{\Sigma}_{22}^{-1/2} \mathbf{X}^{(2)}$
maximizes
$\operatorname{Corr}\left(U_k, V_k\right) = \rho_k^*$
among those linear combinations uncorrelated with the preceding $1, 2,, k - 1$ canonical variables. Here $\rho_1^{*2} \ge \rho_2^{*2} \ge \ge \rho_2^{*2}$ are the eigenvalues of $\Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \Sigma_{11}^{-1/2}$, and
$\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_p$ are the associated $(p \times 1)$ eigenvectors. [The quantities $\rho_1^{*2}, \rho_2^{*2}, \dots, \rho_p^{*2}$ are also the <i>p</i> largest eigenvalues of the matrix $\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1/2}$ with correspond-
$\lim_{n \to \infty} (a \times 1) = \lim_{n \to \infty} f f = \int \sum_{n \to \infty} f \sum_{n \to \infty} f \sum_{n \to \infty} \frac{1}{n!} \sum_{n \to$

• Q: why
$$\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\Sigma_{11}^{-1/2}$$
 (or $\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1/2}$)?
• geometrical interpretation
Let $A_{p,p} = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_p]'$ and $\mathbf{B}_{(q \times q)} = [\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_q]'$, so that the vectors of
canonical variables are
U = $\mathbf{A}\mathbf{X}^{(1)}$ V = $\mathbf{B}\mathbf{X}^{(2)}$
 $\mathbf{A} = \mathbf{E}'\Sigma_{11}^{-1/2} = \mathbf{E'}\mathbf{P}_1 \mathbf{A}^{-1/2}\mathbf{P}_1$ where $\mathbf{E'}$ is an orthogonal matrix with row $\mathbf{e'}_1$
NTHUS HOLE LOOD Lacture Noise
made by S.-W. Cheng (NTHU, Taiwan)
 $\mathbf{p}_{p, 76}$
• The canonical variates have the properties
 $\mathbf{M} = (\mathbf{U}_k, U_\ell) = \mathbf{Corr}(U_k, U_\ell) = 0$ $k \neq \ell$
 $\mathbf{Corv}(U_k, U_\ell) = \mathbf{Corr}(U_k, U_\ell) = 0$ $k \neq \ell$
 $\mathbf{Corv}(U_k, V_\ell) = \mathbf{Corr}(U_k, V_\ell) = 0$ $k \neq \ell$
 $\mathbf{Corv}(U_k, V_\ell) = \mathbf{Corr}(U_k, V_\ell) = 0$ $k \neq \ell$
 $\mathbf{Corv}(U_k, V_\ell) = \mathbf{Corr}(U_k, V_\ell) = 0$ $k \neq \ell$
 $\mathbf{for } k, \ell = 1, 2, \dots, p.$
• $\mathbf{Corv}(U_k, \mathbf{X}^{(1)}) = \mathbf{AS}_{11}$
 $\mathbf{P}_{U,X^{(1)}} = \mathbf{Corr}(U_X^{(1)}) = \mathbf{Corr}(U_k, V_\ell) = 0$ $k \neq \ell$
for $k, \ell = 1, 2, \dots, p.$
• $\mathbf{Corv}(U_k, \mathbf{X}^{(1)}) = \mathbf{Corr}(U_k, V_\ell) = \mathbf{Corv}(\mathbf{A}\mathbf{X}^{(1)}, \mathbf{V}_1^{-1/2}\mathbf{X}^{(1)})$
 $(p \times p)$
 $= \mathbf{A}\Sigma_{11}\mathbf{V}_1^{-1/2}$
Similar calculations for the pairs $(\mathbf{U}, \mathbf{X}^{(2)}), (\mathbf{V}, \mathbf{X}^{(2)})$ and $(\mathbf{V}, \mathbf{X}^{(1)})$ yield
 $\mathbf{P}_{U,X^{(2)}} = \mathbf{A}\Sigma_{11}\mathbf{V}_1^{-1/2}$ $\mathbf{P}_{U,X^{(2)}} = \mathbf{B}\Sigma_{21}\mathbf{V}_1^{-1/2}$
 $(p \times p)$

• To ease the computation burden, many people prefer to get the canonical
correlations from $ \boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21} - \boldsymbol{\rho}^{*2}\mathbf{I} = 0$
The coefficient vectors \mathbf{a} and \mathbf{b} follow directly from the eigenvector equations
$\boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}\mathbf{a} = \boldsymbol{\rho}^{*2}\mathbf{a}$
$\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{12}\mathbf{b} = \rho^{*2}\mathbf{b}$
Interpreting the population canonical variables
 identify the canonical variables
• the linear combinations can be interpreted much as in principal components
• It is helpful to compute the correlation between the canonical variables and the original variables as way to determine the relative important of original variables to a particular canonical variable
 canonical correlation generalizes the correlation between 2 variables
$\bullet \operatorname{Corr}(X_i^{(1)}, \mathbf{X}_k^{(2)}) = \operatorname{Corr}(\mathbf{a}'\mathbf{X}^{(1)}, \mathbf{b}'\mathbf{X}^{(2)}) \leq \max_{\mathbf{a}, \mathbf{b}} \operatorname{Corr}(\mathbf{a}'\mathbf{X}^{(1)}, \mathbf{b}'\mathbf{X}^{(2)}) = \rho_1^*$
• An R^2 type statistic can be obtained to explain the total variance explained by a given set of canonical variables:
Because of its multiple correlation coefficient interpretation, the kth squared canonical correlation ρ_k^{*2} is the proportion of the variance of canonical variate U_k "explained" by the set $\mathbf{X}^{(2)}$. It is also the proportion of the variance of canonical variate variate V_k "explained" by the set $\mathbf{X}^{(1)}$.
NTHU STAT 5191, 2010, Lecture Notes
• first <i>r</i> canonical variables as a summary of variability $p. 7-8$
 remember that the linear combinations are chosen to maximize correlation between the canonical variables
 remember that the linear combinations are chosen to maximize correlation between the canonical variables these linear combinations may be quite different from those obtained from principal component within a particular set of variables
 remember that the linear combinations are chosen to maximize correlation between the canonical variables these linear combinations may be quite different from those obtained from principal component within a particular set of variables the canonical may not necessarily explain the total variation within a set of original variables
 remember that the linear combinations are chosen to maximize correlation between the canonical variables these linear combinations may be quite different from those obtained from principal component within a particular set of variables the canonical may not necessarily explain the total variation within a set of original variables CCA for standardized data
 remember that the linear combinations are chosen to maximize correlation between the canonical variables these linear combinations may be quite different from those obtained from principal component within a particular set of variables the canonical may not necessarily explain the total variation within a set of original variables CCA for standardized data If the original variables are standardized with Z⁽¹⁾ = [Z⁽¹⁾₁, Z⁽¹⁾₂,, Z⁽¹⁾_p]' and
 remember that the linear combinations are chosen to maximize correlation between the canonical variables these linear combinations may be quite different from those obtained from principal component within a particular set of variables the canonical may not necessarily explain the total variation within a set of original variables CCA for standardized data If the original variables are standardized with Z⁽¹⁾ = [Z⁽¹⁾₁, Z⁽¹⁾₂,, Z⁽¹⁾_p]' and Z⁽²⁾ = [Z⁽²⁾₁, Z⁽²⁾₂,, Z⁽²⁾_q]', from first principles, the canonical variates are of the form
 remember that the linear combinations are chosen to maximize correlation between the canonical variables these linear combinations may be quite different from those obtained from principal component within a particular set of variables the canonical may not necessarily explain the total variation within a set of original variables CCA for standardized data If the original variables are standardized with Z⁽¹⁾ = [Z⁽¹⁾₁, Z⁽¹⁾₂,, Z⁽¹⁾_p]' and Z⁽²⁾ = [Z⁽²⁾₁, Z⁽²⁾₂,, Z⁽²⁾_q]', from first principles, the canonical variates are of the form U_k = a'_kZ⁽¹⁾ = e'_kρ^{-1/2}Z⁽¹⁾
 remember that the linear combinations are chosen to maximize correlation between the canonical variables these linear combinations may be quite different from those obtained from principal component within a particular set of variables the canonical may not necessarily explain the total variation within a set of original variables CCA for standardized data If the original variables are standardized with Z⁽¹⁾ = [Z₁⁽¹⁾, Z₂⁽¹⁾,, Z_p⁽¹⁾]' and Z⁽²⁾ = [Z₁⁽²⁾, Z₂⁽²⁾,, Z_q⁽²⁾]', from first principles, the canonical variates are of the form U_k = a'_kZ⁽¹⁾ = e'_kρ₁₁^{-1/2}Z⁽¹⁾
 remember that the linear combinations are chosen to maximize correlation between the canonical variables these linear combinations may be quite different from those obtained from principal component within a particular set of variables the canonical may not necessarily explain the total variation within a set of original variables CCA for standardized data If the original variables are standardized with Z⁽¹⁾ = [Z₁⁽¹⁾, Z₂⁽¹⁾,, Z_p⁽¹⁾]' and Z⁽²⁾ = [Z₁⁽²⁾, Z₂⁽²⁾,, Z_q⁽²⁾]', from first principles, the canonical variates are of the form U_k = a'_kZ⁽¹⁾ = e'_kρ₁₁^{-1/2}Z⁽¹⁾ W_k = b'_kZ⁽²⁾ = f'_kρ₂₂^{-1/2}Z⁽²⁾ Here, Cov (Z⁽¹⁾) = ρ₁₁, Cov (Z⁽²⁾) = ρ₂₂, Cov (Z⁽¹⁾, Z⁽²⁾) = ρ₁₂ = ρ'₂₁, and e_k and f_k are the eigenvectors of ρ₁₁^{-1/2}ρ₁₂ρ₂₁^{-1/2}ρ₂₁ρ₁₁^{-1/2} and ρ₂₁^{-2/2}ρ₂₁ρ₁₁^{-1/2}ρ₁₂^{-1/2}, respectively. The canonical correlations, ρ'_k, satisfy
 remember that the linear combinations are chosen to maximize correlation between the canonical variables these linear combinations may be quite different from those obtained from principal component within a particular set of variables the canonical may not necessarily explain the total variation within a set of original variables CCA for standardized data If the original variables are standardized with Z⁽¹⁾ = [Z₁⁽¹⁾, Z₂⁽¹⁾,, Z_p⁽¹⁾]' and Z⁽²⁾ = [Z₁⁽²⁾, Z₂⁽²⁾,, Z_q⁽²⁾]', from first principles, the canonical variates are of the form U_k = a_kZ⁽¹⁾ = e_kρ₁₁^{-1/2}Z⁽¹⁾ W_k = b_kZ⁽²⁾ = f'_kρ₂₁^{-1/2}Z⁽²⁾ Here, Cov(Z⁽¹⁾) = ρ₁₁, Cov(Z⁽²⁾) = ρ₂₂, Cov(Z⁽¹⁾, Z⁽²⁾) = ρ₁₂ = ρ'₂₁, and e_k and f_k are the eigenvectors of ρ₁₁^{-1/2}ρ₁₂ρ₂₁⁻²ρ₂₁ρ₁₁^{-1/2} and ρ₂₂^{-1/2}ρ₂₁ρ₁₁⁻¹ρ₁₂ρ₂₂^{-1/2}, respectively. The canonical correlations, ρ[*]_k, satisfy
 remember that the linear combinations are chosen to maximize correlation between the canonical variables these linear combinations may be quite different from those obtained from principal component within a particular set of variables the canonical may not necessarily explain the total variation within a set of original variables CCA for standardized data If the original variables are standardized with Z⁽¹⁾ = [Z₁⁽¹⁾, Z₂⁽¹⁾,, Z_p⁽¹⁾]' and Z⁽²⁾ = [Z₁⁽²⁾, Z₂⁽²⁾,, Z_q⁽²⁾]', from first principles, the canonical variates are of the form U_k = a'_kZ⁽¹⁾ = e'_kρ₁^{-1/2}Z⁽¹⁾ V_k = b'_kZ⁽²⁾ = f'_kρ₂^{-1/2}Z⁽²⁾ Here, Cov (Z⁽¹⁾) = ρ₁₁, Cov (Z⁽²⁾) = ρ₂₂, Cov (Z⁽¹⁾, Z⁽²⁾) = ρ₁₂ = ρ'₂₁, and e_k and f_k are the eigenvectors of ρ₁^{-1/2}ρ₁₂ρ₂₁⁻²ρ₂₁ρ₁₁ρ₁₁/2 and ρ₂₁^{-1/2}ρ₂₁ρ₁₁ ρ₁₂ρ₂₁^{-1/2}, respectively. The canonical correlations, ρ[*]_k, satisfy Corr (U_k, V_k) = ρ[*]_k, k = 1, 2,, p where ρ^{*2}₁ ≥ ρ^{*2}₂ ≥ ··· ≥ ρ^{*2}_p are the nonzero eigenvalues of the matrix ρ₁₁^{-1/2}ρ₁₂ρ₂₁^{-1/2}ρ₁₁^{-1/2} (or, equivalently, the largest eigenvalues of ρ₂₁^{-1/2}ρ₂₁ρ₁₁⁻¹
 remember that the linear combinations are chosen to maximize correlation between the canonical variables these linear combinations may be quite different from those obtained from principal component within a particular set of variables the canonical may not necessarily explain the total variation within a set of original variables CCA for standardized data If the original variables are standardized with Z⁽¹⁾ = [Z₁⁽¹⁾, Z₂⁽¹⁾,, Z_p⁽¹⁾]' and Z⁽²⁾ = [Z₁⁽²⁾, Z₂⁽²⁾,, Z_q⁽²⁾]', from first principles, the canonical variates are of the form U_k = a_k'Z⁽¹⁾ = e_k'ρ₁₁^{-1/2}Z⁽¹⁾ W_k = b_k'Z⁽²⁾ = f'_kρ₂₁^{-1/2}Z⁽²⁾ Here, Cov (Z⁽¹⁾) = ρ₁₁, Cov (Z⁽²⁾) = ρ₂₂, Cov (Z⁽¹⁾, Z⁽²⁾) = ρ₁₂ = ρ'₂₁, and e_k and f_k are the eigenvectors of ρ₁₁^{-1/2}ρ₁₂ ρ₂₁⁻²ρ₂₁ ρ₁₁^{-1/2} and ρ₂₂^{-1/2} ρ₂₁ ρ₁₁⁻¹ ρ₁₂ ρ₂₂^{-1/2}, respectively. The canonical correlations, ρ_k, satisfy Corr (U_k, V_k) = ρ_k*, k = 1, 2,, p where ρ₁₁^{*2} ≥ ρ₂₂^{*2} ≥ ≥ ρ_p^{*2} are the nonzero eigenvalues of the matrix ρ₁₁^{-1/2} ρ₁₂ ρ₂₁^{-1/2} (or, equivalently, the largest eigenvalues of ρ₂₁^{-1/2} ρ₂₁ ρ₁₁⁻¹ ρ₁₂ ρ₂₁^{-1/2}). the canonical correlations are unchanged by the standardization (cf. PCA)

* **Reading**: Reference, 10.1, 10.2, 10.3