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« Additional Sample Descriptive Measures
» Matrices of Errors of Approximations’ @m”m%“ 47 cov. mm.
= Since U = Axm and V = Bx® we can write
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1U and U has sample covariance I, the f st r columns of A"
contain the sample covariances of the first r canonical variates Ul, Uz, U with

their component variables X{", X ¥’ , X1, Similarly, the first r columns of B!
contain the sample covariances of Vl, Vz, V with their component variables.

= Since x(I) =

L 7-11
= If only the first  canonical pairs are used, so that i
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The approximation error matrices may be mterpreted as descriptive summaries
of how well the first » sample canonical variates reproduce the sample

covariance matrices. Patterns of large entries in the rows and/or columns of the
error matrices indicate a poor “fit” to the corresponding variables
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= ordinarily, the first » variates fte?"jpé‘b of reproaugflg tﬁg(é?emesﬁf?‘ i
of S,, than the elements o 0 (Q: Why?) (@,Z)),(ﬁ,&)’

_ _ _ oL Chosen o maximi2Q
» Proportions of Explained Sample Variance cov/cor rm(i.e. Si).

= When the observations are standardized, the sample covariance matrices Sy, are
correlation matrices R;;. The canonical coefficient vectors are the rows of the
matrices ;kz and ﬁ, and the columns of A;l and fl;‘l are the sample correlations
between the canonical variates and their component variables.

= sample Cov (zV), U) = sample Cov(A;'U, U) = A
sample Cov (z®, V) = sample Cov (B;'V, V) = B;!
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where rj, . and ry, . are the sample correlation coefficients between the quantities
with subscripts.
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Total (standardized) sample variance in first set
= tr(Ryy) = tr(aVa{ + alal + ... + (v

Total (standardized) sample variance in second set
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= proportions of total sample variances explained by 1%t canonical variates:

"
/ ~(1 1), r r~
L7 w4 ()m) EEUZH
N .\ ll )UI!U?‘!"" r"'
Sumion Q/ tr(Ru) p

vo o
LA - (1) “ (1) Sy

ﬁ > 2
1 ' e rA
Ri‘”‘é V... {r> = tr (bi }hil} +oee + bir}hgr} . i=1 k=1 Vi@

S22
«+ they provide some indication of how well the canonical variates represent
their respective sets
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n}a{rices of errors,
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« Large Sample Inferences
> Note: Z£,,=0 = no point in pursuing a CCA. = Q: how to test H,: £,,=0?

> Result 10.3. Let asgme 'wm“//#/
X; = [ j=1,2,...,n ;
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» when n is large, under H,, the likelihood ratio test statistic is approximately i

distributed as a chi-square random variable wi d.f.
=# of pyamaters m 3y
> Bartlett (1939) suggests *
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» Q: What if H,: £,,=0 is rejected? Next step?

= Hi:p1 # 0,02 # 0,...,pr 2 0, pfs1 == pp =0
H%: p! # 0, forsomei = k + 1

= Reject H ék)at significance level « if
1
—(H =] —§(p+q+ l))ln

= the issue of multiple testing should be taken into consideration

% Reading: Reference, 10.4, 10.5, 10.6
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