NTHU STAT 5191, 2010

NTHU STAT 5191, 2010

• first *r* canonical variables as a summary of variability total variables of the intermediate that the (linear combinations are chosen to maximize correlation) between the canonical variables
$$[2q_k^{(0)}]$$
 Sum (diag(z_1)) - these linear combinations may be diffed different from those obtained from principal component within a particular set of variables.
extracts the canonical may not necessarily explain the total variation within a set of direction original variables are standardized with $Z^{(1)} = [Z_1^{(1)}, Z_2^{(1)}, ..., Z_1^{(1)}]'$ and principal component within a set of direction original variables are standardized with $Z^{(1)} = [Z_1^{(1)}, Z_2^{(1)}, ..., Z_1^{(1)}]'$ and principal component within a set of direction original variables are standardized with $Z^{(1)} = [Z_1^{(1)}, Z_2^{(1)}, ..., Z_1^{(1)}]'$ and principal component within a set of $Z_1^{(2)} = [Z_1^{(2)}, Z_2^{(2)}, ..., Z_n^{(2)}]'$. Form first principles, the canonical variates are of the form $\Sigma_1 + Q_1 \dots \Sigma_1 + Q_1 \dots U_k = \mathbf{a}_k Z^{(1)} = \mathbf{e}_k \mathbf{p}_1^{(1)/2} Z_1^{(2)}$.
Here, $Cov(Z^{(1)}) = \mathbf{p}_{11}$, $Cov(Z^{(2)}) = \mathbf{p}_{22}$, $Cov(Z^{(1)}, Z^{(2)}) = \mathbf{p}_{12} = \mathbf{p}_{21}^{(1)}$, and \mathbf{e}_k and \mathbf{f}_a are the eigenvectors of $\mathbf{p}_1^{(1)/2} \mathbf{p}_{12} \mathbf{p}_2^{(1)} \mathbf{p}_{11}^{(1)/2} \mathbf{p}_{12} \mathbf{p}_{21}^{(1)} \mathbf{p}_{12} \mathbf{p}_{22}^{(1)/2}$, respectively. The canonical correlations, \mathbf{p}_k , $k = 1, 2, ..., p$ where $\mathbf{p}_1^{(2)} \mathbf{p}_{12}^{(2)} \mathbf{p}_{11}^{(1)/2} (\mathbf{or}, equivalently, the largest eigenvalues of the matrix $\mathbf{p}_{11}^{(1)/2} \mathbf{p}_{12} \mathbf{p}_{21}^{(1)/2} \mathbf{p}_{11}^{(1)/2} \mathbf{p}_{12}^{(1)/2} \mathbf{p}_{11}^{(1)/2} \mathbf{p}_{12}^{(1)/2} \mathbf{p}$$