NTHU STAT 5191, 2010

CCA finds linear functions of one set of variable with linear function of the other set of variables	s that maximal	y correlated
• Set $U = \mathbf{a}' \mathbf{X}^{(1)}$ and $V = \mathbf{b}' \mathbf{X}^{(2)}$ for some pair of coefficient vectors \mathbf{a} and \mathbf{b} .		
$\operatorname{Var}(U) = \mathbf{a}' \operatorname{Cov}(\mathbf{X}^{(1)}) \mathbf{a} = \mathbf{a}' \Sigma_{11} \mathbf{a}$	CCA	PC
$\operatorname{Var}(V) = \mathbf{h}' \operatorname{Cov}(\mathbf{X}^{(2)})\mathbf{h} = \mathbf{h}' \mathbf{\Sigma}_{\mathrm{cov}}\mathbf{h}$	2 sets	lst
$var(v) = 0 Cov(X^{(1)}) 0 = 0 Z_{22} 0$	2 projetton	one projection
$\operatorname{Cov}(U, V) = \mathbf{a}^{*} \operatorname{Cov}(\mathbf{X}^{(*)}, \mathbf{X}^{(2)}) \mathbf{b} = \mathbf{a}^{*} \boldsymbol{\Sigma}_{12} \mathbf{b}$	max cor.	max var.
• we shall seek coefficient vectors a and b such that		
Canonical Correlation is as large as possible. The first pair of canonical variables, or first canonical variate pair, is the pair of linear Control to be a superior of the second		
 The second pair of canonical variables, or second configuration of linear combinations U₂, V₂ having unit variance of linear combinations U₂, V₂ having unit variance variables. The kth pair of canonical variables, or kth canonical variables, or var	anonical variate es, which maxim d with the first part $(Or(\overline{U_2},\overline{V_l}) = Or)$ nical variate pair s, which maximi the previous k	pair, is the pair ize the correla- air of canonical $(\nabla_2, \nabla_1) = cor(\nabla_2, \nabla_1)$ r, is the pair of ze the correla- - 1 canonical
• Result 10.1. Suppose $p \le q$ and let the random $\operatorname{Cov}(\mathbf{X}^{(1)}) = \sum_{\substack{p \ge p \\ (p \ge p)}} \operatorname{Cov}(\mathbf{X}^{(2)}) = \sum_{\substack{22 \\ (q \ge q)}} \operatorname{and} \operatorname{Cov}(\mathbf{X}^{(2)})$ rank. For coefficient vectors \mathbf{a} and \mathbf{b} , form that \mathbf{b} and $V = \mathbf{b}' \mathbf{X}^{(2)}$. Then $\operatorname{and} V = \mathbf{b}' \mathbf{X}^{(2)}$. Then $\operatorname{attained} by the linear combinations (first canonic \mathbf{A}^{(2)}) and V_1 = \mathbf{e}'_1 \sum_{11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11$	om vectors $\mathbf{X}_{(p\times p)}^{(1)}$ $\mathbf{X}^{(2)} = \sum_{\substack{(p\times p)\\(p\times p)}} \mathbf{x}_{(p\times p)}^{(2)}$ he linear combin \mathbf{Q} : $\mathbf{r} = \mathbf{p}_{1}^{*}$ al variate pair) $\mathbf{f}_{1} = \mathbf{f}_{1}^{\prime} \mathbf{\Sigma}_{22}^{-1/2} \mathbf{X}^{(2)}$ \mathbf{b}_{1}^{\prime}	and $\mathbf{X}^{(2)}_{(q \times 1)}$ have have have have have $\mathbf{X}^{(2)}_{(q \times 1)}$ have $\mathbf{X}^{(2)}_{(q \times 1)}$ have $\mathbf{X}^{(1)}_{(q \times 2)}$ have $\mathbf{X}^{(1)}_{(q \times 2)}$ have $\mathbf{X}^{(1)}_{(q \times 2)}$ have $\mathbf{X}^{(2)}_{(q \times 1)}$ have $\mathbf{X}^{(2)}_{(q \times 1)}$ have $\mathbf{X}^{(2)}_{(q \times 1)}$ have $\mathbf{X}^{(1)}_{(q \times 2)}$ have $\mathbf{X}^{(1)}_{(q \times 2)}$ have $\mathbf{X}^{(1)}_{(q \times 2)}$ have $\mathbf{X}^{(1)}_{(q \times 2)}$ have $\mathbf{X}^{(2)}_{(q \times 2)}$ have $\mathbf{X}^{(1)}_{(q \times 2)}$ have $\mathbf{X}^{(2)}_{(q \times 2)}$ have $\mathbf{X}^{(1)}_{(q \times 2)}$ have $\mathbf{X}^{(1)}_{(q \times 2)}$ have $\mathbf{X}^{(2)}_{(q \times 2)}$ have $\mathbf{X}^{(1)}_{(q \times 2)}$ have $\mathbf{X}^{(1)}_{(q \times 2)}$ have $\mathbf{X}^{(1)}_{(q \times 2)}$ have $\mathbf{X}^{(2)}_{(q $
among those linear combinations uncorrelated we canonical variables. Here $\rho_1^{*2} \ge \rho_2^{*2} \ge \cdots \ge \rho_p^{*2}$ are the eigenval $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_p$ are the associated $(p \times 1)$ eigenvector are also the <i>p</i> largest eigenvalues of the matrix $\sum_{22}^{-1/2}$ ing $(q \times 1)$ eigenvectors $\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_p$. Each \mathbf{f}_i is pro-	with the precedim ues of $\Sigma_{11}^{-1/2}\Sigma_{12}$ production of $\Sigma_{11}^{-1/2}\Sigma_{12}$ production of $\Sigma_{22}^{-1/2}$	$\sum_{22}^{-1} \sum_{21} \sum_{11}^{-1/2} \text{ and} \\ \sum_{22}^{-1} \sum_{21} \sum_{11}^{-1/2} \text{ and} \\ es \ \rho_1^{*2}, \ \rho_2^{*2}, \dots, \ \rho_p^{*2} \\ \text{with correspond-} \\ \sum_{21}^{-1/2} \sum_{11}^{-1/2} \mathbf{e}_i.]$

NTHU STAT 5191, 2010

• Q: why
$$\sum_{i=1}^{1/2} \sum_{i=2} \sum_{j=2}^{1/2} \sum_{i=1}^{1/2} [or \sum_{i=1}^{1/2} \sum_{i=1}$$

made by S.-W. Cheng (NTHU, Taiwan)