

Γ

	$(\sum_{i=1}^{q} \lambda_i) / (\sum_{i=1}^{n} \lambda_i) $
	When the observed proximity matrix is not Euclidean, the matrix B is not positive-definite. In such case, some of the eigenvalues of B will be negative; correspondingly, some coordinate values will be complex numbers.
	• If B has only a small number of small negative eigenvalues, it's still possib to use the eigenvectors associated with the q largest positive eigenvalues
	 adequacy of the resulting solution might be assessed using
	• $(\sum_{i=1}^{q} \lambda_i)/(\sum_{i=1}^{n} \lambda_i) \equiv P_{\alpha}^{(l)}$
	$ (\sum_{i=1}^{q} \lambda_i^2) / (\sum_{i=1}^n \lambda_i^2) = P(z). $
• S	ome other issues
	\succ metric scaling (define loss function for D and the distance matrix based on X called <i>stress</i> , and find X to minimize stress)
	non-metric scaling (applied when the actual values of D is not reliable, but th orders can be trusted)
	→ 3-way multidimensional scaling (proximity matrix result from individual
	assessments of dissimilarity and more than one individual is sampled)
	\triangleright asymmetric proximity matrix $(d_{i} \neq d_{ii})$