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» classical multidimensional scaling ){_{-a ml\t/ﬂw) W p. 64
> assume that the observed nxn proximity matrix D is a matrix of Euclidean
distances derived from a raw nxq data matrix, X, which is not observed.
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= the elements of Ij are given by encoultzd ».
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» the squared Euclidean distances between the rows of X can be written in terms

f the elements of B as T(%a-%8) = S ¥+ S ik o - VIR
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= idea: If the b,;’s could be found in terms of the d;;’s in the equation above,
then we can derive X from B by factoring B.

= to obtain B from D, no unique solution exists unless a location constraint is
introduced. Usually, the center of the columns of X are set at origin, i.e.,

S ww—0, forall b SMAan iy eack variable
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= these constraints imply that sum of the terms in an)f%v‘\*/mof B mustbeO, i.e.,
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> Let T be the trace of B. To obtain B from D, notice that
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» the elements of B can be foupid from D as //y 8
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where d2 = (Y7, d2)/n, &%
> B can be written as n +bja
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where A = diag[A1,--+,An] (A1 > -+ > )\,) is the diagonal matrix of eigen-
PCA values of B and V = [Vy,-.-, V] is the corresponding matrix of normalized
eigenvectors (i.e., ViV; = 1)

N =

I’-‘PAP./ Note: when D arises from an nxq data matrix, the rank of B is ¢ (i.e, the last

EA  n—qeigenvalues should be zero) AT ___[ ] A o] [i/*&
Iﬂ’/&vﬁ(ﬁx@ can be chosen as ]/;, - V*Aj*/,l;-?vl—gl/ﬁ%:&w’

where V* contains the first ¢ eigenvectors and A* the first q eigenvalues
= Thus, a solution of X is X = V*A*1/2
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» The adequacy of the g-dimensional representatlon can be judged by the size of
the criterion mus-\- dnoose. a 8

(22 M)/ (2

» When the observed proximity matrix is not Euclldean, the matrix B is not
positive-definite. In such case, some of the eigenvalues of B will be negative;
correspondingly, some coordinate values will be complex numbers.

= If B has only a small number of small negative eigenvalues, it’s still possible
to use the eigenvectors associated with the g largest positive eigenvalues

» adequacy of the resulting solution might be assessed using

o XD, ND/(S0 D)= P‘“
o (352,02)/(51,02) ..Pm
« Some other issues

» metric scaling (define loss function for D and the distance matrix based on X,
called stress, and find X to minimize stress)

» non-metric scaling (applied when the actual values of D is not reliable, but their
orders can be trusted)

» 3-way multidimensional scaling (proximity matrix result from individual
assessments of dissimilarity and more than one individual is sampled)

> asymmetric proximity matrix (d,=d;)

++ Reading: Reference, 5.1, 5.2
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