



	Let T be the trace of B . To obtain B from D , notice that
	• $\sum_{i=1}^{n} d_{ij}^2 = T + nb_{jj}$ • $\sum_{j=1}^{n} d_{ij}^2 = nb_{ii} + T$
	• $\sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij}^2 = 2nT$
	the elements of B can be found from D as
	$b_{ij} = -rac{1}{2}\left[d_{ij}^2 - d_{i.}^2 - d_{.j}^2 + d_{}^2 ight]$
	where $d_{i\cdot}^2 = (\sum_{j=1}^n d_{ij}^2)/n$, $d_{\cdot j}^2 = (\sum_{i=1}^n d_{ij}^2)/n$, $d_{\cdot \cdot}^2 = (\sum_{i=1}^n \sum_{j=1}^n d_{ij}^2)/n^2$
	$\mathbf{B} \text{ can be written as}$ $\mathbf{B} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}'.$
	where $\mathbf{\Lambda} = diag[\lambda_1, \dots, \lambda_n] \ (\lambda_1 \geq \dots \geq \lambda_n)$ is the diagonal matrix of eigenvalues of B and $\mathbf{V} = [\mathbf{V}_1, \dots, \mathbf{V}_n]$ is the corresponding matrix of normalized eigenvectors (i.e., $\mathbf{V}'_i \mathbf{V}_i = 1$)
	• <u>Note</u> : when D arises from an $n \times q$ data matrix, the rank of B is q (i.e, the last $n-q$ eigenvalues should be zero)
	• So, B can be chosen as $\mathbf{B} = \mathbf{V}^* \mathbf{\Lambda}^* {\mathbf{V}^*}',$
	where \mathbf{V}^* contains the first q eigenvectors and $\mathbf{\Lambda}^*$ the first q eigenvalues
	• Thus, a solution of X is $X = V^* \Lambda^{*1/2}$
	The adequacy of the <i>q</i> -dimensional representation can be judged by the size of the criterion $\frac{\sum_{i=1}^{q} \lambda_i}{\sum_{i=1}^{n} \lambda_i}$ When the observed proximity matrix is not Euclidean, the matrix B is not positive-definite. In such case, some of the eigenvalues of B will be negative; correspondingly, some coordinate values will be complex numbers.
	 If B has only a small number of small negative eigenvalues, it's still possible to use the eigenvectors associated with the q largest positive eigenvalues
	 adequacy of the resulting solution might be assessed using
	$\bullet \ (\sum_{i=1}^{q} \lambda_i) / (\sum_{i=1}^{n} \lambda_i)$
	$\bullet \ (\sum_{i=1}^q \lambda_i^2) / (\sum_{i=1}^n \lambda_i^2)$
• So	ome other issues
	metric scaling (define loss function for \mathbf{D} and the distance matrix based on \mathbf{X} , called <i>stress</i> , and find \mathbf{X} to minimize stress)
(non-metric scaling (applied when the actual values of D is not reliable, but their orders can be trusted)
	3-way multidimensional scaling (proximity matrix result from individual
	assessments of dissimilarity and more than one individual is sampled)
	asymmetric proximity matrix $(d_{ij} \neq d_{ji})$