Recall					
• a solutio	n of factor loading is r	ot unique			
■ all factor	· loadings obtained fro	m the initial			
loadings	by an orthogonal trans	formation			
have the	same ability to reprodu	ice the			
covarianc	ce/correlation matrix		-	•	
If L is (principal of the second s	the $p \times m$ matrix of e component, maximum l	stimated facto ikelihood, and	r loadings ob l so forth) the	tained by any n	method
	$\hat{\mathbf{L}}^* = \hat{\mathbf{L}}\mathbf{T},$	where TT'	= T'T = I		
is a $p \times r$	<i>n</i> matrix of "rotated"	loadings.			
• O : why i	is it called "rotation"?				
• O: dime	nsion of <i>all</i> rotated fac	tor loadings =	?		
 <u>Note</u>: est specific v 	timated covariance/corvariances and commun	relation matri alities remain	x, residual m s unchanged	atrix, estimate after rotation	ed
🕨 🛛 🖓 🖓 🖓	eed rotation?				
■ since the	original loading may	not be readily	interpretable	e (e.g., some	
factors m	ay have several large	loadings and s	ome loadings	s may be posi	tive
while oth "simple s	er may be negative) it tructure " is achieved	's usual practi	ce to rotate th	nem until a	
	NTHU STAT	5191, 2010,	Lecture Not	es	
	made by S	W. Cheng (N	ITHU, Taiwa		
Q: What is	s a "simple structure"?		F ₂	F*	p. 5-18
 Ideally, y 	we should like to see a	pattern of	†	1	
loadings	such that each variable	e loads highly			
on a sing	<i>le</i> factor and has small	to moderate			
Ioading o	in the remaining factor	5	0		→ F.
• When the	ere are two factors, we	e can plot the		.5 • 1.0	
an intern	retable solution		5 -		
	then two factors com			2 5	
• FOR INOR	e than two factors, som				• F [*] ₁
is needs f	ary, which should had	v.	and the m	maindarhaa	mo11
♦ each la			igs and the re		man
♦ pairs c	or factors have few larg	ge loading in (common. A p	artition into	
mutuan	ly exclusive groups we			·1	
		factor	Rotated estimated factor		
	Variable	F_1 F_2	F_1^* F_2^*	Communalities \widetilde{h}_{i}^{2}	
	1. Taste	.56 .82	.02 (.99)	.98	
	2. Good buy for money	.7852	(.94) $01.13 (.98)$.88 .98	
	3. Flavor			80	
	 Flavor Suitable for snack Provides lots of energy 	.9410	$\begin{vmatrix} .84 \\ 07 \end{vmatrix} = 02$.07	
	 Flavor Suitable for snack Provides lots of energy Cumulative proportion 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.93	

> varimax criterion
• Define
$$\tilde{\ell}_{ij}^{*} = \tilde{\ell}_{ij}^{*}/\tilde{h}_{i}^{*}$$
 (the scaling has the effect of giving variables with small communalities relatively more weight in rotation)
• varimax procedure selects the orthogonal transformation T that makes
 $V = \frac{1}{p} \sum_{j=1}^{m} \left[\sum_{r=1}^{p} \tilde{\ell}_{ij}^{*} - \left(\sum_{r=1}^{r} \tilde{\ell}_{ij}^{*} \right)^{2} / p \right]$
as large as possible.
• interpretation of the varimax criterion:
 $V \propto \sum_{j=1}^{m} \left(\text{variance of squares of (scaled) loadings for} \right)$
• maximizing V corresponds to "spreading out" the squares of the loadings
on each factor as much as possible
values of the loadings on each factor as much as possible
values of the constraint of the solution. It is possible
to allow non-orthogonal rotations, called *oblique* rotation.
This allows for possible simplicity at the expense of losing
the orthogonality of the factors
• factor scores (predict values of the unobserved random factors F_{1}, \dots, F_{m})
> (c.f.) the scores in principal component analysis
NTHU STAT 5191, 200. Lacture Notes
made by S.-W. Cheng (NTHU, Taiver)
• weighted least squares method
• Suppose first that the mean vector μ , the factor loadings L, and the specific variance
 Ψ are known for the factor model
 $\frac{\chi}{(x_{1})} - (\mu^{*}x_{1}) = (\sum_{m} m(\mu^{*}x_{1}) + (\mu^{*}x_{1})$
• The sum of the squares of the errors, weighted by the reciprocal of their
variances, is
 $\frac{1}{\mu_{1}} \frac{g_{1}^{*}}{\psi_{1}} = e^{*\Psi^{-1}e} = (\mathbf{x} - \mu - \mathbf{L}f)^{*\Psi^{-1}(\mathbf{x} - \mu - \mathbf{L}f) \quad (*)$
• choosing the estimates \hat{f} of to minimize (*). The solution is
 $\hat{f} = (\hat{L}^{*}\Psi^{-1}\hat{L}^{*})^{-1}\hat{L}^{*}\Psi^{-1}(\mathbf{x} - \overline{\mu})$
• take the estimates $\hat{L}, \hat{\Psi},$ and $\hat{\mu} = \mathbf{x}$ as the true values and obtain the factor scores
for the *j*th case as
 $\hat{f} = (\hat{L}^{*}\Psi^{-1}\hat{L}_{2})^{-1}\hat{L}^{*}\Psi^{-1}\hat{L} = \hat{\Delta}$ is a diagonal matrix
 $\hat{f}_{j} = \hat{\Delta}^{-1}\hat{L}^{*}\Psi^{-1}(x_{j} - \overline{x})$
• When MLE method is used, $\hat{L}^{*}\Psi^{-1}\hat{L}_{2} = \hat{\Delta}_{1}^{-1}\hat{L}_{2}^{*}\Psi^{-1}z_{j}$
where $z_{j} = D^{-1/2}(x_{j} -$

	regression method (conditional normal distribution)
	 Suppose that the common factors and the specific factors are jointly
	normany distributed
	• $\mathbf{X} - \boldsymbol{\mu} = \mathbf{L}\mathbf{F} + \boldsymbol{\varepsilon}$ has an $N_p(0, \mathbf{L}\mathbf{L}' + \boldsymbol{\Psi})$ distribution
	• Moreover, the joint distribution of $(\mathbf{X} - \boldsymbol{\mu})$ and F is $N_{m+p}(0, \boldsymbol{\Sigma}^*)$, where
	$\sum = LL' + \Psi $
	$\boldsymbol{\Sigma}^* \qquad = \begin{vmatrix} (p \times p) & (p \times m) \\ \cdots & \cdots & \cdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots &$
	$(m+p)\times(m+p) \qquad \qquad \mathbf{L'} \qquad \mathbf{I} \\ (m\times p) \qquad \qquad (m\times m) \qquad $
	• the conditional distribution of $\mathbf{F} \mathbf{x}$ is multivariate normal with
	mean = $E(\mathbf{F} \mathbf{x}) = \mathbf{L}' \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = \mathbf{L}' (\mathbf{L}\mathbf{L}' + \boldsymbol{\Psi})^{-1} (\mathbf{x} - \boldsymbol{\mu})$
	covariance = $\operatorname{Cov}(\mathbf{F} \mathbf{x}) = \mathbf{I} - \mathbf{L}' \mathbf{\Sigma}^{-1} \mathbf{L} = \mathbf{I} - \mathbf{L}' (\mathbf{L}\mathbf{L}' + \Psi)^{-1} \mathbf{L}$
	• the <i>j</i> th factor score vector is given by
	$\hat{\mathbf{f}}_i = \hat{\mathbf{L}}'\hat{\boldsymbol{\Sigma}}^{-1}(\mathbf{x}_i - \bar{\mathbf{x}}) = \hat{\mathbf{L}}'(\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\boldsymbol{\Psi}})^{-1}(\mathbf{x}_i - \bar{\mathbf{x}})$
	• Denote the scores generated by the weighted least squares by \mathbf{f}_j^{LS} and those by the regression method by $\mathbf{\hat{f}}_j^R$. Because
	$\hat{\mathbf{L}}'_{(m\times p)}(\hat{\mathbf{L}}\hat{\mathbf{L}}'_{(p\times p)}\hat{\Psi})^{-1} = (\mathbf{I} + \hat{\mathbf{L}}'_{(m\times m)}\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}\hat{\mathbf{L}}'_{(m\times p)(p\times p)} (\text{exercise 9.6, textbook})$
	NTHU STAT 5191, 2010, Lecture Notes
	NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan)
	$\hat{\mathbf{f}}_{j}^{LS} = (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}(\mathbf{I} + \hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})\mathbf{f}_{j}^{R} = (\mathbf{I} + (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1})\mathbf{f}_{j}^{R}$
	$\hat{\mathbf{f}}_{j}^{LS} = (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}(\mathbf{I} + \hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})\mathbf{f}_{j}^{R} = (\mathbf{I} + (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1})\mathbf{f}_{j}^{R}$ For maximum likelihood estimates $(\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1} = \hat{\Delta}^{-1}$ and if the elements of th
	NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan) $\hat{\mathbf{f}}_{j}^{LS} = (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}(\mathbf{I} + \hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})\mathbf{f}_{j}^{R} = (\mathbf{I} + (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1})\mathbf{f}_{j}^{R}$ For maximum likelihood estimates $(\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1} = \hat{\Delta}^{-1}$ and if the elements of th diagonal matrix are close to zero, the regression and generalized least square
	$\hat{\mathbf{f}}_{j}^{LS} = (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}(\mathbf{I} + \hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})\mathbf{f}_{j}^{R} = (\mathbf{I} + (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1})\mathbf{f}_{j}^{R}$ For maximum likelihood estimates $(\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1} = \hat{\Delta}^{-1}$ and if the elements of the diagonal matrix are close to zero, the regression and generalized least square methods will give nearly the same factor scores.
	NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan)
	NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan) $\hat{\mathbf{f}}_{j}^{LS} = (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}(\mathbf{I} + \hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})\mathbf{f}_{j}^{R} = (\mathbf{I} + (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1})\mathbf{f}_{j}^{R}$ For maximum likelihood estimates $(\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1} = \hat{\Delta}^{-1}$ and if the elements of the diagonal matrix are close to zero, the regression and generalized least square methods will give nearly the same factor scores. • In an attempt to reduce the effect of a (possible) incorrect determination of the number of factors, S is often used for $\hat{\mathbf{\Sigma}}$, rather than $\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi}$, i.e,
	NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan) $\hat{\mathbf{f}}_{j}^{LS} = (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}(\mathbf{I} + \hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})\mathbf{f}_{j}^{R} = (\mathbf{I} + (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1})\mathbf{f}_{j}^{R}$ For maximum likelihood estimates $(\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1} = \hat{\Delta}^{-1}$ and if the elements of th diagonal matrix are close to zero, the regression and generalized least square methods will give nearly the same factor scores. • In an attempt to reduce the effect of a (possible) incorrect determination of the number of factors, \mathbf{S} is often used for $\hat{\mathbf{\Sigma}}$, rather than $\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi}$, i.e, $\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{S}^{-1}(\mathbf{x}_{j} - \bar{\mathbf{x}})$
	NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan) $\hat{\mathbf{f}}_{j}^{LS} = (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}(\mathbf{I} + \hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})\mathbf{f}_{j}^{R} = (\mathbf{I} + (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1})\mathbf{f}_{j}^{R}$ For maximum likelihood estimates $(\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1} = \hat{\Delta}^{-1}$ and if the elements of the diagonal matrix are close to zero, the regression and generalized least squares methods will give nearly the same factor scores. • In an attempt to reduce the effect of a (possible) incorrect determination of the number of factors, S is often used for $\hat{\mathbf{\Sigma}}$, rather than $\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi}$, i.e, $\hat{\mathbf{f}}_{i} = \hat{\mathbf{L}}'\mathbf{S}^{-1}(\mathbf{x}_{j} - \bar{\mathbf{x}})$ or, if a correlation matrix is factored, $\hat{\mathbf{f}}_{i} = \hat{\mathbf{L}}'\mathbf{P}^{-1}\mathbf{p}$
	NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan) $\hat{\mathbf{f}}_{j}^{LS} = (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}(\mathbf{I} + \hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})\mathbf{f}_{j}^{R} = (\mathbf{I} + (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1})\mathbf{f}_{j}^{R}$ For maximum likelihood estimates $(\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1} = \hat{\Delta}^{-1}$ and if the elements of th diagonal matrix are close to zero, the regression and generalized least square methods will give nearly the same factor scores. • In an attempt to reduce the effect of a (possible) incorrect determination of the number of factors, \mathbf{S} is often used for $\hat{\mathbf{\Sigma}}$, rather than $\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi}$, i.e, $\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{S}^{-1}(\mathbf{x}_{j} - \bar{\mathbf{x}})$ or, if a correlation matrix is factored, $\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'_{z}\mathbf{R}^{-1}\mathbf{z}_{j}$
	NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan) $\hat{\mathbf{f}}_{j}^{LS} = (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}(\mathbf{I} + \hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})\mathbf{f}_{j}^{R} = (\mathbf{I} + (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1})\mathbf{f}_{j}^{R}$ For maximum likelihood estimates $(\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1} = \hat{\Delta}^{-1}$ and if the elements of th diagonal matrix are close to zero, the regression and generalized least square methods will give nearly the same factor scores. • In an attempt to reduce the effect of a (possible) incorrect determination of the number of factors, \mathbf{S} is often used for $\hat{\mathbf{\Sigma}}$, rather than $\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi}$, i.e, $\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{S}^{-1}(\mathbf{x}_{j} - \bar{\mathbf{x}})$ or, if a correlation matrix is factored, $\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{R}^{-1}\mathbf{z}_{j}$ where $\mathbf{z}_{j} = \mathbf{D}^{-1/2}(\mathbf{x}_{j} - \bar{\mathbf{x}})$ If rotated loadings $\hat{\mathbf{L}}^{*} = \hat{\mathbf{L}}\mathbf{T}$ are used in place of the original loadings
	NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan) $\hat{\mathbf{f}}_{j}^{LS} = (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}(\mathbf{I} + \hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})\hat{\mathbf{f}}_{j}^{R} = (\mathbf{I} + (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1})\hat{\mathbf{f}}_{j}^{R}$ For maximum likelihood estimates $(\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1} = \hat{\Delta}^{-1}$ and if the elements of th diagonal matrix are close to zero, the regression and generalized least square methods will give nearly the same factor scores. • In an attempt to reduce the effect of a (possible) incorrect determination of the number of factors, \mathbf{S} is often used for $\hat{\mathbf{\Sigma}}$, rather than $\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi}$, i.e, $\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{S}^{-1}(\mathbf{x}_{j} - \bar{\mathbf{x}})$ or, if a correlation matrix is factored, $\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{R}^{-1}\mathbf{z}_{j}$ If rotated loadings $\hat{\mathbf{L}}^{*} = \hat{\mathbf{L}}\mathbf{T}$ are used in place of the original loadings the subsequent factor scores, $\hat{\mathbf{f}}_{i}^{*}$, are related to $\hat{\mathbf{f}}_{i}$ by $\hat{\mathbf{f}}_{i}^{*} = \mathbf{T}'\hat{\mathbf{f}}_{i}$
• A s	NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan) $\hat{\mathbf{f}}_{j}^{LS} = (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}(\mathbf{I} + \hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})\mathbf{f}_{j}^{R} = (\mathbf{I} + (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1})\mathbf{f}_{j}^{R}$ For maximum likelihood estimates $(\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1} = \hat{\Delta}^{-1}$ and if the elements of th diagonal matrix are close to zero, the regression and generalized least square methods will give nearly the same factor scores. • In an attempt to reduce the effect of a (possible) incorrect determination of the number of factors, \mathbf{S} is often used for $\hat{\mathbf{\Sigma}}$, rather than $\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi}$, i.e, $\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{S}^{-1}(\mathbf{x}_{j} - \bar{\mathbf{x}})$ or, if a correlation matrix is factored, $\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{g}^{-1}\mathbf{z}_{j}$ Where $\mathbf{z}_{j} = \mathbf{D}^{-1/2}(\mathbf{x}_{j} - \bar{\mathbf{x}})$ If rotated loadings $\hat{\mathbf{L}}^{*} = \hat{\mathbf{L}}\mathbf{T}$ are used in place of the original loadings the subsequent factor scores, $\hat{\mathbf{f}}_{j}^{*}$, are related to $\hat{\mathbf{f}}_{j}$ by $\hat{\mathbf{f}}_{j}^{*} = \mathbf{T}'\hat{\mathbf{f}}_{j}$ strategy for factor analysis
• A s	NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan) $\hat{\mathbf{f}}_{j}^{LS} = (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}(\mathbf{I} + \hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})\mathbf{f}_{j}^{R} = (\mathbf{I} + (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1})\mathbf{f}_{j}^{R}$ For maximum likelihood estimates $(\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1} = \hat{\Delta}^{-1}$ and if the elements of th diagonal matrix are close to zero, the regression and generalized least square methods will give nearly the same factor scores. • In an attempt to reduce the effect of a (possible) incorrect determination of the number of factors, \mathbf{S} is often used for $\hat{\mathbf{\Sigma}}$, rather than $\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi}$, i.e, $\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{S}^{-1}(\mathbf{x}_{j} - \bar{\mathbf{x}})$ or, if a correlation matrix is factored, $\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{R}^{-1}\mathbf{z}_{j}$ where $\mathbf{z}_{j} = \mathbf{D}^{-1/2}(\mathbf{x}_{j} - \bar{\mathbf{x}})$ If rotated loadings $\hat{\mathbf{L}}_{*}^{*} = \hat{\mathbf{L}}\mathbf{T}$ are used in place of the original loadings the subsequent factor scores, $\hat{\mathbf{f}}_{j}^{*}$, are related to $\hat{\mathbf{f}}_{j}$ by $\hat{\mathbf{f}}_{j}^{*} = \mathbf{T}'\hat{\mathbf{f}}_{j}$ strategy for factor analysis perform a principal component factor analysis
• A s 1. 2.	NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan) $\hat{f}_{j}^{LS} = (\hat{L}'\hat{\Psi}^{-1}\hat{L})^{-1}(\mathbf{I} + \hat{L}'\hat{\Psi}^{-1}\hat{L})\mathbf{f}_{j}^{R} = (\mathbf{I} + (\hat{L}'\hat{\Psi}^{-1}\hat{L})^{-1})\mathbf{f}_{j}^{R}$ For maximum likelihood estimates $(\hat{L}'\hat{\Psi}^{-1}\hat{L})^{-1} = \hat{\Delta}^{-1}$ and if the elements of th diagonal matrix are close to zero, the regression and generalized least square methods will give nearly the same factor scores. • In an attempt to reduce the effect of a (possible) incorrect determination of the number of factors, S is often used for $\hat{\Sigma}$, rather than $\hat{L}\hat{L}' + \hat{\Psi}$, i.e, $\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{S}^{-1}(\mathbf{x}_{j} - \bar{\mathbf{x}})$ or, if a correlation matrix is factored, $\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{R}^{-1}\mathbf{z}_{j}$ where $\mathbf{z}_{j} = \mathbf{D}^{-1/2}(\mathbf{x}_{j} - \bar{\mathbf{x}})$ If rotated loadings $\hat{\mathbf{L}}^{*} = \hat{\mathbf{L}}\mathbf{T}$ are used in place of the original loadings the subsequent factor scores, $\hat{\mathbf{f}}_{j}^{*}$, are related to $\hat{\mathbf{f}}_{j}$ by $\hat{\mathbf{f}}_{j}^{*} = \mathbf{T}'\hat{\mathbf{f}}_{j}$ strategy for factor analysis perform a principal component factor analysis perform a maximum likelihood factor analysis
• A s	NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan) $\hat{\mathbf{f}}_{j}^{LS} = (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}(\mathbf{I} + \hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})\mathbf{f}_{j}^{R} = (\mathbf{I} + (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1})\mathbf{f}_{j}^{R}$ For maximum likelihood estimates $(\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1} = \hat{\Delta}^{-1}$ and if the elements of th diagonal matrix are close to zero, the regression and generalized least square methods will give nearly the same factor scores. • In an attempt to reduce the effect of a (possible) incorrect determination of the number of factors, \mathbf{S} is often used for $\hat{\mathbf{\Sigma}}$, rather than $\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi}$, i.e, $\hat{\mathbf{f}}_{i} = \hat{\mathbf{L}}'\mathbf{S}^{-1}(\mathbf{x}_{j} - \bar{\mathbf{x}})$ or, if a correlation matrix is factored, $\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{S}^{-1}\mathbf{z}_{j}$ where $\mathbf{z}_{j} = \mathbf{D}^{-1/2}(\mathbf{x}_{j} - \bar{\mathbf{x}})$ If rotated loadings $\hat{\mathbf{L}}^{*} = \hat{\mathbf{L}}\mathbf{T}$ are used in place of the original loadings the subsequent factor scores, $\hat{\mathbf{f}}_{j}^{*}$, are related to $\hat{\mathbf{f}}_{j}$ by $\hat{\mathbf{f}}_{j}^{*} = \mathbf{T}'\hat{\mathbf{f}}_{j}$ strategy for factor analysis perform a principal component factor analysis compare the solutions obtained from the 2 factor analyses
• A s 1. 2. 3. 4.	NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan) $\hat{\mathbf{f}}_{j}^{LS} = (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}(\mathbf{I} + \hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})\mathbf{f}_{j}^{R} = (\mathbf{I} + (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1})\mathbf{f}_{j}^{R}$ For maximum likelihood estimates $(\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1} = \hat{\Delta}^{-1}$ and if the elements of th diagonal matrix are close to zero, the regression and generalized least square methods will give nearly the same factor scores. • In an attempt to reduce the effect of a (possible) incorrect determination of the number of factors, \mathbf{S} is often used for $\hat{\mathbf{\Sigma}}$, rather than $\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi}$, i.e, $\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{S}^{-1}(\mathbf{x}_{j} - \bar{\mathbf{x}})$ or, if a correlation matrix is factored, $\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{R}^{-1}\mathbf{z}_{j}$ where $\mathbf{z}_{j} = \mathbf{D}^{-1/2}(\mathbf{x}_{j} - \bar{\mathbf{x}})$ If rotated loadings $\hat{\mathbf{L}}_{*}^{*} = \hat{\mathbf{L}}\mathbf{T}$ are used in place of the original loadings the subsequent factor scores, $\hat{\mathbf{f}}_{j}^{*}$, are related to $\hat{\mathbf{f}}_{j}$ by $\hat{\mathbf{f}}_{j}^{*} = \mathbf{T}'\hat{\mathbf{f}}_{j}$ strategy for factor analysis perform a principal component factor analysis compare the solutions obtained from the 2 factor analyses repeat the 1 st 3 steps for other number of common factors m