« factor rotation
> Recall

= a solution of factor loading is not unique

= all factor loadings obtained from the initial
loadings by an orthogonal transformation
have the same ability to reproduce the
covariance/correlation matrix

> If L is the p X m matrix of estimated factor loadings obtained by any me
(principal component, maximum likelihood, and so forth) then

L*=LT, whereTT' =T'T=1
is a p X m matrix of “rotated” loadings.
» Q: why is it called “rotation”?
= Q: dimension of all rotated factor loadings = ?

= Note: estimated covariance/correlation matrix, residual matrix, estimated
specific variances and communalities remains unchanged after rotation

» Q: Why need rotation?

= Since the original loading may not be readily interpretable (e.g., some
factors may have several large loadings and some loadings may be positive
while other may be negative) it’s usual practice to rotate them until a
“simple structure ” is achieved
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> Q: What is a “simple structure”?

= Ideally, we should like to see a pattern of f !
loadings such that each variable loads highly .
on a single factor and has small to moderate sp
loading on the remaining factors /

= When there are two factors, we can plot the N . 10
loadings and visually rotation the data to find S
an interpretable solution - 250

= For more than two factors, some automation RN
IS necessary, which should make:

o each factor have a few high positive loadings and the remainder be small

o pairs of factors have few large loading in common. A partition into
mutually exclusive groups would be desirable

Estimated Rotated
factor estimated factor
loadings loadings Communalities

Variable F B Fi F3 h?
1. Taste .56 .82 .02 (99 98
2. Good buy for money 78 52 —g 88
3. Flavor 65 75 13 98
4. Suitable for snack 94 -.10 84 43 .89
5. Provides lots of energy .80 —.54 —-.02 93
Cumulative proportion
of total (standardized)
sample variance explained 571 932 507 932

p. 5-18




. . . p.5-19
> varimax criterion

= Define €}, = €;/h; (the scaling has the effect of giving variables with small
communalities relatively more weight in rotation)
» varimax procedure selects the orthogonal transformation T that makes

as large as possible.
= Interpretation of the varimax criterion:

< [ variance of squares of (scaled) loadings for
Vo« 2 ( jth factor

j=1

+ maximizing V corresponds to “spreading out” the squares of the loadings
on each factor as much as possible -
» Remark: In some cases, even orthogonal rotations do not /
provide an easy interpretation of the solution. It is possible / o
to allow non-orthogonal rotations, called oblique rotation. ! |
This allows for possible simplicity at the expense of losing TSlSes
the orthogonality of the factors
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« factor scores (predict values of the unobserved random factors F3, ..., F )
> (c.f.) the scores in principal component analysis

> weighted least squares method p. 520

= Suppose first that the mean vector u, the factor loadings L, and the specific variance
¥ are known for the factor model

X — o= L F + ¢
(px1)  (px1)  (pxm)(mx1)  (px1)

sThe sum of the squares of the errors, weighted by the reciprocal of their
variances, is
P g
S —=€¥le=(x-p—-LE¥Y(x — p - Lf) (%)
i=1 ¥
schoosing the estimates f of f to minimize (*). The solution is
f=(L¥YIL)'L'Yx - p)

= take the estimates L, ¥, and i = X as the true values and obtain the factor scores
for the jth case as

= (L'¥'L)'L'¥(x; - )

« When MLE method is used, L'¥~L = A is a diagonal matrix
f, = AL (x; - X)

o if the correlation matrix is factored
£ = (Ly¥;'L,) 'Ly¥; 'z, = A;'L, ¥z

where z; = D™/*(x; — X)
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> regression method (conditional normal distribution)

= Suppose that the common factors and the specific factors are jointly
normally distributed

« X — p = LF + ehas an N,(0,LL’ + ¥) distribution
= Moreover, the joint distribution of (X — p) and F is Nt »(0, 3*), where

S=LL +¥% L

. _ e L exm)
(m+p)x(m+p) L’ : I

(mxp) P (mxm)

= the conditional distribution of FIx is multivariate normal with
mean = E(F|x) = L'S(x — u) = L'(LL' + ¥)'(x — p)
covariance = Cov(F|x) =1 - L'S7'L=1-L'(LL’ + ¥)'L
= the jth factor score vector is given by
f=L3(x; - %) =L(LL + ¥)(x; - )
« Denote the scores generated by the weighted least squares by i‘;’-—s and those
by the regression method by £X . Because

L' (LL + )7 =@ +L¥ 'Ly L' 7 (exercise 9.6, textbook)
(mxp) (pxp) (m>m) (mXxp) (pxp)

p.5-22

£45 = (L L) + L) ER = (1 + (L) )R

For maximum likelihood estimates (L’ ¥ L)™' = A~! and if the elements of this
diagonal matrix are close to zero, the regression and generalized least squares
methods will give nearly the same factor scores.

« In an attempt to reduce the effect of a (possible) incorrect determination of
the number of factors, §is often used for % , rather than LL’ + ¥, i.e,
f = l:'S‘l(xj - X)
or, if a correlation matrix is factored,
f; = i; R"lzj
where z; = D™/%(x; — X)
» If rotated loadings I:f = LT are used in place of the original loadings
the subsequent factor scores, i’:‘ are related to E,- by i‘}" = T'Ej
« A strategy for factor analysis
1. perform a principal component factor analysis
2. perform a maximum likelihood factor analysis
3. compare the solutions obtained from the 2 factor analyses
4. repeat the 1%t 3 steps for other number of common factors m

5. for large data sets, split them in half and perform a FA on each part

% Reading: Textbook, 9.4, 9.5, 9.6




