= The contribution to the total variance,
tT’(E) =011 —|— J929 —|— e —|— O'pp = Zle VCI,T’(XZ)
from the ith common factor is
« For the principal component solution, say the 15t common factor
~2  ~2 ~2 a0y ~ . 2
f]_l + ‘f21 + -+ fpl = (\/’\_1‘31) (\/t\:el) = )Ll

and

’

A |
Proportion of total St S+ Spp for a factor analysis of S
sample variance | = <

due to jth factor for a factor analysis of R

o |2

Is frequently used as a heuristic device for determining the appropriate
number of common factor

= Example 9.3 (Factor analysis of consumer-preference data) In a consumer-preference
study, a random sample of customers were asked to rate several attributes of a new
product. The responses, on a 7-point semantic differential scale, were tabulated and
the attribute correlation matrix constructed. The correlation matrix is presented next:

Attribute (Variable) 1 2 3 4 5
Taste 1100 .02 42 01
Goodbuyformoney 2| 02 100 .03 .71
Flavor 3 96 .13 100 50 .11
Suitable for snack 4| 42 7 50 100 (79
Provideslotsofenergy 5[ .01 .8 .11 .79 1.00 |
Estimate_d factor
N loadm%s Specific
&= \/}T,éj i Communalities variances
Variable F E h? Ui=1-h?
1. Taste .56 82 .98 02
2. Good buy
for money .78 -.53 .88 12
3. Flavor .65 5 98 02
4. Suitable
for snack 94 -.10 .89 A1
5. Provides
lots of energy .80 —.54 .93 .07
Eigenvalues 2.85 1.81
Cumulative
proportion
of total
(standardized)
sample variance S71 932

« comparison of PCA and FA

p. 510
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» Modified Principal Component Approach --- Principal Factor Solution
= Idea: the common factor should account for the off-diagonal elements of %,
as well as the communality portion of the diagonal elements
h = 0w — 97

= algorithm (Note: = = LL' + ¥ )
1.Guess ¥
2.Set L = the largest m eigenvectors of the eigendecomposition of S — ¥
3.Set ¥ = diag(S — LL')
Repeat steps 2 and 3 until convergence
« A popular choice for initial estimates of specific variances is the inverse
of the diagonal elements of S-! (for factoring the correlation matrix R, one
minus the initial estimates is equal to the square of the multiple correlation
coefficient between X; and other p—1 variables)

= some of the eigenvalues of S — ¥ may be negative

= In the iteration, some communality estimates may exceeds Var(X;), which
results in a negative estimate of the specific variance. This is referred to as
Heywood case.

» Maximum Likelihood Method

» Assume the common factors and the specific factors are jointly normally
distributed

= Then, the distribution of p.5-12
X =pm + L F + &
is multivariate normal and its likelihood is

np n

L 3) = m) 215 e B E (£, 0 R enem x|
= (zﬂ)iﬂf%}_)ﬁlz r@g-(%) tr[z-l(#‘l (x-%) (x,-—i)’)]

P 1 ny,- 1 /=
X (zﬂ)_flzl‘“je‘(i)(x‘ﬂ) 3N (x-p)
where % = LL' + ¥

+ To make L well defined, we can impose the computationally convenient
unigueness condition

L'?'L=A  adiagonal matrix
(Q: dimension reduction of the parameter space caused by the condition = )
= Maximizing the likelihood is equivalent to minimizing
In| X |-In|S,| + tr(27'S,) — p (%)
subject to L'¥%™'L = A, a diagonal matrix.

« Note: the function take the value zero if 3, = LL’ + ¥ equals S,
+ The MLE of L and ¥ can be obtained by numerical maximization
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=Result 9.1. Let X;,X,,...,X, be a random sample from N,(p,X), where

3 = LL' + ¥ is the covariance matrix for the m common factor model

The maximum likelihood estimators L, ¥, and i = X maximize (++) subject to

L' ¥ being diagonal.
The maximum likelihood estimates of the communalities are
~ ~2 a2 a2
h?=€il+'€f2+'”+'€fm fori=1,2,»

SO

Az Az ~2
Proportion of total sample | _ €+ by + o+ &y
variance due to jth factor S11t a2 oo+ 5y,

= If the variables are standardized so that Z = V2(X — u), then
the covariance matrix P of Z has the representation

p = v—leEv‘—lﬂ = (v—l,’ZL) (V—lﬂL)r + v—lfzqfv—lfz
Thus, P has a factorization with loading matrix L, = V2L and
specifi-c variance matrix ¥, = V12gy-if
= By the invariance property of MLE, the MLE of pis
p = (VL) (VI2LY + V12§y-112
=L,L, + ¥,
where V™12 and L are the maximum likelihood estimators of V™/2 and L.

« Note: There is usually no relationship between the principal components”

of the sample correlation matrix and the sample covariance matrix. For
maximum likelihood factor analysis, however, the results of analyzing
either matrix are essentially equivalent (this is not true of principal factor
analysis)

= The MLE method could produce very different results when m — m+1

= The MLE approach can also experience difficulties with Heywood cases

= comparison of the PC and MLE approaches (Example: stock-price data)

Maximum likelihood Principal components
Estimated factor Specific Estimated factor Specific
loadings variances loadings variances
Variable F R, di=1-h? F F | §;i=1-h
1. J P Morgan 115 755 42 732 —.437 27
2. Citibank 322 .788 27 831 —-.280 23
3. Wells Fargo 182 652 54 726 —.374 33
4. Royal Dutch Shell |1.000 —.000 .00 605 694 15
5. Texaco .683 —-.032 53 563 719 17
Cumulative
proportion of total
(standardized)
sample variance
explained 323 647 487 769

5-14




« residual matrix p.5-15

MLE PC
0 .00l —.002 .000 .05 0 —099 -.18 —025 .056
001 0 002 000 —.033 099 0 -.134 014 —.054
-.002 002 0 000 .001 -185 -.134 0 003 .006
000 .000 .000 0 .000 —025 014 003 0 -156
052 —.033 .00l .000 0 056 —.054 006 —-.156 0O

« A large sample test for the number of common factors (i.e., m)
> Recall: choosing m might be done by examining the total variance explained

> Assume the common factors and the specific factors are jointly normally

distributed
> null and alternative hypotheses
Hol 2 = L L’ + ¥

(pxp)  (pxm) (mxp)  (pXp)
H,:2 any other positive definite matrix.

= under alternative, ¢ = X and £ =((n — 1)/n)S = 8, the maximized
likelihood is proportional to |S, |27

= undernull, o = % and £ = LL' + ¥, where L and ¥are the MLE of L and
and ¥, the maximized likelihood is proportional to

|ILL' + ‘i"|_”ﬁexp(—-%ntr[(f.i. + *i:)‘ls,,])
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> likelihood ratio statistic

maximized likelihood under Hgil ) ( | 3 [ )
= nin

—2InA = -2 ln[ maximized likelihood | Sy |

with degrees of freedom,
v==3p(p+1) = [p(m + 1) = gm(m - 1)]
1

=:l(p —m)}* - p—m]

= Bartlett (1954) has shown that the chi-square approximation can be
improved by replacing n with (n — 1 — (2p + 4m + 5)/6)

= Using Bartlett’s correction, we reject H, at the o significant level if

(n—=1-1(2 +4m+5)/6)]nw> 2 (a)
P 1S, X[(p—m)*~p-m]/2

= Note: because the number of degrees of freedom must be positive, it follows

that
m<3;(2p+1—-V8p+1)

in order to apply the test

+ Reading: Textbook, 9.3, Supplement 9A




