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Factor Analysis 5 -
» A motivating example: for children in elementary school g 247 o )
> observed variables: shoe size and reading ability o oo g
= there exists strong correlation between them ® e
> latent (lurking) variable: age 314
» Q: can we extract information about the latent variable, reading ability
called factor, from the observed variables? If yes, what v
information?
« Purpose of factor analysis / \
> reduce high dimensional data down to just a few X [ Y

representative variables (similar to PCA)

> describe the relationship between many variables (as
captured by the covariance/correlation matrix) by a few
underlying, but unobservable (latent) variables

= Suppose variables can be grouped by their correlation.
Then, it is conceivable that each group of variables
represents a single underlying factor. For example,

« 18t group of variables: test scores in classics, French, English,
mathematics, and music = suggest an underlying “intelligence” factor

+ 2" group of variables representing physical-fitness scores = might
correspond to another factor

» Modeling (orthogonal factor model) p.5-2

» The observable random vector X, with p components, has mean p and covariance
matrix X.

> X is linearly dependeht upon a few unobservable random variables F.FE,....F,,
called common factors, and p additional sources of variation &, &, ..., &,, called

errors or, sometimes, specific factors.

X, —py =6 B+ 4B+ + 4, F, + g
Xy —pp =41 F + oF + -+ 6, F, + &

Xp — Hp = €P1F] + fszz + -+ fmem + SP

or, in matrix notation,

X—pup= L F + =€
(px1) (pxm)(mx1)  (px1)

= The coefficient ¢;; is called the loading of the ith variable on the jth factor
= Note: m < p. (otherwise, why bother?) We want m as small as possible.

= Note: /i, B,..., F,, &,¢,...,¢, are unobservable. This distinguishes the
factor model from the regression model

> assume that
E(F) = 0”, Cov(F) = E[FF'] = 1

mx {m>m)




» assume that b0 - 0 p.53
0 ¢, - 0
E(g)= 0, Cov(e) = E[eg'] = = Y2 .
( ) {(px1) ( ) [ ] (PXP] . . . .
» assume that F and & are independent, so 0 0 - ¢
Cov(e,F) = E(eF') = 0
(pxm)
» Some results of the orthogonal factor model
> (X — u)(X — p) = (LF + &) (LF + g)’
= (LF + &) ((LF)' + &)

= LF(LF)' + &(LF)’ + LF&' + &'

so that
X = Cov(X) = E(X — p)(X - p)’
= LE(FF')L’' + E(eF')L' + LE(Fe') + E(e€’)
=LL + ¥
"oy =ttt G, U = hi + ¢
S — v ~
Var(X;) = communality + specific variance

o W2 =834 + £ + .-+ ¢, iscalled the ith communality, which represents
the variance shared with the other observed variables via the common factor

+ ; Is called the 4th specific variance, which relates to the variability in X,
not shared with other variables

p. 54

o 3P Var(X;) = (c.f. PCA)
" Cov(X;, Xy) = €ibir + - + Lifim

+ The covariance are not dependent on the specific factors in any way. The
common factors account for the relationship (covariance/correlation)
between the observed variables X.’s

> (X — p)F = (LF + £)F' = LFF + &F’
SO - - ~ L Y - - »
Cov(X,F) = E(X — u)F = LE(FF') + E(eF') = L.

That is, Cov(X;, Fj) = €;;

> The factor model assumes that the p + p(p — 1)/2 = p(p + 1)/2 variances and

covariances for X can be reproduced from the pm factor loadings €;; and the p specif-
ic variances ¢;. When m = p, any covariance matrix % can be reproduced exactly as
LL{,so ¥ can be the zero matrix. However, it is when m is small relative-

to p that factor analysis is most useful. In this case, the factor model provides a “sim-
ple” explanation of the covariation in X with fewer parameters than the p(p + 1)/2
parameters in 3.

» Unfortunately for the factor analyst, most covariance matrices cannot be fac-
tored as LL' + ¥, where the number of factors m is much less than p.




> rotational indeterminacy (L is not unique) .55

= let T be any m X m orthogonal matrix, so that TT' = T'T = L

. X - p=LF+¢&=LTT'F + & =L*F* + ¢

where
L*=LT and F*=T'F

= Notice that E(F*) = T'E(F) = 0 and Cov(F*) =T'Cov(F)T=TT= 1

(m>m)
" 3=LL"+%¥ =LTT'L' + ¥ = (L*)(L*) + ¥
= it is impossible, on the basis of observations on X, to distinguish the loadings L from
the loadings L*. That is, the factors F and F* = T'F have the same statistical prop-
erties, and even though the loadings L* are, in general, different from the loadings
L, they both generate the same covariance matrix 3.
« this “ambiguity” provides the rational for “factor rotations.”

= Factor loadings L are determined only up to an orthogonal matrix T. Thus, the
loadings L* = LT and L

both give the same representation. The communalities, given by the diagonal
elements of LL" = (L*) (L*)’ are also unaffected by the choice of T.
¢ The analysis of the factor model proceeds by imposing conditions that allow

one to uniquély estimate L and V.
« The loading matrix is then rotated, where the rotation is determined by
some “ease-of-interpretation” criterion

+ Reading: Textbook, 9.1, 9.2

 Estimation of the factor model o

» Q: what to estimate?

» For estimation purpose, we will use the sample covariance matrix S as our
estimate of the population covariance matrix X.

» The estimation problem in factor analysis is essentially that of finding A and W for
which
A oaf -
S~ AA + V. (c.f. PCA)

(If the x;s are standardized, then S is replaced by R.)
» Principal Component Approach

= Recall: spectral decomposition
Let X have eigenvalue—eigenvector pairs (A;, e;) withA; = A, = ---= A, = 0,

2= Alelei + l\.zezea + 0+ APEPE;,

______________

- (VEer | Vi | | Vel |2

= L L + 0 =LL'
(pxp)(pxp) (pxp)




. . . .5-7
= when the last p — m eigenvalues are small, neglect the contribution ’

of Api1€mir@mer + 00+ Aje e, to X

[ VA€l
Ag E’z

2= (Vie | VEe || Vined| “il= L op
Am€m

= specific variances may be taken to be the diagonal elements of % — LL’

= The principal component factor analysis of the sample covariance matrix Sis
specified in terms of its eigenvalue—eigenvector pairs ()Ll,el) ()az,ez)

(pl ep) where Jtl = Az R )L Letm < pbe the number of common fac-
tors. Then the matrix of estimated factor loadings {{’ ij} 1s given by

L=[Vhé i Vie i Vined (9-15)

The estimated specific variances are provided by the diagonal elements of the
matrix § — LL’, so

o0 0

~ |0 0|l m

= %2 | with §i=s - S (9-16)
s . . s J=1
o 0o --- ‘“,‘b’p

s . .5-8
Communalities are estimated as P

=L+ gt + iy

The principal component factor analysis of the sample correlation matrix is
obtained by starting with R in place of S.

= For this approach, the estimated loadings for a given factor do not change as
the number of factors increases from m to m+1

= By the cleﬁmtlon of ¥, the d1agonal elements of S are equal to the diagonal
elements of LL' + ¥, __However, the off-diagonal elements of S are not usually
reproduced by IL + v,

» Q: how to select the number of common factors, m?

If the number of common factors is not determined by a priori considerations,
such as by theory or the work of other researchers, the choice of m can be based on
the estimated eigenvalues in much the same manner as with principal components.

» Consider the residual matrix
S — (IL' + ¥)
Then,
(sum of squared entries of § — LL - "f') =< (sum of squared entriesof § — LL")
- ;“Eﬂ-l-l + e + }:3

Consequently, a small value for the sum of the squares of the neglected eigenvalues
implies a small value for the sum of the squared errors of approximation.




