

A assume that
$$E(\varepsilon) = \bigoplus_{(p \times 1)}^{p \times 10} \operatorname{Cov}(\varepsilon) = E[\varepsilon\varepsilon'] = \bigoplus_{(p \times p)}^{p} = \begin{bmatrix} \psi_1 & 0 & \cdots & 0 \\ 0 & \psi_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \psi_p \end{bmatrix}^{p \times 10}$$
A assume that F and ε are independent, so
$$\operatorname{Cov}(\varepsilon, \mathbf{F}) = E(\varepsilon\mathbf{F}') = \bigoplus_{(p \times m)}^{p}$$
Some results of the orthogonal factor model
$$\sum_{(\mathbf{L} - \mu)(\mathbf{X} - \mu)' = (\mathbf{LF} + \varepsilon)(\mathbf{LF} + \varepsilon)'$$

$$= (\mathbf{LF} + \varepsilon)((\mathbf{LF})' + \varepsilon')$$

$$= \mathbf{LF}(\mathbf{LF})' + \varepsilon(\mathbf{LF})' + \mathbf{LF}\varepsilon' + \varepsilon\varepsilon'$$
so that
$$\sum_{(\mathbf{X} - \mu)(\mathbf{X} - \mu)' = (\mathbf{LF} + \varepsilon)(\mathbf{X} - \mu)'$$

$$= \mathbf{LF}(\mathbf{FF}')\mathbf{L}' + E(\varepsilon\mathbf{F}')\mathbf{L}' + \mathbf{LF}\varepsilon' + \varepsilon\varepsilon'$$
so that
$$\sum_{(\mathbf{X} - \mu)(\mathbf{X} - \mu)' = (\mathbf{LF} + \psi)(\mathbf{X} - \mu)'$$

$$= \mathbf{LE}(\mathbf{FF}')\mathbf{L}' + E(\varepsilon\mathbf{F}')\mathbf{L}' + \mathbf{LE}(\mathbf{F}\varepsilon') + E(\varepsilon\varepsilon')$$

$$= \mathbf{LL}' + \Psi$$
• $\sigma_{ii} = \xi_{11}^{2} + \xi_{12}^{2} + \cdots + \xi_{im}^{2} + \frac{\psi_{i}}{2} = h_{1}^{2} + \psi_{i}$
Var(X_i) = communality + specific variance
• $h_{1}^{2} = \xi_{1}^{2} + \xi_{12}^{2} + \cdots + \xi_{im}^{2}$ is called the *i*th *communality*, which represents the variance shared with the other observed variables via the common factor
• ψ_{i} is called the *i*th *specific variance*. Which relates to the variability in X_i not shared with other variances, and (\mathbf{N} = (\mathbf{L} - \mathbf{L}) + \mathbf{E}(\varepsilon\mathbf{F}') = \mathbf{L}
• $\sum_{i=1}^{n} Var(X_{i}) = (\mathbf{C} - \mathbf{L}) \cdot \mathbf{L} + \varepsilon(\mathbf{r}) + \varepsilon(\mathbf{r})^{2} = \mathbf{L}^{2} + \varepsilon^{2}$
• $\sum_{i=1}^{n} Var(X_{i}) = (\mathbf{L} + \varepsilon) \mathbf{F}' = \mathbf{L} \mathbf{F} \mathbf{F}' + \varepsilon \mathbf{F}'$
So
($\mathbf{X} - \mu$) $\mathbf{F}' = (\mathbf{L} \mathbf{F} + \varepsilon) \mathbf{F}' = \mathbf{L} \mathbf{F} \mathbf{F}' + \varepsilon \mathbf{F}'$
So
($\mathbf{X} - \mu$) $\mathbf{F}' = (\mathbf{L} \mathbf{F} + \varepsilon) \mathbf{F}' = \mathbf{L} \mathbf{F}' + \varepsilon \mathbf{F}'$
So
($\mathbf{X} - \mu$) $\mathbf{F}' = (\mathbf{L} \mathbf{F} + \varepsilon) \mathbf{F}' = \mathbf{L} \mathbf{F}' + \varepsilon \mathbf{F}'$
So
($\mathbf{X} - \mu$) $\mathbf{F}' = (\mathbf{L} \mathbf{F} + \varepsilon) \mathbf{F}' = \mathbf{L} \mathbf{F}' + \varepsilon \mathbf{F}'$
So
($\mathbf{X} - \mu$) $\mathbf{F}' = (\mathbf{L} \mathbf{F} + \varepsilon) \mathbf{F}' = \mathbf{L} \mathbf{F}' + \varepsilon \mathbf{F}'$
So
($\mathbf{X} - \mu$) $\mathbf{F}' = (\mathbf{L} \mathbf{F} + \varepsilon) \mathbf{F}' = \mathbf{L} \mathbf{F} \mathbf{F}' + \varepsilon \mathbf{F}'$
So
($\mathbf{X} - \mu$) $\mathbf{F}' = (\mathbf{L} \mathbf{F} + \varepsilon) \mathbf{F}' = \mathbf{L} \mathbf{F} \mathbf{F}' + \varepsilon \mathbf{F}'$
So
($\mathbf{X} -$

	rotational indeterminacy (L is not unique)
	• let T be any $m \times m$ orthogonal matrix, so that $\mathbf{TT}' = \mathbf{T}'\mathbf{T} = \mathbf{I}$.
	$\blacksquare \qquad X - \mu = LF + \varepsilon = LTT'F + \varepsilon = L^*F^* + \varepsilon$
	where $\mathbf{L}^* = \mathbf{L}\mathbf{T}$ and $\mathbf{F}^* = \mathbf{T}'\mathbf{F}$
	• Notice that $F(\mathbf{F}^*) - \mathbf{T}'F(\mathbf{F}) = 0$ and $Cov(\mathbf{F}^*) = \mathbf{T}'Cov(\mathbf{F})\mathbf{T} = \mathbf{T}'\mathbf{T} = \mathbf{I}$
	(#^#)
	$\mathbf{Z} = \mathbf{L}\mathbf{L} + \mathbf{\Psi} = \mathbf{L}\mathbf{\Pi}\mathbf{L} + \mathbf{\Psi} = (\mathbf{L}^{*})(\mathbf{L}^{*}) + \mathbf{\Psi}$
	 it is impossible, on the basis of observations on X, to distinguish the loadings L from the loadings L*. That is, the factors F and F* = T'F have the same statistical prop-
	erties, and even though the loadings L^* are, in general, different from the loadings
	L, they both generate the same covariance matrix Σ .
	• this "ambiguity" provides the rational for "factor rotations."
	Factor loadings L are determined only up to an orthogonal matrix T. Thus, the loadings I* – IT and I
	$L^* = LT \text{ and } L$ both give the same representation. The communalities, given by the diagonal
	elements of $\mathbf{LL}' = (\mathbf{L}^*)(\mathbf{L}^*)'$ are also unaffected by the choice of T .
	• The analysis of the factor model proceeds by imposing conditions that allow
	one to uniquely estimate L and Ψ .
	 The loading matrix is then rotated, where the rotation is determined by some "ease-of-interpretation" criterion
Rea	ding: Textbook, 9.1, 9.2 HU STAT 5191, 2010, Lecture Notes
	made by S -W. Cheng (NTHU, Taiwan)
	timation of the factor model
	• Q: what to estimate?
	For estimation purpose, we will use the sample covariance matrix S as our estimate of the population covariance matrix Σ .
	The estimation problem in factor analysis is essentially that of finding $\hat{\Lambda}$ and $\hat{\Psi}$ for
	which
	$\mathbf{S} pprox \hat{\mathbf{\Lambda}} \hat{\mathbf{\Lambda}}' + \hat{\mathbf{\Psi}}.$ (c.f. PCA)
	(If the $x_i s$ are standardized, then S is replaced by R .)
	Principal Component Approach .
	Recall: spectral decomposition
	Let Σ have eigenvalue–eigenvector pairs $(\lambda_i, \mathbf{e}_i)$ with $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p \ge 0$.
	Let Σ have eigenvalue-eigenvector pairs $(\lambda_i, \mathbf{e}_i)$ with $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p \ge 0$. $\Sigma = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 \mathbf{e}_2' + \cdots + \lambda_p \mathbf{e}_p \mathbf{e}_p'$
	$\boldsymbol{\Sigma} = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 \mathbf{e}_2' + \dots + \lambda_p \mathbf{e}_p \mathbf{e}_p'$
	$\boldsymbol{\Sigma} = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 \mathbf{e}_2' + \dots + \lambda_p \mathbf{e}_p \mathbf{e}_p'$
	$\boldsymbol{\Sigma} = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 \mathbf{e}_2' + \dots + \lambda_p \mathbf{e}_p \mathbf{e}_p'$
	$\Sigma = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 \mathbf{e}_2' + \dots + \lambda_p \mathbf{e}_p \mathbf{e}_p'$ $= \left[\sqrt{\lambda_1} \mathbf{e}_1 \mid \sqrt{\lambda_2} \mathbf{e}_2 \mid \dots \mid \sqrt{\lambda_p} \mathbf{e}_p \right] \begin{bmatrix} \sqrt{\lambda_1} \mathbf{e}_1' \\ \hline \sqrt{\lambda_2} \mathbf{e}_2' \\ \hline \vdots \\ \hline \sqrt{\lambda_1} \mathbf{e}_1' \end{bmatrix}$

• when the last
$$p - m$$
 eigenvalues are small, neglect the contribution $(p, 57)$
of $\lambda_{m+1}e_{m+1}e_{m+1} + \cdots + \lambda_p e_p e_p'$ to Σ
 $\Sigma = [\sqrt{\lambda_1} e_1] + \sqrt{\lambda_2} e_2 + \cdots + \sqrt{\lambda_m} e_m] \begin{bmatrix} \sqrt{\lambda_1} e_1' \\ \sqrt{\lambda_2} e_2' \\ \vdots \\ \sqrt{\lambda_m} e_m' \end{bmatrix} = \begin{bmatrix} L \\ (p \times m) & (m \times p) \\ (m \times p) \\ \vdots \\ \sqrt{\lambda_m} e_m' \end{bmatrix}$
• specific variances may be taken to be the diagonal elements of $\Sigma - LL'$
• The principal component factor analysis of the sample covariance matrix S is
specified in terms of its eigenvalue-eigenvector pairs $(\lambda_1, e_1), (\lambda_2, e_2), \ldots, (\lambda_p, e_p), where $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p$. Let $m < p$ be the number of common fac-
tors. Then the matrix of estimated factor loadings $\{\tilde{U}_i\}$ is given by
 $\tilde{L} = [\sqrt{\lambda_1} e_1 + \sqrt{\lambda_2} e_2 + \cdots + \sqrt{\lambda_m} e_m]$ (9-15)
The estimated specific variances are provided by the diagonal elements of the
matrix $S = \tilde{L}L'$, so
 $\tilde{\Psi} = \begin{bmatrix} \tilde{\Psi}_1 & 0 & \cdots & 0 \\ 0 & \tilde{\Psi}_2 & \cdots & \tilde{\Psi}_p \end{bmatrix}$ with $\tilde{\Psi}_i = s_{it} - \sum_{j=1}^m \tilde{\ell}_{ij}^2$ (9-16)
 $\vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \tilde{\Psi}_p \end{bmatrix}$ The principal component factor analysis of the sample correlation matrix is
obtained by starting with R in place of S .
• For this approach, the estimated loadings for a given factor do not change as
the number of factors increases from $m \ m + 1$
• By the definition of $\tilde{\Psi}_i$, the diagonal elements of S are not usually
reproduced by $\tilde{L} + \tilde{\Psi}$.
• Q: how to select the number of common factors, m ?
If the number of common factors is not determined by a priori considerations,
such as by theory or the work of other researchers, the choice of m can be based on
the estimated eigenvalues in much the same manner as with principal components.
• Consider the *residual matrix*
 $S - (\tilde{L}L' + \tilde{\Psi})$
Then,
(sum of squared entries of $S - \tilde{L}L' - \tilde{\Psi}$) \leq (sum of squared entries of $S - \tilde{L}L'$)
 $= \lambda_{m+1}^2 + \cdots + \lambda_p^2$
Consequently, a small value for the sum of the squared errors of approximation.$