NTHU STAT 5191, 2010

• Then, the distribution of
$$N_m(0, \mathbf{I})$$
 (****
 $N_p(\mathcal{U}, \mathbf{X}_{-1}\mathcal{U}) = \mathbf{X} = \mu + \mathbf{L} \cdot \mathbf{F} + e^{-N_p}(0, \psi)$
is multivariate normal and its likelihood is
 $\mathcal{L}(\mu, \Sigma) = (2\pi)^{-\frac{n}{2}} |\Sigma|^{-\frac{n}{2}} e^{-\frac{1}{2}} |\Sigma|^{-\frac{n}{2}} e^{-\frac{1}{2}} |\Sigma|^{-\frac{n}{2}} (\frac{1}{2}, [(\Sigma^{-1})(\Sigma^{-\overline{1}})^{+n}(\overline{\Sigma}-\mu)(\overline{\Sigma}-\mu))]$
 $= (2\pi)^{-\frac{n}{2}} |\Sigma|^{-\frac{1}{2}} e^{-\frac{n}{2}} (2(\overline{\Sigma}-\mu)^{-\Sigma^{-1}}(\overline{\Sigma}-\mu))$
 $(2\pi)^{-\frac{n}{2}} |\Sigma|^{-\frac{1}{2}} e^{-\frac{n}{2}} (2(\overline{\Sigma}-\mu)^{-\Sigma^{-1}}(\overline{\Sigma}-\mu))]$
 $\times (2\pi)^{-\frac{n}{2}} |\Sigma|^{-\frac{1}{2}} e^{-\frac{n}{2}} (2(\overline{\Sigma}-\mu)^{-\Sigma^{-1}}(\overline{\Sigma}-\mu))]$
where $\Sigma = LL' + \Psi \Rightarrow parameters, m, L, \Psi, \mathcal{H}.$
proceed Φ to make L well defined, we can impose the computationally convenient
uniqueness condition
 $(\Phi_{L})^{-\frac{n}{2}} |\Sigma|^{-\frac{1}{2}} e^{-\frac{n}{2}} (2(\overline{\Sigma}-\mu)^{-\frac{n}{2}} (\overline{\Sigma}-\overline{\Sigma}-\mu))]$
 \bullet Maximizing the likelihood is equivalent to minimizing
 $|L| \Sigma |-\ln(S_{1})| + tr(\Sigma^{-1}S_{n}) - p^{-\frac{n}{2}} (+\infty) - (-(\infty c dz track s. See Subject to L' \Psi^{-1}L = A, a diagonal matrix.
 \bullet Note: the function take the value zero if $\Sigma = LL' + \Psi$ equals S_{n} .
 \bullet The MLE of L and Ψ can be obtained by numerical maximization
 \bullet **Result 9.1.** Let $X_{1}, X_{2}, ..., X_{n}$ be a random sample from $N_p(\mu, \Sigma)$, where $\Sigma = LL' + \Psi$ is the covariance matrix for the *m* common factor model
The maximum likelihood estimates of the communalities are b_{1} the Involution $\hat{\mu}^{-\frac{n}{2}} = \hat{\mu}_{1}^{-\frac{n}{2}} + \hat{\mu}_{1}^{-\frac{n}{2}} + \cdots + \hat{\mu}_{1}^{-\frac{n}{2}} = \frac{2\pi}{m_{1}^{-\frac{n}{2}}} (2\pi)^{-\frac{n}{2}} = \frac{2\pi}{m_{1}^{-\frac{n}{2}}} (2\pi)^{-\frac{n}{2}} = \frac{2\pi}{m_{1}^{-\frac{n}{2}}} = \frac{2\pi}{m_{1}^{-\frac{n}{2}}}$$

made by S.-W. Cheng (NTHU, Taiwan)

■Suppose fir Ψ are know	est that the mean vector $\boldsymbol{\mu}$, the factor loadings wn for the factor model $Y = X\beta + \varepsilon$	L, and the specific variance
	$\mathbf{X}_{(p\times 1)} - \boldsymbol{\mu}_{(p\times 1)} = \mathbf{L}_{(p\times m)(m\times 1)} + \boldsymbol{\varepsilon}_{(p\times 1)}$	(Υ-Χβ)Ψ (Υ-Χβ)
•The sum o	of the squares of the errors, weighted by	the reciprocal of their
variances, i	is $\psi^{2} \psi^{2}$	72
	$\sum_{i=1}^{\infty} \frac{\varepsilon_i}{\omega} = \varepsilon' \Psi^{-1} \varepsilon = (\mathbf{x} - \boldsymbol{\mu} - \mathbf{L} \mathbf{f})' \Psi^{-1}$	$(\mathbf{x} - \boldsymbol{\mu} - \mathbf{L}\mathbf{f}) \qquad (*)$
	$= \left[\Psi^{-1} \left(x - M - L_{f} \right) \right] \left[\Psi^{-1} \right]$	⁵ (x- <i>u</i> -Lf)]
choosing th	the estimates \mathbf{f} of \mathbf{f} to minimize (*). The solution	ion is
	$\hat{\mathbf{f}} = (\mathbf{L}' \boldsymbol{\Psi}^{-1} \mathbf{L})^{-1} \mathbf{L}' \boldsymbol{\Psi}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = \mathbf{Q}$	¹⁶ L)(Ψ ¹ ⁶ L) (Ψ ¹⁶ L) Ψ ¹⁶ (X-μ
• take the est	stimates $\hat{\mathbf{L}}, \hat{\mathbf{\Psi}}, \text{ and } \hat{\boldsymbol{\mu}} = \bar{\mathbf{x}}$ as the true values a	and obtain the factor scores
for the <i>j</i> th o	case as	
	$\mathbf{f}_j = (\mathbf{L}' \boldsymbol{\Psi}^{-1} \mathbf{L})^{-1} \mathbf{L}' \boldsymbol{\Psi}^{-1} (\mathbf{x}_j - \bar{\mathbf{x}})$	
• When M	ALE method is used, $\hat{\mathbf{L}}' \hat{\mathbf{\Psi}}^{-1} \hat{\mathbf{L}} = \hat{\mathbf{\Delta}}$ is a diag	gonal matrix
	$\hat{\mathbf{f}}_j = \hat{\boldsymbol{\Delta}}^{-1} \hat{\mathbf{L}}' \hat{\boldsymbol{\Psi}}^{-1} (\mathbf{x}_j - \bar{\mathbf{x}})$	
♦ if the co	orrelation matrix is factored	
	$\widehat{\mathbf{f}}_{j} = (\widehat{\mathbf{L}}_{\mathbf{z}}' \widehat{\mathbf{\Psi}}_{\mathbf{z}}^{-1} \widehat{\mathbf{L}}_{\mathbf{z}})^{-1} \widehat{\mathbf{L}}_{\mathbf{z}}' \widehat{\mathbf{\Psi}}_{\mathbf{z}}^{-1} \mathbf{z}_{j} = \widehat{\mathbf{\Delta}}_{\mathbf{z}}^{-1} \widehat{\mathbf{L}}_{\mathbf{z}}' \widehat{\mathbf{\Psi}}_{\mathbf{z}}^{-1} \mathbf{z}_{j}$	$\mathbf{\hat{y}_{z}} \mathbf{\hat{\Psi}_{z}^{-1}} \mathbf{z}_{j}$
	10	