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p. 5-12

= Then, the distribution of Nm(o, 1)
Np (4, -Ll.:g)f = p + L F + e~Ny(o, )

IS multlvarlat ormal and its I|keI|hood IS

L s) = 2m) 21z a2 (£, 60 w0y ene-m -ay)|

= (zﬂ)ﬂlz rﬂe—(%) tr[E_l(gl (x;—X) (xj—i)')]
(2m)” 2|3 2e” G)E 2 ER)

Gk the
T, 1n _ Where LL'+1¥=>Pa/ww'%s m,L,y¥, L.

Imna})"z P et %P well defined, we can impose the ‘computationally convenient

unlqueness condition hotd W\O\W\f wvxs\’m\"vdis’?
(‘F’SL) ((P"‘A) = L’E_;IL = A a diagonal matrix= [N * dB 0s = _"_‘::_"l:
yEgh ("H)

(Q: dimension reduction of the parameter space caused by the condition = Sulua

= Maximizing the likelihood |sL§qU|v%Ient to minimizing
In| 3 [-In(S)[ + tr(£718,) — p (%) — (%or datmls , see
. _ . . Supdemonk 4),
subject to L'W~!L = A, a diagonal matrix.
« Note: the function take the value zero if 3, = LL’ + ¥ equals S,
+ The MLE of L and ¥ can be obtained by numerical maximization

p. 5-13
=Result 9.1. Let X;,X,,...,X, be a random sample from Np(p.,E), where
2 = LL' + ¥ is the covariance matrix for the m common factor model
The maximum likelihood estimators L, ¥, and g = X maximize (<) subject to
L' L being diagonal. minimize

The maximum likelihood estimates of the communalities are

Bythe vamianu

R vy s - PW\‘»% ML
h¢2=fil+€f2+"’+€im fori =1,2,. Pro 06 E
. Q. 2-30)
~2 a2
Proportion of total sample | _ bj+ &+ ”" GMLE ZMLE
variance due to jth factor S11F S22+ 0+ 5pp 3(59
M

= If the vanables are standardized so that Z —w—— M), then i
the covariance matrl ¢ P)of Z has the representation [6“ %
p= 1\7‘”‘*’*2\&!*”2 - (V“WL) v—lﬂL) + V'Wwv-lﬂ
Thus, @ has a factorization w1th loading matrix L, = L V2L an
specific variance matrix ¥, = V- 2¢y-12 L”ZLZ.-HPZ
= By the invariance property of MLE, the MLE of p is

r" . ﬁ = (VTI2L) (VTI2L) + V129 ¢

Sn - “, > t“MLE of- load; b)am,e

where @' 172 and L are the maximum likelihood estimators of V2 and L
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(o)Note: There is usually no relationship between the principal components™ ™
of the sample correlation matrix and the sample covariance matrix. For
~J maximum likelihood factor analysis, however, the results of analyzing

2 either matrix are essentially equivalent (this is not true of principal factor

i analysis) GMote: not Z;_=Z\:

dv he MLE method could produce very different results when m — m+1
‘0“5*‘@7&9, MLE approach can also experience difficulties with Heywood cases
= comparison of the PC and MLE approaches (Example: stock-price data)h,
N\
Maximum likeJihood incipal com, ts
W _ : pal components ¥, <o,
Estimated fa - Specific Estimate; L Specific
I.Jﬂa.d.in%s variances loadings variances
Variable F B bi=1-h? F, B | gi=1-h

1. J P Morgan 115 155 42 732 —.437 27

2. Citibank 322 | 788 27 831 | -.280 23

3. Wells Fargo 182 .652 .54 726 —.374 33

4. Royal Dutch Shell |1.000 —.000 .00 .605 694 15

5. Texaco 683 | —.032 53 563 719 17

Cumulative :O.

proportion of total —_=|-0. b((,?.

(standardized) S 0.7%9-

sample variance 0643 -0323 ' 0. %7'2 0.282

explained 23 | (6943  |(4®) 769

. olrﬁ:\%omm'\’ |

onger. —J
+ edtimiked valwt oy (oadmg (very diffote— ! diffit: consti)
¢ toted vaniomg explomed.

« residual matrix ( T -LL) - w) p.515
MLE PC
099 —.185 —.025 .056

014 -—.054
.006

0
.001
—-.002
.000  .000
.052 -.033

~n sl enough. nof@:néf‘ /04,9. e,'
o Al large sample test for the‘humber fcoénmon facto’?s (i.€., %)

» Recall: choosing m might be done by examining the total variance explaine

> Assume the common factogs\and the specific factorg are jointly normall may

distributed F E quam

» null and alternative hypotheses

Hy: = L' + ¥ ) L'y'L=
* En T o Subjet to L'WL=A

xp)  (p%p)
H,:2 any other positive definite matrix.

= under alternative, g = % and £ =((n — 1)/n)S =8, the maximized
likelihood is proportional to |S, |/

«undernull, i = xand $ = LL' + ¥, where L and Ware the MLE of L and
and ¥, the n}QX|m|zed likelihood is proportional to P (SWV\QM

= 3 ~ -
= |LL" + ‘I’|—"fzexp(*-% tr[(LL + ¥)7'S ]) M)
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p. 5-16

> likelihood ratio statistic Y,

maximized likelihood under H, | 3 |
—2In A = ~2In =nln

maximized likelihood

with deg&es o{ ﬁ'egg %(Ho) b P%%Pwmrm %(//ZWZ"‘&J

v — U —Cp!m+1s—‘-m(m—1)
=%[(p—m)2-p*m] > o Lorctondx T

o UylL=n.
= Bartlett (1954) has shown that the chi-square apprOX|mat|on can be
improved by replacing n with (n — 1 — (2p + 4m + 5)/6)

= Using Bartlett’s correction, we reject H at the a significant level if

7]
=
‘-..,_../

)

ILL + %]
(n—=1-=(2p+ 4m + 5)/6) ln—~—rs-—|-— = X{(p-m)P=—p-m ;;(a)
§ @)
= Note: because the number of degrees of freedom must be positive, it follows

that
<3;@2p+1- v@—ﬁ)R

in order to apply the test

% Reading: Textbook, 9.3, Supplement 9A

« factor rotation
> Recall
= a solution of factor loading is not unique X (

= all factor loadings obtained from the initial
loadings by an orthogonal transformation

ave the same ability to reproduce the Xp

add ovariance/correlation matrix

w”émg[ L is the p X m matrix of estimated factor loadmgs obtained by any method

principal component, maximum likelihood, and so forth) the’r\1 A A J

ix=iT,  whereTr =TT =1 LD =L (&
is a p X m matrix of “rotated” loadings. 12 Wfﬁm’lg' d
. HP 13 H 77 Z-' —> tL-LV’ —_—
x Q: ? :
Q. V\{hy IS !t called “rotation | i3 —> Bl talh
= Q: dimension of all rotated factor loadings =5=— ' ? _,
= Note: estimated covariance/correlation matrZ residual matrix, estimated

o Pon‘hbmﬂ’.m

specmc variances and communalities remain unchanged after rotatlon

> Q: Why need rotation? S-/ [},’ ¥ LP

= Since the original Ioading may not be readily interpretable (e.g., some
factors may have several large loadings and some loadin ay be positiv

AMJJle.DlhﬂLma%b&.nﬁgalme\%LS\usual practice to rotate them until a
“simple structure " is achieved  oft&w Segh, in PC a.proaLch
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» Q: What is a “simple structure”? p.518

= Ideally, we should like to see a pattern of (
loadings such that each variable loads highly
on a single factor and has small to moderate sE/
loading on the remaining factors Vi

= When there are two factors, we can plot the S
loadings and visually rotation the data to find T~
an interpretable solution 5( :

= For more than two factors, some automation h @
Is necessary, which should make:

o each factor have a few high positive loadings and the remainder be small

o pairs of factors have few large loading in common. A partition into
mutually exclusive groups would be desirable

Estimated Rotated
factor estimated factor
loadmgs loadings Communalities
Variable Fi F;
~1. Taste (‘ lﬁ) .02 (99)
~2. Good buy for money (94) -.01
3. Flavor 13
4. Suitable for snack - 10 .84 43
5. Provides lots of energy .80 —.54 .97 —-.02
Cumulative proportion
of total (standardized) T
sample variance explained .571 @ .707
T
. . . p. 5-19
> varimax criterion

= Define ¢}, = E’:}/;}i (the scaling has the effect of giving variables with small
communalities relatively more weight in rotation)

» varimax procedure selects the orthogonal transformation T that makes

2 ke il
as large as possible. = % { 'L( I(Z)) ) %f
x~—>

= interpretation of the varimax criteri \

squares pf (scaled) loadmgs for
;-1 }t factor

+ maximizing V corresponds to “spreading out” the squares of the loadings
on each factor as much as possible
» Remark: In some cases, even orthogonal rotations do not
provide an easy interpretation of the solution. It is possible
to allow non-orthogonal rotations, called oblique rotation.
This allows for possible simplicity at the expense of losing

S

0

the orthogonality of the factorscou 7*) & T i
« factor scores (predict values of the unobserved random factors, F7, F%o%? e
> (c.f.) the scores in principal component analysis ‘SS\W\MW ‘@1'
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> weighted least squares method p.5-20

= Suppose-first that the mean vector u, the factor loadings L, and the specific variance
v a.rfor the factor model Y Xﬁ'ﬁ'& minimize
X
o ) T ey o Y‘Xﬁ) ¢ ly-x )

s The sum of the squares of the errors, welghted by thc reciprocal of thelr

variances, is .
P g2

S =e¥le=(x—p- Lt"l'(x—p; Lf) (%)
=
=1 -@»‘i(x-my) (wx- u-z,f)J

schoosing the estimates f of f to minimize ( ) The solution is

f=(@LeL)'Lv(x - u){(tﬂ‘b)((#'% ](LP‘I%) D)

= take the estimates L, ¥, and A = X as the true values and obtain theifactor sc?ﬁres
for the jth case as

f=(L'¥IL)'L'¥(x; - %)
« When MLE method is used, L'¥%~L = A is a diagonal matrix
f = AT ¥i(x; - X)

« if the correlation matrix is factored

-

f; = (L¥;L,) 'Ly ¥ 'z = AL, ¥,

where z; = D™(x; — X)
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