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covariances for X can be reproduced from thfactor loadings ¢;; and th pecﬁ-
ic variances ¢;. When m = p, any covariance matrix 2 can be réproduced exa as
LL{,so ¥ can be the zero matrix. However, it is when m is small relative
to p that factor analysis is most useful. In this case, the factor model provides a “si
ple” explanation of the covariation in X with fewer parameters than the p(p + 1)/

parameters in 3.

= Unfortunately for the factor analyst, most covariance matrices cannot be fac-

tored as LL' + ¥, where the number of factors m is much less than p. [
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rotational indeterminacy (L is not unique)/ = AMefe i columns of T form "™

. le@e any m X m orthogonal matrix, so that TI' = T'T = I. 4 new
3 ' Cootli’
here !X - B)= LF + ¢ =/(L'k[‘ F)+ e = L*F* + & lsf‘ﬂ&.
Pm+D < P(pH)A L* = D) %nd F* = TF
= Notice that E(F*) = T'E(F) = 0 and Cov(F*) = T'Cov(F)T = T'T =

- 2=LL + ¥ =LTT'L' + ¥ = (L*)(L*) + ¥

= it is impossible, on the basis of observations on X, to distinguish the loadings L from
the loadings L*. That is, the factors F and F* = T'F have the same statistical prop-
erties, and even though the loadings L* are, in general, different from the loadings
L, they both generate the same covariance matrix 3.

« this “ambiguity” provides the rational for(*“factor rotations.’)

= Factor loadings L are determined only up to an orthogonal matrix T. Thus, the
loadings L*=LT and L éd:‘ag( I—(,U)
both give the same representation. The(communalities) given by the diagonal
elements of LL’ = (L*)(L*)’ are also unaffected by the choice of T.
¢ The analysis of the factor model proceeds by imposing conditions that allow

one to uniquely estimate L and V.
« The loading matrix is then rotated, where the rotation is determined by
some “ease-of-interpretation” criterion

+ Reading: Textbook, 9.1, 9.2
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 Estimation of the factor model
> Q: what to estimate? /7, L,Y

» For estimation purpose, we will use the sample covariance matrix S as our
estimate of the population covariance matrix X.

» The estimation problem in factor analysis is essentially that of finding Asand ¥ for
which

s~Ab+¥.  (cfPCA)

(If the x;s are standardized, then S is replaced by R.) [
> Principal Component Approach . [4 H"} 3"\,\]
= Recall: spectral decomposition :

Let X have eigenvalue—eigenvector pairs (A;, ;) withA; = A, == A, =0
Yo
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= when the last p — m eigenvalues are small, neglect the contribution ’

of Apii€mir®ner + - + Aje e, to X
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» specific variances may be taken to be the diagonal elements o X — LL’) ,,

= TheEmclpal component factor analysis| of the sample covanance matnx Sis
specified in terms of its eigenvalue—eigenvector pairs ()Ll,el) ()Lz,ez)

(Ap,ep) where )q = Az e = A Letm < pbe the number of common fac-
tors. Then the matrix of estimated factor loadings {€ ij} is given by

L=[Vie | Vie | Vinen) (9-15)

The estimated specific variances are provided by the diagonal elements of the
matrix § — LL', so

B 0 e 0

¥ = : $:2 with w; = 8 — 2 f" (9'16)
s . N + f=1
O 0 --- Jp

made by S.-W. Cheng (NTHU, Taiwan)



NTHU STAT 5191, 2010 Lecture Notes

- . .5-8
Communalities are estimated as P

hi=di1+ €4+ + Ly,

The principal component factor analysis of the sample correlation matrix is
obtained by starting with R in place of S.

= For this approach, the estimated loadings for a given factom as
the number of factors increases from m to m+1

= By the deﬁmtlon of ¥, the chagonal elements of S are equal to the diagonal
elements of LL' + ¥ . However, the off-diagonal elements of S are not usually
reproduced by LL + V.

» Q: how to select the number of common factors, m?

If the number of common factors is not determined by a priori considerations,
such as by theory or the work of other researchers, the choice of m can be based on

the estimated eigenvalues in much the same manner as with pnnmpal components.
. . o\ '\_/\ >/ (RN 9
= Consider the residual mam‘x P(A-Ae)P (' ,]

- r — /\/\ /\/
L S — (IL' + ¥) = ] t,{ (A-‘AK\P p(AAg)’b? ,\,\ ,\, PAK“P
; 3
(sum of squared entries of S — IL - < (sum of squared entnes of § — LL")
‘!— Vonian nat
= )'-m+1 + - )‘2 e \one dU by

Consequently, a small value for the sum of the squares of the neglected eigenvalues
implies a small value for the sum of the squared errors of approximation.

p.5-9

= The contribution to the total variance,
tr(X) =011+ 022+ +0opp = Zle Var(X;)
from the ith common factoris = I Q,}a‘z + X ‘-Pa =§Z(3}é25)+2 Yy
- < 2 t 2
2o+ 02+ ..._|_52‘ °3 v
iU length™ of, the ot £ caltmns 41,

« For the principal component solution, say the 15t common factor

?11 + ?21 +eee ?pl = (\/’i_lél) (\/1_151) = A

and -
( A
Proportion of total St S+ Spp for a factor analysis of S
sample variance | = < .
due to jth.factor Aj for a factor analysis of R
Common. ;

Is frequently used as a heuristic device for determining the appropriate
number of common factor

= Example 9.3 (Factor analysis of consumer-preference data) In a consumer-preference
study, a random sample of customers were asked to rate several attributes of a new
product. The responses, on a 7-point semantic differential scale, were tabulated and
the attribute correlation matrix constructed. The correlation matrix is presented next:
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P - S Attribute (Variable) 1 2 3 4 5 p. 5-10
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p.5-11

» Modified Principal Component Approach --- Principal Factor Solution

= Idea: the common factor should account for the off-diagonal elements of %,
as well as the communality portion of the diagonal elements

hi = 04 — b7 oo
= algorithm (Note: % = LL’ + ¥ ) };;/ZJ;Q‘;'ZS o’ mfﬂél‘ﬁbq onrg\’
1.Guess ¥ p%grw,,;p/s A f“’:&b" on S"'@

2.Set L = the largest m eigenvectors 0% tﬁe elgen ecomposition of $ — 0
3.Set ¥ = diag(S — LL')
Repeat steps 2 and 3 until convergence

« A popular choice for initial estimates of specific variances is the inverse
of the diagonal elements of S-! (for factoring the correlation matrix R, one
minus the initial estimates is equal to the square of the multiple correlatign'

coefficient between X, and other p—1 variables) ~Ls +his still a cov ?
= some of the eigenvalues o may be negative wo < U"“m)v_m3
= In the iteration, some communality estimates may exceeds Var(X,), which

results in a negative estimate of the specific variance. This is referred to as
Heywood case.

» Maximum Likelihood Method

= Assume the common factors and the specific factors are jointl
&

distributed ~

made by S.-W. Cheng (NTHU, Taiwan)



