	• $\sum_{i=1}^{p} Var(X_i) = \sum_{i=1}^{p} h_i + \sum_{i=1}^{p} \psi_i = \sum_{i=1}^{p} h_i + \sum_{i=1}^{p} \psi_i = \sum_{i=1}^{p} h_i + \sum_{i=1}^{p} \psi_i = \sum_{i=1}^{p} h_i + \sum_{i=1}^{p} h_i + \sum_{i=1}^{p} \psi_i = \sum_{i=1}^{p} h_i + \sum_{i=1}^{p} \psi_i = \sum_{i=1}^{p} h_i + \sum_{$
	• $\operatorname{Cov}(X_i, X_k) = \ell_{i1}\ell_{k1} + \dots + \ell_{im}\ell_{km} \leftarrow \operatorname{inner product} \leftarrow = \lambda_1 + \dots + \lambda_n$
	• The covariance are not dependent on the specific factors in any way. The
	common factors account for the relationship (covariance/correlation)
	between the observed variables X_i 's Σ is separated into two parts
	$(\mathbf{Y} - \mathbf{u})\mathbf{F}' - (\mathbf{I}\mathbf{F} + \mathbf{c})\mathbf{F}' - \mathbf{I}\mathbf{F}\mathbf{F}' + \mathbf{c}\mathbf{F}' - \mathbf{Comparate Structure}$
	so $(\mathbf{X} - \boldsymbol{\mu})\mathbf{F} - (\mathbf{LF} + \boldsymbol{\varepsilon})\mathbf{F} - \mathbf{LFF} + \boldsymbol{\varepsilon}\mathbf{F}$
	$\operatorname{Cov}(\mathbf{X}, \mathbf{F}) = E(\mathbf{X} - \boldsymbol{\mu})\mathbf{F}' = \mathbf{L}E(\mathbf{F}\mathbf{F}') + E(\boldsymbol{\varepsilon}\mathbf{F}') = \mathbf{L}$. common factors
	That is, $\operatorname{Cov}(X_i, F_j) = \ell_{ij}$
	The factor model assumes that the $p + p(p-1)/2 = p(p+1)/2$ variances and $\sum_{j=1}^{n} \frac{p(p+1)}{2}$
	covariances for X can be reproduced from the <i>pm</i> factor loadings ℓ_{ij} and the <i>p</i> specif-
	ic variances ψ_i . When $m = p$, any covariance matrix Σ can be reproduced exactly as
	LL , so Ψ can be the zero matrix. However, it is when <u>m is small relative</u>
	to p that factor analysis is most useful. In this case, the factor model provides a "sim $-$
	pre explanation of the covariation in A with fewer parameters than the $p(p + 1)/2$
	parameters in 2.
	• Unfortunately for the factor analyst, most covariance matrices cannot be fac-
	tored as $LL' + \Psi$, where the number of factors <i>m</i> is much less than <i>p</i> .
	e.g. p=3, m=1 = Dm+n=D(m+1)
	P(P+1)/2 =6
	Protational indeterminacy (L is not unique) \longrightarrow Note : columns of T from ^{p.55}
even	Protational indeterminacy (L is not unique) Note: columns of T form • let T be any $m \times m$ orthogonal matrix, so that $TT' = T'T = I$. a new the coordinate
even	Protational indeterminacy (L is not unique) Note: columns of T form • let T be any $m \times m$ orthogonal matrix, so that $TT' = T'T = I$. a new $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ where
even thou	Protational indeterminacy (L is not unique) Note: columns of T form • let T be any $m \times m$ orthogonal matrix, so that $TT' = T'T = I$. a new $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ where $L^* = LT$ and $F^* = T'F$
even thou PCm	Protectional indeterminacy (L is not unique) Note: columns of T form • let T be any $m \times m$ orthogonal matrix, so that $TT' = T'T = I$. a new where $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ where $T = L*F* + \varepsilon$ L* = LT and $F* = T'F• Notice that F(F*) = T'F(F) = 0 and Cov(F*) = T'Cov(F)T = T'T = I$
even thou PCm	Protational indeterminacy (L is not unique) Note: columns of T form • let T be any $m \times m$ orthogonal matrix, so that $TT' = T'T = I$. a new where $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ where L* = LT and $F* = T'F• Notice that E(F*) = T'E(F) = 0 and Cov(F*) = T'Cov(F)T = T'T = I_{(m \times m)}$
even thou PCm	$\sum_{\mu = 1}^{m + 1} \sum_{\mu = 1}^$
even thou P(m	Protocolor of the same statistical prop- rotational indeterminacy (L is not unique) Note: columns of T form • let T be any $m \times m$ orthogonal matrix, so that $TT' = T'T = I$. a new • let T be any $m \times m$ orthogonal matrix, so that $TT' = T'T = I$. a new • where • $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ • $Coolinate$ where • $L^* = LT$ and $F^* = T'F$ • Notice that $E(F^*) = T'E(F) = 0$ and $Cov(F^*) = T'Cov(F)T = T'T = I$ ($m \times m$) • $\Sigma = LL' + \Psi = LTT'L' + \Psi = (L^*)(L^*)' + \Psi$ • it is impossible, on the basis of observations on X, to distinguish the loadings L from the loadings L*. That is, the factors F and F* = T'F have the same statistical prop- erties, and even though the loadings L* are, in general, different from the loadings
even thou PCm	Protectional indeterminacy (L is not unique) Note: columns of T form let T be any $m \times m$ orthogonal matrix, so that $TT' = T'T = I$. a new $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ where $T = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ Coolinate $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ Coolinate $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ Coolinate $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ Coolinate $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ Coolinate $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ T = T'T = I T = IT' = IT'F Notice that $E(F*) = T'E(F) = 0$ and $Cov(F*) = T'Cov(F)T = T'T = I$ $(m \times m)$ $\Sigma = LL' + \Psi = LTT'L' + \Psi = (L*)(L*)' + \Psi$ it is impossible, on the basis of observations on X, to distinguish the loadings L from the loadings L*. That is, the factors F and F* = T'F have the same statistical prop- erties, and even though the loadings L* are, in general, different from the loadings L, they both generate the same covariance matrix Σ . • this "ambiguity" provides the rational for "factor rotations."
even thou PCm	Protectional indeterminacy (L is not unique) Note: columns of T form • let T be any $m \times m$ orthogonal matrix, so that $TT' = T'T = I$. a new where $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ where $L^* = LT$ and $F^* = T'F$ • Notice that $E(F^*) = T'E(F) = 0$ and $Cov(F^*) = T'Cov(F)T = T'T = I_{(m \times m)}$ • $\Sigma = LL' + \Psi = LTT'L' + \Psi = (L^*)(L^*)' + \Psi$ • it is impossible, on the basis of observations on X, to distinguish the loadings L from the loadings L*. That is, the factors F and $F^* = T'F$ have the same statistical prop- erties, and even though the loadings L* are, in general, different from the loadings L, they both generate the same covariance matrix Σ . • this "ambiguity" provides the rational for "factor rotations."
even thou pcm	rotational indeterminacy (L is not unique) Note : columns of T form let T be any $m \times m$ orthogonal matrix, so that $TT' = T'T = I$. a new $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon = \frac{coolinate}{axes}$ where $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon = \frac{coolinate}{axes}$ $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon = \frac{coolinate}{axes}$ Notice that $E(F*) = T'E(F) = 0$ and $Cov(F*) = T'Cov(F)T = T'T = I_{(m \times m)}$ $\Sigma = LL' + \Psi = LTT'L' + \Psi = (L*)(L*)' + \Psi$ it is impossible, on the basis of observations on X, to distinguish the loadings L from the loadings L*. That is, the factors F and F* = T'F have the same statistical prop- erties, and even though the loadings L* are, in general, different from the loadings L, they both generate the same covariance matrix Σ . • this "ambiguity" provides the rational for ("factor rotations.") Factor loadings L are determined only up to an orthogonal matrix T. Thus, the loadings $L^* = LT$ and $L = C Cacq(\Sigma - \Psi)$
even thou pcm	Protectional indeterminacy (L is not unique) Note: columns of T form • let T be any $m \times m$ orthogonal matrix, so that $TT' = T'T = I$. a new where $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ coodinate where +1) $\ll P(P+1)/2$ $L^* = LT$ and $F^* = T'F$ • Notice that $E(F^*) = T'E(F) = 0$ and $Cov(F^*) = T'Cov(F)T = T'T = I$ ($m \times m$) • $\Sigma = LL' + \Psi = LTT'L' + \Psi = (L^*)(L^*)' + \Psi$ • it is impossible, on the basis of observations on X, to distinguish the loadings L from the loadings L*. That is, the factors F and F* = T'F have the same statistical prop- erties, and even though the loadings L* are, in general, different from the loadings L, they both generate the same covariance matrix Σ . • this "ambiguity" provides the rational for "factor rotations." • Factor loadings L are determined only up to an orthogonal matrix T. Thus, the loadings $L^* = LT$ and $L = Clag(\Sigma - \Psi)$ both give the same representation. The communalities given by the diagonal elements of $LL' = (L^*)(L^*)'$ are also unaffected by the choice of T.
even thou PCm	Protocological indeterminacy (L is not unique) Note: columns of T form p.55 let T be any $m \times m$ orthogonal matrix, so that $TT' = T'T = I$. a new $X - \mu_{i} = LF + \varepsilon = (LTT'F) + \varepsilon = L^*F^* + \varepsilon$ where $X - \mu_{i} = LF + \varepsilon = (LTT'F) + \varepsilon = L^*F^* + \varepsilon$ $X - \mu_{i} = LF + \varepsilon = (LTT'F) + \varepsilon = L^*F^* + \varepsilon$ $X - \mu_{i} = LF + \varepsilon = (LTT'F) + \varepsilon = L^*F^* + \varepsilon$ $X - \mu_{i} = LF + \varepsilon = (LTT'F) + \varepsilon = L^*F^* + \varepsilon$ $X - \mu_{i} = LF + \varepsilon = (LTT'F) + \varepsilon = L^*F^* + \varepsilon$ $X - \mu_{i} = LF + \varepsilon = (LTT'F) + \varepsilon = L^*F^* + \varepsilon$ $X - \mu_{i} = LF + \varepsilon = (LTT'F) + \varepsilon = L^*F^* + \varepsilon$ $X - \mu_{i} = LF + \varepsilon = (LTT'F) + \varepsilon = L^*F^* + \varepsilon$ $X - \mu_{i} = LF + \varepsilon = (LTT'F) + \varepsilon = L^*F^* + \varepsilon$ $X - \mu_{i} = LF + \varepsilon = (LTT'F) + \varepsilon = L^*F^* + \varepsilon$ $X - \mu_{i} = T'E(F) = 0$ and $Cov(F^*) = T'Cov(F)T = T'T = I$ $(m \times m)$ $Y = LL' + \Psi = LTT'L' + \Psi = (L^*)(L^*)' + \Psi$ it is impossible, on the basis of observations on X, to distinguish the loadings L from the loadings L*. That is, the factors F and F* = T'F have the same statistical prop- erties, and even though the loadings L* are, in general, different from the loadings L, they both generate the same covariance matrix Σ . • this "ambiguity" provides the rational for "factor rotations." Factor loadings L are determined only up to an orthogonal matrix T. Thus, the loadings L* = LT and L $Com(\Sigma - \psi)$ both give the same representation. The communalities given by the diagonal elements of LL' = (L^*)(L^*)' are also unaffected by the choice of T. • The analysis of the factor model proceeds by imposing conditions that allow
even thou pcm	Protectional indeterminacy (L is not unique) Note: columns of T form p.55 • le(T) be any $m \times m$ orthogonal matrix, so that $TT' = T'T = I$. A new $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ coordinate where $L^* = LT$ and $F^* = T'F$ • Notice that $E(F^*) = T'E(F) = 0$ and $Cov(F^*) = T'Cov(F)T = T'T = I$ • Notice that $E(F^*) = T'E(F) = 0$ and $Cov(F^*) = T'Cov(F)T = T'T = I$ • $\Sigma = LL' + \Psi = LTT'L' + \Psi = (L^*)(L^*)' + \Psi$ • it is impossible, on the basis of observations on X, to distinguish the loadings L from the loadings L*. That is, the factors F and F* = T'F have the same statistical prop- erties, and even though the loadings L* are, in general, different from the loadings L, they both generate the same covariance matrix Σ . • this "ambiguity" provides the rational for "factor rotations." • Factor loadings L are determined only up to an orthogonal matrix T. Thus, the loadings $L^* = LT$ and $L = Chag(\Sigma - \Psi)$ both give the same representation. The communalities given by the diagonal elements of LL' = (L*)(L*)' are also unaffected by the choice of T. • The analysis of the factor model proceeds by imposing conditions that allow one to uniquely estimate L and Ψ .
even thou PCm	Protectional indeterminacy (L is not unique) Note: columns of T form $p.5.5$ • let T be any $m \times m$ orthogonal matrix, so that $TT' = T'T = I$. a new $X - \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ coodinate where $X = \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ coodinate $X = \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ coodinate $X = \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ coodinate $X = \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ coodinate $X = \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ coodinate $X = \mu = LF + \varepsilon = (LTT'F) + \varepsilon = L*F* + \varepsilon$ coodinate $X = \mu = LF + \varepsilon = LTT'F$ Notice that $E(F*) = T'E(F) = 0$ and $Cov(F*) = T'Cov(F)T = T'T = I$ ($m \times m$) $\Sigma = LL' + \Psi = LTT'L' + \Psi = (L*)(L*)' + \Psi$ it is impossible, on the basis of observations on X, to distinguish the loadings L from the loadings L*. That is, the factors F and F* = T'F have the same statistical prop- erties, and even though the loadings L* are, in general, different from the loadings L, they both generate the same covariance matrix Σ . • this "ambiguity" provides the rational for "factor rotations." • Factor loadings L are determined only up to an orthogonal matrix T. Thus, the loadings $L* = LT$ and $L = dtag(\Sigma - \Psi)$ both give the same representation. The communalities given by the diagonal elements of $LL' = (L*)(L*)'$ are also unaffected by the choice of T. • The analysis of the factor model proceeds by imposing conditions that allow one to uniquely estimate L and Ψ . • The loading matrix is then rotated, where the rotation is determined by

