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p. 4-7• Sample Principal Components

replace population distribution by empirical distribution
replace Σ by S (or Sn)
replay ρ by R
then, the rests the same as above

Finding principal components

objective: construct uncorrelated linear combination of the measured 
characteristics that account for much of the variation in the sample

PCA based on S
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PCA based on ρ

principal component scores 

principal component scores 
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p. 4-9Number of Principal Components

Using Principal Components to display multivariate data

Q: how many principal components to retain?

amount of total variance explained (say, 70~90%)
for PCA based on ρ, use the cutoff point 1 or 0.7 
(i.e., keep PCs with                        )

scree plot

λ̂i ≥ 1 or 0.7

In addition to plotting X1, …, Xp, plot Y1, …, Yk to check normality 
assumption and detect suspect observations
The last few PCs can help pinpoint suspect observations

Large Sample Inference
Q: What are the distributions of the (λ̂1, . . . , λ̂p), (ê1, . . . , êp), (ŷ1, . . . , ŷp)?
assumption

asymptotic distribution
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• Some important issues
Analyses of principal components are more of a means to an end rather than an 

end in themselves, because they frequently serve as intermediate steps in much 
larger investigation. 

PCs with variance almost zero (i.e.,            )λ̂i ≈ 0
≈ c, c : a constant

⇒ an unusually small value for eigenvalue can indicate a linear dependency in 
the data set
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p. 4-11equal eigenvalues (i.e.,                                    )λi = λi+1 = · · · = λj

population principal component
sample principal component 

selecting a subset of variables X1, …, Xp

PCA does not quite reduce the data since PCs are linear combinations of all 
variables X1, …, Xp so all variables are in some sense still needed. The 
technique, however, can help us discard some variables by keeping only those 
with the highest factor loading 

connection to the singular value decomposition (SVD)
Let us apply a SVD to the matrix X− 1x̄0

(X− 1x̄0)n×p = Un×pLp×pV 0
p×p

where U 0U = Im, V 0V = Im, and L is a diagonal matrix.
Then,

which means
columns of V : eigenvectors of S

: eigenvalues of S, where li: singular value
:  PC scores

(n− 1)S = (X− 1x̄0)0(X− 1x̄0) = V LU 0ULV 0 = V (LL)V 0 = V L2V 0

l2i
n−1
Y = (X− 1x̄0)V = UL

S = V 1
n−1L2 V 0 = V 1√

n−1L
2

V 0 ≡ V L∗2V 0
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the matrix B that minimize

tr[(X− 1x̄−B)(X− 1x̄−B)0]
over all n×p matrices B having rank no greater than k (k < p) is

B = ≡ ULkV
0

represents the first k PC scoresULk

geometry of PC line (plane)
the PC line (plane) minimizes the sum of squared 
orthogonal distances from each data point to the line 
(plane)

(c.f.) the least square line in regression minimizes the 
sum of vertical distances from the data point to the line
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drawbacks of PCA

PCA only utilizes information contained in the second moments
nonlinear structure may be missed
linear combination of variables may not be meaningful especially if the 
variables do not represent comparable quantities
outliers may distort the results

Reading: Textbook, 8.1, 8.2, 8.3, 8.4, 8.5, Supplement 8A


