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« Sample Principal Components

» Suppose the data x,, x», ..., X,, represent n independent drawings from some
p-dimensional population with mean vector u and covariance matrix %. These data
yield the sample mean vector X, the sample covariance matrix S, and the sample cor-
relation matrix R.

» objective: construct uncorrelated linear combination of the measured
characteristics that account for much of the variation in the sample

» Finding principal components
= replace population distribution by empirical distribution =

= replace Z by S (or S))

= replay pby R
= then, the rests the same as above

» PCA based on S ! :
If S = {s5;4} isthe p X p sample covariance matrix with eigenvalue-eigenvector
pairs (A1, €), (A2,€2),..., (A,, €,), the ith sample principal component is given
by
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where \; = A = --- = ﬁp = 0 and x i1s any observation on the variables
X1, X3,..., Xp. Also,
Sample variance(y,) = A, k= 1,2,...,p
Sample covariance(y;, ) = 0, i # k

In addition, P48
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« principal component scores

and

Vi = e/ x, i=12,....p
¥ = ej(x — X), i=12,...,p
» PCA based on p

Ifz,,2,,..., 2z, are standardized observations with covariance matrix R, the ith
sample principal component is

yi =€z = 121 + €22 + - + €,2,, i=1,2,...,p
where (R,—, €;) is the ith eigenvalue-eigenvector pair of R with
M= A= =), = 0. Also,
Sample variance () = A, i=12,...,p

Sample covariance (y;, y;) = 0 i # k
In addition,

Total (standardized) sample variance = tr(R) = p = il + ;.2 + e+ ip
and =
r},-.zk = éfk\/‘:h 11k = 1129---:P
« principal component scores
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» Number of Principal Components ]
= Q: how many principal components to retain? {
= Scree plot
= amount of total variance explained (say, 70~90%)

» for PCA based on p, use the cutoff point 1 or 0.7
(i.e., keep PCswith \, > 1 or 0.7)

» Using Principal Components to display multivariate data

= In addition to plotting X, ..., X, plot Y}, ..., Y, to check normality
assumption and detect suspect observations

» The last few PCs can help pinpoint suspect observations

» Large Sample Inference
= Q: What are the distributions of the (A1, .-, Ap), (é1,..., &), (1, p)?
= assumption
* X,,.X,,..., X, are a random sample from a normal population.
. eigenv;ﬂues of X are dittinct and positive, so that A; > A; > -+- > A, > 0,
» asymptotic distribution

1. Let A be the diagonal matrix of eigenvalues A,,..., A, of X, then Vn (i - A)
is approximately N,(0, 2A).

2. Let p. 4-10

then Vn (e; — e;) is approximately Ny(0, E;).
3. Each ii is distributed independently of the elements of the associated ;.

= A large sample 100(1 — a)% confi dence interval for A; is thus provided by

A ~

A; - = A;
1+ 2a/2)Vaim) - = (1 = 2a/2)Vain)

= Result 2 implies that the €;’s are normally distributed about the corresponding
e;’s for large samples. The elements of each €; are correlated, and the correlation
depends to a large extent on the separation of the eigenvalues A, Ay, ..., A

« Some important issues
» Analyses of principal components are more of a means to an end rather than an

end in themselves, because they frequently serve as intermediate steps in much
larger investigation.

P .

» PCs with variance almost zero (i.e., )\; ~ 0)
Vi = ex = &1x; + €%y + - + €,Xx, ~ ¢, ¢ : a constant

—> an unusually small value for eigenvalue can indicate a linear dependency in
the data set
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> equal eigenvalues (i.e., A\; = X\jp1 =---=X;)
= population principal component
= sample principal component

» selecting a subset of variables X, ..., X

= PCA does not quite reduce the data since PCs are linear combinations of all
variables X, ..., X, so all variables are in some sense still needed. The
technique, however, can help us discard some variables by keeping only those
with the highest factor loading

» connection to the singular value decomposition (SVD) T sy e
= Let us apply a SVD to the matrix X — 1%’ ; ‘

(X = 1X")nxp = UnxpLpxpV,

pXp

where U'U = I,,, V'V = I,,, and L is a diagonal matrix.
Then,

(n—1)8 = (X —1%)/(X — 1%) = VLU'ULV' = V(LL)V' = VL*V"
2
S=V (75L2) V' =V (7A5L) V' = VIV

"
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~—(x —X)87(x - X)=¢?

n—1 Vn—1
which means

+ columns of V': eigenvectors of S
12 .4 .ol
¢ - eigenvalues of S, where [;: singular value

* Y=X-1X)V=UL: PC scores
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» the matrix B that minimize
tr[(X —1x — B)(X — 1x — B)']
over all nxp matrices B having rank no greater than & (k < p) is

B= = ULV’

» UL, represents the first £ PC scores
» geometry of PC line (plane)

= the PC line (plane) minimizes the sum of squared
orthogonal distances from each data point to the line

(plane)

X

i = (xje)e; + (xje))e + - + (xe,)e,

= Yj1€1 T Y€ T - T Y€

= (C.T.) the least square line in regression minimizes the
sum of vertical distances from the data point to the line




» drawbacks of PCA
= PCA only utilizes information contained in the second moments
= nonlinear structure may be missed

= linear combination of variables may not be meaningful especially if the
variables do not represent comparable quantities

= Outliers may distort the results

% Reading: Textbook, 8.1, 8.2, 8.3, 8.4, 8.5, Supplement 8A
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