NTHU STAT 5191, 2010 Lecture Notes

* Population Principal Components p-4-2

» model: Let the random vector X’ = [Xj, X3,..., X,] have the covariagce matrix =

with eigenvalues Ay = A, =---= A, = 0.
» First principal component = linear combination

@= alx = 011X1 + alzXz + o+ ﬂleP
a"(ﬂ”; ,a//))

that maximizes Var (Y;) = ajZa;
= NOte: Var (Y1) canbe increased by multiplying a Z c

by some constant  b/=C:Q; b/x:c,(a '}() ’z_bcl%ai’jcm

{4 p

—> restrict attention to coefficient vectors of _unit lgn\gth
Slal=1
= a}Xisthe prOJectlon of X on the direction of a,

= alternative: ;an %‘“: (za_a )’1(45)’“ La],l-l

» Second principal component = linear combination
@

ﬂzx = ﬂz]Xl "" ﬂszz -+ HZPXP

A
that maximizes Var(32X)/subJect to asa, = 1anc{Cov(a1X aX) = 0) é

@ At the ith step, ith principal component = linear combination a; X that maximizes
Y

¢) Var(a!X) subject to ala; = 1 and Cov(a/X,a;X) =0 for k<i
» The principal components are those uncorrelated linear combinations 11, Y;,..., Y,
whose variances are as large as possible.

p.4-3

» Finding the Principal Components

= Result 8.1. Let 2 be the covariance matrix associated with the random vector
= [X1, X5,..., X,]. Let X have the eigenvalue-cigenvector pairs (A, eq),
(A2, €3),..., (A, e,) where Ay = Ay = -+ = A, = 0. Then the ith principal com-

ponent is given by A >A2SAy - >Ap>0.
Y=e'x:eile+e!2X2+.“+BIPXP‘ i=],2,...

anY cg+Gea is an eigeveddr
Wm( Y)=eSe,=A i=12...p

soy M=A2)  Cov(Y,Y,) =eSe, =0 i#k l
@2 If some the choices of the corresponding coefficient vectors, e;, and
hence Y}, are not unique

proof: 1t 1< a’zal e ﬁ%‘
acirde, e 2o | — Al (retamed when .= €,)

axo

2nd PC
Qulv e =S e =(ne)a=xlen)=0 > ela=0. qLe®
A LEAL 2o (retamad when a=€5) - - -

X)

= Result 8.2. Let * R[Xl, D Y p] have covariance matrix 3, with eigenvalue-
eigenvector pairs (;\l,e]) (Az,ez),..., (Ap.ep) where Ay = A = - = A, =0.
P [e‘l lLe 1 =eX Y, = eX, ..., Y, = ¢,X be the principal components. Then
p
A—Y_o ]&1+022+ + Opp)= EVarX)—A]+A2+ ;Var

()=t PAP)=tr(APD)< ty(/\)
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p.4-4
. :
Pmpor?mn of .total //VWLCYK)
population variance | _ Ax k=12
due to kth principal AL+ Ay + o+ A P
L — P, P
component "ZV;WOQ)

If most (for instance, 80 to 90% ) of the total population variance, for large p,can be

Xi=HW( attributed to the first one, two, or three components, then these components can

Ya=HWZ  “replace” the original p variables without much loss of information.
X3= HW X .
3=H 3' Each component of the coefficient vector €] = [e;y, ...

m\gymgh principal component, irrespective of the other variables. In particular, ¢;; is pro-
+O_$;_(ngyrtional to the correlation coefficient between Y; and X, .

(jz=0-5:f@\ sult 8.3. If ¥} = ¢1X, Y, = eX,..., Y, = €,X are the principal components
+0.08 (HU tained from the covariance matrix 3, then Yc=e/X, Xg=[(o.-:0,1,0--0] X

"
_ i €tk @ a’ .
0|TS(HW3‘) 6 = pY!',Xk Fa ig k = 11 2""! p WU(%;wza'/zelh
A J6rx =’ et =1 alo
N=09 A=06 o' Ael=diae:
) a;g e correlation cgefficients between the components Y; and the variaﬁfése?ﬂ.
X;_.,O-N A}Ie' (A, e 2, €2),..., (Ap, e,) are the eigenvalue-eigenvector pairs for X.

o (e called factor loading X = P/A P= pasrtp’ ,
the 4 principal component scoresP/f:[al | %PAA}(PAK)
- el
: e
¢ Yi=¢X
* Y =e(X - u)

VW

> Principal Components Obtained from Standardized Variables .

= Q: What if one variables is measured in the millions whereas the others are
measured in tens? or one variable has much larger scales than other variable?

= The 15t PC will essentially be just that variable o
variables
%e'

= Principal components may also be obtained for the standardize
\
0% 240° 3¢ b

(X1 — 1) (X — o) C(Xp — oy
Z) = — ,22“ S ,...,Zp_ N
a1 722 Opp

[6"\. ° ] Cov(Z) = (VA)'Z(VIH) ' = p
o Op

ere 2 is the correlation matrix of X.

= Result 8.4. The ith principal component of the standardized variables‘
Z' =[Z,2Z,,...,Z,) with Cov(Z) = 0, is given by

Y, = — e;(vlf’?)_l(x — ), i=1,2,...,p

p 2 .
> Var(Y;) = > Var(Z;) =p = |allvariables
i=1 i=1

and equally important
py.z, = exVA L k=12,...,p

Moreover,

In this case, (A}, €,), (A2, €2),..., (A,,e,) are the eigenvalue—eigenvector pairs for
ﬂ,With;\LlE)LzE--*E‘A :'D.

» Note: the (A, e;) derived from X. are, in general, not the same as the ones derived

from p.
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> Principal Components for Covariance Matrices with Special Structures P
- |_G"ll o - 0 e =[0,...,0,1,0,...,0], with 1 in thosition,
A
;; = 0 g - 0 (o, €;) is the ith eigenvalue—eigenvector pair

00 - oy,

- o2 2 . gl 1 A =1+ (p—1
o°  po po P P 1 (p— Dp
2 2 2
po- o° - po p 1 p
=1 L : pP=]. : o = l: 1 1 1 }
1 = s * 1
| po? pa? o2 o p 1 Vp' Vp Vp

Ay =A==, =1-p ':[ @ @ 0,...,0:|

V1Ix2 V1 X2

oot e

V2 X3 V2X3 37

add r\OTW\%\r\’Y %S(Ampb‘oy\
> Suppose X is distributed as(N)(u, %)

. contour of its pdf is the ellipsoid defined by

P=leq - x*#)fl(x— )"S2 -.
% Reading: Textbook, 8.1, 8.2 Y- p(x.u)~l\l,,(0 A) \(.,\‘ Yo mzb,q,.

\X
=
(N
|
o]
L=

p. 4-7

« Sample Principal Components ])a/mmz'\'e/tzg

-

> Suppose the data x;, x,..., X,, represent n iu/(penc[ent drawings fr some
p-dimensional population with mean vector(u)and covariance matri These data
yield the sample mean vector X, the sample covariance matrix S, and the sample cor-

relation matrix R. Al, ec — paamete, s,

> objective: construct uncorrelated linear combination of the measured
characteristics that account for much of the varlatlon in the sample

» Finding principal components E(XL)- L=, 3?
ution” =

= replace population distribution by empirical dlstrlb
= replace Z by S (or S))

= replay pby R
= then, the rests the same as above

* : '.. ) '
= PCA based on yandom malzwy, . o .

Xy

(x—-%X)81(x-X)= ?'Pn}ﬁi‘-

I {s;x} is the p X p sample covariance matrix with eigenvalue-eigenvector

airs (A, €1), (A2,€5),..., (A,, &,), the ith sample principal component is given
g((ll)(zz) (A, €p); the pmple princip p g
y Ead ~ o~ ”~ ' -
@= eX = ¢ x; + €pXxy + -+ € pX,, i=1,2,...,p
where .11 = :‘;2 == ﬁp = (0 and x 1s any observation on the variables
Xl,Xz,...,XP.Also, A

Sample variance(y,) = Ay, k=1,2,...,p

Sample covariance(y;, y,) = 0, [ # k
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In addition, ) p - n
Total sample variance = 2 Sii =\AL T A+ A,

A i k=12,...,p

r. s ’
. . YisXg -\/@
« principal component scores

and

ff,-=éfx, £=1,2,...,p
yi = ei(x — X), i=1,2,...,p
= PCA based ongp K

Ifz,,z,,..., 2, are standardized observations with covariance matrix R, the ith
sample principal component is

j:‘;' = @z = A;121 + €925 + -+ + E',pz,,, i=1,2,...,p
where (/\ e;) is the ith eigenvalue-eigenvector pair of R with
Al}.h«_---‘?hp:_*()Also N

Sample variance (¥;) =A; (=12,...,p

Sample covariance (y;, yx) = 0 i # k
In addition,

Total (standardized) sample variance = tr (R) @i’il + 3.2 ++ A,

and \
Tz = bk= 12 P T fixed.
« principal component scores jacbrhlﬁné.
yi = ez

p.4-9

» Number of Principal Components
= Q: how many principal components to retainmw
= scree plot X
= amount of total variance explained (say, 70~90%)
» for PCA based on p, use the cutoff point 1 or 0.7
(i.e., keep PCs with )\, > 1 or 0.7) g)w, =P z,_ ~

=/
» Using Principal Components to display multlvarlate data
= In addition to plotting X, ..., X, plot Y}, ..., Y} to check normality

assumption and detect wﬂs _ }) Whatss theor
= The last few PCs can help pinpoint suspect observation defferonce »

> Large Sample Inference
= Q: What are the distributions of the (Ai,...,Ap), (61,1 6p); (F1s-- -5 8p)?

= assumption S ~ Whgha
* X,,X,,..., X, are a random sample from opulation.

* eigenvalues of X are ditinct and positive, so that A; > A, > --- > A, > 0.

» asymptotic distribution
1. Let A be the dlagonal matrix of elgenvalues Ap,...,Ap of X, then Vn (i - A)

is approximately Np( ZA_U» [N A D
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2. Let ' p. 4-10

then Vn (e; — e;) is approximately Ny(0,E;).
3. Each .iz- is distributed independently of the elements of the associated €;.
= A large sample 100(1 — a)% confi dence interval for A; is thus provided by
vy 2,2
A A ﬁ—AMN(o,;/\L)
. = Al = : &C P -5
(1 + 2(a/2)V2/n) (1 - 2(e/2)V2/n) Se-1—~N(o,%

= Result 2 implies that the €;’s are normally distributed about the corresponding
e;’s for large samples. The elements of each e; are correlated, and the correlation
depends to a large extent on the separation of the eigenvalues A, A,,..., A,

« Some important issues 2P A - xl;smn‘

» Analyses of principal components are more of a means to an end rather than an
end in themselves, because they frequently serve as intermediate steps in much

larger investigation. Gample: regression, Jactor analygs, C/&sf%,qnq/},@f{,
» PCs with variance almost zero (i.e., \; ~ 0)
Vi = €x = &;x, + €x; + -+ &,X, ~ ¢, c: a constant

= an unusually small value for eigenvalue can indicate a linear dependency in
the data set

p.4-11

> equal eigenvalues (i.e., \; = A\jy1 =--- = \;)
= population principal component
= sample principal component

> selecting a subset of variables X, ..., X, A )

= PCA does not quite reduce the data since PCs are linear combinations of all
variables X, ..., X so all variables are in some sense still needed. The
technique, however,_can help us discard some variables by keeping only those

with the highest factor loading
» connection to the singular value decomposition (SVD) T staen e
= Let us apply a SVD to the matrix X — 1%’ , ,3’,‘( ; .
° I

(X. - 1)_(/)nxp — UnXprXpV/

pXp
where U'U = 1I,,, V'V = I,,,, and L is a diagonal matrix.
Then,

(n—1)8S=(X-1%)(X - 1x') = VLU'ULV' = V(LL)V' = VL*V'
2
— 1 2 - 1 — *2
S=V (;5L2) V' =V (FAxL) V' =V

n—1
which means
+ columns of V': eigenvectors of S

. lfl : eigenvalues of S, where [ singular value

s Y=X-1x)V=UL: PC scores

i)

.
»
]
-

A A
)u?‘:b,

"-——-(l ~X)y8t(x-x)=¢?

.
A W
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