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> Result 4.8. Let X, X,,..., X, be mutually independent with X; distributed as

N,(mj, %). (Note that each X has the same covariance matrix X.) Then
Vl = C]_Xl + CzXz + -+ Cnxn

cf)z). Moreover, V; and V; = b X; + bX,

"

Z Cikj,

is distributed as Np(
j=1
+ --- + b,X, are jointly multivariate normal with covariance matrix
2) 3  (b'c)X

2 <

j=1

>

( n
=1

(
(b'c)S (;:_‘{bf)z

Consequently, V; and V; are independent if b'c = >, ¢;b; = 0.
j=1
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« Assessing the assumption of normality
> Recall:
= Q-Q plot (quintiles vs. quintiles plot)
X ;l

= histogram
> Let X be distributed as N,(u, ) with || > 0. Then
= the marginal distribution X is normal

= linear combination of X, is normal

« Many statisticians suggest plotting
j Wwhere Sé; = A8

~r

ex;
in which il is the largest eigenvalue of S.
s (X — p)'Z7Y(X — ) is distributed as x3
+ Mahalanobis distance
d?=(x; —x)SHx; - %), j=12,...,n
d?,d3, ..., d% should behave like a chi-square random variable.
» In some case, data is clearly non-normal but a transformation to approximate
normality is possible. For example, for count data, consider the square root
transform. For proportion data, the logit transform, and for correlations r, the

0.5log[(1+7)/(1-r)] is worth a try. (more details in textbook, 4.8)
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« detecting outliers

» Make a dot plot for each variable. s veee o B elee o

| | 1

» Make a scatter plot for each pair of variables. |

» Calculate the standardized values Zjx = (Xjx — X&)/ Vi for j = 1,2,...,n
and each column k = 1,2,..., p. Examine these standardized values for large
or small values.

> Calculate the generalized squared distances (X; — i)'S_l(xj — X). Examine

these distances for unusually large values. In a chi-square plot, these would be
the points farthest from the origin.

7

w ®4 ®
o ® ]
o ®

1 :
o “ . -_-"".‘J o B "1 . S e n

- -0 o 1 20 ) ! ’ ) ‘ * " ® ®

Normal probability plot Chi-square plot H L
> Note. When sample size is large, the .
appearance of few extreme values is reasonable postoes il wodeco B,

> If outliers are identified, they should be examined for content. Depending upon
the nature of the outliers and the objectives of the investigation, outliers may be
deleted or appropriately “weighted” in a subsequent analysis.

+ Reading: Textbook, 4.1, 4.2, 4.6, 4.7

Sample Mean Vector and Sample Covariance Matrix” "™

under Normality Assumption
« Maximum likelihood estimator

> Result 4.11. Let X;,X,,...,X, be a random sample from a normal population
with mean p and covariance X. Then

A T A___.]-n - _F_{n_l)
=X and EMHE(X}- X)(X; - X) = . S

are the maximum likelihood estimators of p and X, respectively. Their observed

n
values, X and (1/n) >, (x; — X)(x; — x)', are called the maximum likelihood esti-
j=1

mates of p and 3.

Joint density _ 1 1 8_--%1 (x— )= (x,— )2
ofX;,X,,....X, (zw)npﬂlzlnﬂ j

oC exp{—tr[i"l(i (x; —X)(x; —X) + n(& — p)(X - p}'”/Z}

j=1
U[E"(i (xj - i)(x; - i}' +n(Xx — u)(x - p,]')-l
= tr[E‘l(i (x; — X)(x; — i)’)] +nxE - p)ETHE - p)
j=1




« Sufficient statistics p. 3-21

> LetX,, X,,..., X, be arandom sample from a multivariate normal population
with mean p and covariance X. Then

X and § are sufficient statistics

» Distribution of X and S
> Let X, X,,...,X, be arandom sample of size n from a p-variate normal
distribution with mean p and covariance matrix X. Then _
1. X is distributed as N,(p,(1/n)%).
2. (n — 1)S is distributed as a Wishart random matrix withn — 1 d.£
3. X and S are independent.
»Wishart distribution
= definition:  w, (.| %) = Wishart distribution with m d.f.
= distribution of i L7
where the Z; are each independently distfril:lmted as N,(0,%).
= SOMe properties R

1. If A, is distributed as W,, (A, | X) independently of A,, which is distributed as
W,..(A,|X), then A; + A, is distributed as W, .,.(A; + A,|X). That is, the
degrees of freedom add. )

2. If A is distributed as W,,,(A | X), then CAC' is distributed as W,,(CAC’ | CXC").
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e Large-Sample

> Law of Large Number

Let X;, X,,..., X, be independent observations from a population with mean
p and finite (nonsingular) covariance X. Then

X converges in probability to u
and

S (or 3 = S,) converges in probability to X

> Result 4.13 (The central limit theorem). Let X,,X,,...,X, be independent
observations from any population with mean g and finite covariance 2. Then

Vn (X — ) has an approximate N,(0, X) distribution
and

n(X — u)'SYX — ) is approximately xf,

for large sample sizes. Here n should also be large relative to p.

+ Reading: Textbook, 4.3, 4.4, 4.5




