Multivariate Normal Distribution
Density of Normal Distribution
> univariate case: normal density with mean μ and variance σ^2
$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-[(x-\mu)/\sigma]^2/2} -\infty < x < \infty$
\rightarrow multivariate case: a <i>p</i> -dimensional normal density for the random vector
$\mathbf{X}' = [X_1, X_2, \dots, X_n]$ has the form
$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} \mathbf{\Sigma} ^{1/2}} e^{-(\mathbf{x}-\boldsymbol{\mu})^{'} \mathbf{\Sigma}^{-1} (\mathbf{x}-\boldsymbol{\mu})/2}$
where $-\infty < x_i < \infty$, $i = 1, 2,, p$, μ is the mean of X
Σ is the variance-covariance matrix of X (Note. Σ^{-1} must exist, i.e., $ \Sigma \neq 0$)
We shall denote this <i>p</i> -dimensional normal density by $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
• the term $\left(\frac{x-\mu}{\sigma}\right)^2 = (x-\mu)(\sigma^2)^{-1}(x-\mu) - (x-\mu)'\Sigma^{-1}(x-\mu)$
is a distance measure
• Contours of constant density for the <i>p</i> -dimensional normal distribution are ellipsoids defined by x such the that $(\mathbf{x} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = c^2$
These ellipsoids are centered at μ and have axes $\pm c\sqrt{\lambda_i} \mathbf{e}_i$, where $\Sigma \mathbf{e}_i = \lambda_i \mathbf{e}_i$ for $i = 1, 2,, p$. (λ, \mathbf{e}) is an eigenvalue-eigenvector pair for Σ
made by SW. Cheng (NTHU, Taiwan) p. 3-8
\rightarrow Example: bivariate normal density
$\mu_1 = E(X_1), \mu_2 = E(X_2),$ $\sigma_{11} = Var(X_1), \sigma_{22} = Var(X_2), \text{and} \sigma_{12} = \sigma_{12}/(\sqrt{\sigma_{11}}, \sqrt{\sigma_{22}}) = Corr(X_1, X_2)$
$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{bmatrix} \qquad \boldsymbol{\Sigma}^{-1} = \frac{1}{\sigma_{11}\sigma_{22} - \sigma_{12}^2} \begin{bmatrix} \sigma_{22} & -\sigma_{12} \\ -\sigma_{12} & \sigma_{11} \end{bmatrix}$
• by writing $\sigma_{12} = \rho_{12} \sqrt{\sigma_{11}} \sqrt{\sigma_{22}}$, we obtain $\sigma_{11} \sigma_{22} - \sigma_{12}^2 = \sigma_{11} \sigma_{22} (1 - \rho_{12}^2)$
$\mathbf{I} (\mathbf{x} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$
$= [x_1 - \mu_1, x_2 - \mu_2] \frac{1}{\sigma_{11}\sigma_{22}(1 - \rho_{12}^2)}$
$\begin{bmatrix} \sigma_{22} & -\rho_{12}\sqrt{\sigma_{11}}\sqrt{\sigma_{22}} \\ -\rho_{12}\sqrt{\sigma_{11}}\sqrt{\sigma_{22}} & \sigma_{11} \end{bmatrix} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}$
$=\frac{\sigma_{22}(x_1-\mu_1)^2+\sigma_{11}(x_2-\mu_2)^2-2\rho_{12}\sqrt{\sigma_{11}}\sqrt{\sigma_{22}}(x_1-\mu_1)(x_2-\mu_2)}{\sigma_{11}\sigma_{22}(1-\rho_{12}^2)}$
$= \frac{1}{1 - \rho_{12}^2} \left[\left(\frac{x_1 - \mu_1}{\sqrt{\sigma_{11}}} \right)^2 + \left(\frac{x_2 - \mu_2}{\sqrt{\sigma_{22}}} \right)^2 - 2\rho_{12} \left(\frac{x_1 - \mu_1}{\sqrt{\sigma_{11}}} \right) \left(\frac{x_2 - \mu_2}{\sqrt{\sigma_{22}}} \right) \right]$
• written in terms of the standardized values $(x_1 - \mu_1)/\sqrt{\sigma_{11}}$ and $(x_2 - \mu_2)/\sqrt{\sigma_{22}}$.
• if X_1 and X_2 are uncorrelated, they are independent

ת ח	$V_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, the joint density function of all the observations is the product of the narginal normal densities:
	$\left\{ \begin{array}{c} \text{Joint density} \\ \text{of } \mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n \end{array} \right\} = \prod_{j=1}^n \left\{ \frac{1}{(2\pi)^{p/2} \mathbf{\Sigma} ^{1/2}} e^{-(\mathbf{x}_j - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{x}_j - \boldsymbol{\mu})/2} \right\}$
	$= \frac{1}{(2\pi)^{np/2}} \frac{1}{ \boldsymbol{\Sigma} ^{n/2}} e^{-\sum_{j=1}^{n}} (\mathbf{x}_j - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x}_j - \boldsymbol{\mu})/2$
→ <u>C</u>	: why normal?
•	While real data are never exactly multivariate normal, the normal density is often a useful approximation to the "true" population distribution
•	The multivariate normal density is mathematically tractable and "nice" results can be obtained
1	The distribution of many multivariate statistics are approximately normal, regardless of the form of the parent population because of a <i>central limit</i>
Some	e properties of multivariate normal distribution NTHU STAT 5191, 2010, Lecture Notes
Some	e properties of multivariate normal distribution NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan) esult 4.3. If X is distributed as $N_p(\mu, \Sigma)$, the q linear combinations $\begin{bmatrix} a_{11}X_1 + \dots + a_{1p}X_p \end{bmatrix}$
Some	e properties of multivariate normal distribution NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan) esult 4.3. If X is distributed as $N_p(\mu, \Sigma)$, the <i>q</i> linear combinations $\begin{bmatrix}a_{11}X_1 + \dots + a_{1p}X_p\\a_{21}X_1 + \dots + a_{2p}X_p\\\vdots\\a_{11}X_1 + \dots + a_{2p}X_p\\\vdots\\a_{11}X_1 + \dots + a_{2p}X_p\end{bmatrix}$
	e properties of multivariate normal distribution MTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan) esult 4.3. If X is distributed as $N_p(\mu, \Sigma)$, the q linear combinations $\begin{bmatrix} a_{11}X_1 + \dots + a_{1p}X_p \\ a_{21}X_1 + \dots + a_{2p}X_p \\ \vdots \\ a_{q1}X_1 + \dots + a_{qp}X_p \end{bmatrix}$ re distributed as $N_q(A\mu, A\Sigma A')$. Also, $\begin{array}{c} X \\ (p \times 1) \end{array} + \begin{array}{c} d \\ (p \times 1) \end{array}$, where d is a vector of onstants, is distributed as $N_p(\mu + d, \Sigma)$.
	e properties of multivariate normal distribution MHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NHU, Taiwan) esult 4.3. If X is distributed as $N_p(\mu, \Sigma)$, the q linear combinations $\begin{bmatrix} a_{11}X_1 + \dots + a_{1p}X_p \\ a_{21}X_1 + \dots + a_{2p}X_p \\ \vdots \\ a_{q1}X_1 + \dots + a_{qp}X_p \end{bmatrix}$ re distributed as $N_q(A\mu, A\Sigma A')$. Also, $\underset{(p\times 1)}{X} + \underset{(p\times 1)}{d}$, where d is a vector of onstants, is distributed as $N_p(\mu + d, \Sigma)$. Alternative definition of multivariate normal distribution: Let z_1, \dots, z_p be i.i.d. from $N(0, 1)$ and $Z = [z_1, \dots, z_p]^T$. For a p-dim vector μ and a $p \times p$ symmetric positive definite matrix Σ , X is said to have a multivariate normal distribution $N_p(\mu, \Sigma)$ if it has the same distribution as
	e properties of multivariate normal distribution NTHU STAT 5191, 2010, Lecture Notes made by SW. Cheng (NTHU, Taiwan) esult 4.3. If X is distributed as $N_p(\mu, \Sigma)$, the q linear combinations $\begin{bmatrix} a_{11}X_1 + \dots + a_{1p}X_p \\ a_{21}X_1 + \dots + a_{2p}X_p \\ \vdots \\ a_{q1}X_1 + \dots + a_{qp}X_p \end{bmatrix}$ re distributed as $N_q(A\mu, A\Sigma A')$. Also, $\sum_{(p\times 1)} + \sum_{(p\times 1)} k$, where d is a vector of onstants, is distributed as $N_p(\mu + \mathbf{d}, \Sigma)$. Alternative definition of multivariate normal distribution: Let z_1, \dots, z_p be i.i.d from $N(0, 1)$ and $Z = [z_1, \dots, z_p]^T$. For a p-dim vector μ and a $p \times p$ symmetric positive definite matrix Σ , X is said to have a multivariate normal distribution $N_p(\mu, \Sigma)$ if it has the same distribution as

