	Random Sample
• M	odeling of Multivariate Data
	The data set $\begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$
	$\begin{bmatrix} x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$
	is usually regarded as a realization of a matrix of random variables $ \mathbf{X}_{(n \times p)} = \begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1p} \\ X_{21} & X_{22} & \cdots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \cdots & X_{np} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'_1 \\ \mathbf{X}'_2 \\ \vdots \\ \mathbf{X}'_n \end{bmatrix} $ $ = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2' \\ \vdots \\ \mathbf{X}'_n \end{bmatrix} $
	• $\mathbf{X}'_1, \mathbf{X}'_2, \dots, \mathbf{X}'_n$ represent <i>independent</i> observations
	• $\mathbf{X}'_1, \mathbf{X}'_2, \dots, \mathbf{X}'_n$ are from a <i>common</i> joint distribution with density function
	$f(\mathbf{x}) = f(x_1, x_2, \dots, x_p)$
	\Rightarrow measurements of the <i>p</i> variables in a single trial will usually be correlated
	• joint density function of $\mathbf{X}'_1, \mathbf{X}'_2, \dots, \mathbf{X}'_n$
	$\frac{f(\mathbf{x}_1)f(\mathbf{x}_2)\cdots f(\mathbf{x}_n)}{f(\mathbf{x}_1)}$
	where $f(\mathbf{x}_j) = f(x_{j1}, x_{j2}, \dots, x_{jp})$ NTHU STAT 5191, 2010, Lecture Notes
7	some examples made by SW. Cheng (NTHU, Taiwan)
	• Example 1:
	 Example 1: to design of a permit system for utilizing a wildness canoe area without overcrowding, a manager took a survey of users
	 total wilderness area was divided into subregions, and respondents were asked to give information on the regions visited, length of stay, and other variables
	 sampling method 1: persons were randomly selected from all those who entered the wilderness area during a particular week
	\Rightarrow all person were equally likely to be in the sample
	 ⇒ all person were equally likely to be in the sample ◆ sampling method 2: sampler waited at a campsite and interviewed only canoeists who reached that spot
	• sampling method 2: sampler waited at a campsite and interviewed only
	 sampling method 2: sampler waited at a campsite and interviewed only canoeists who reached that spot Example 2: a study concerns the gross weight of municipal solid waste
	 sampling method 2: sampler waited at a campsite and interviewed only canoeists who reached that spot Example 2: a study concerns the gross weight of municipal solid waste generated per year, x₁ = paper and paperboard waste and x₂ = plastic waste
	 sampling method 2: sampler waited at a campsite and interviewed only canoeists who reached that spot Example 2: a study concerns the gross weight of municipal solid waste generated per year, x₁ = paper and paperboard waste and x₂ = plastic waste Table 3.1 Solid Waste
	 sampling method 2: sampler waited at a campsite and interviewed only canoeists who reached that spot Example 2: a study concerns the gross weight of municipal solid waste generated per year, x₁ = paper and paperboard waste and x₂ = plastic waste Table 3.1 Solid Waste Year 1960 1970 1980 1990 1995 2000 2003

	etical results under	, \mathbf{X}_n be a random sample fro	m a joint distribution the
		ariance matrix Σ . Then $\overline{\mathbf{X}}$ is a	
	ovariance matrix is		•
Thetic		$\frac{1}{n}\Sigma$	
That is,	$E(\mathbf{X}) = \boldsymbol{\mu}$	(population mean	vector)
	1	(population variance – cova divided by sample	ariance matrix
	$\operatorname{Cov}(\mathbf{X}) = -\frac{1}{n} \mathbf{\Sigma}$	divided by sampl	e size
For the	covariance matrix S		/
		$\mathbf{S}_n = \frac{n-1}{n} \mathbf{\Sigma} = \mathbf{\Sigma} - \frac{1}{n} \mathbf{\Sigma}$	
Thus,		<i>// //</i>	
,		$E\left(\frac{n}{n-1}\mathbf{S}_n\right) = \mathbf{\Sigma}$	
		ased estimator of Σ , while S_n	is a <i>biased</i> estimator with
(bias) =	$= E(\mathbf{S}_n) - \mathbf{\Sigma} = -(1)$	$(n)\Sigma$.	
	$\begin{bmatrix} \mu_1 \end{bmatrix} \begin{bmatrix} E(X_1) \end{bmatrix}$	$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_1 \end{bmatrix}$	"]
	$ \mu_2 $ $E(X_2)$	$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_1 \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_2 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_p \end{bmatrix}$	
$\mu =$		$- \Sigma = \begin{bmatrix} z_1 & z_2 & \vdots \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$	$ \mathbf{x} = E(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})$
	$ \mu_n = E(X_n)$	$\sigma_{n1} \sigma_{n2} \cdots \sigma_{n}$	

• In future lecture,

$$\mathbf{S} = \left(\frac{n}{n-1}\right)\mathbf{S}_{n} = \frac{1}{n-1}\sum_{j=1}^{n} (\mathbf{X}_{j} - \overline{\mathbf{X}})(\mathbf{X}_{j} - \overline{\mathbf{X}})'$$
will replace \mathbf{S}_{n} as the sample covariance matrix in most of the material.
• Note: even though the (i, k) th entry of $\mathbf{S}, s_{i,k}$ is an unbiased estimator of $\sigma_{i,k}$
 $E(\sqrt{s_{i,i}}) \neq \sqrt{\sigma_{i,i}}$ and $E(r_{i,k}) \neq \rho_{i,k}$
> linear combination of variables
• The linear combination $\mathbf{c'X} = c_{1}X_{1} + \dots + c_{p}X_{p}$ has
mean $= E(\mathbf{c'X}) = \mathbf{c'\mu}$
variance $= \operatorname{Var}(\mathbf{c'X}) = \mathbf{c'}\Sigma$
where $\mu = E(\mathbf{X})$ and $\Sigma = \operatorname{Cov}(\mathbf{X})$.
• The linear combinations $Z = C\mathbf{X}$ have
 $\mu_{Z} = E(Z) = E(C\mathbf{X}) = C\mu_{X}$
 $\Sigma_{Z} = \operatorname{Cov}(Z) = \operatorname{Cov}(C\mathbf{X}) = C\Sigma_{X}C'$
where μ_{X} and Σ_{X} are the mean vector and variance-covariance matrix of X
• sample values
• **Result 3.5**. The linear combinations
 $\mathbf{b'X} = b_{1}X_{1} + b_{2}X_{2} + \dots + b_{p}X_{p}$
 $\mathbf{c'X} = c_{1}X_{1} + c_{2}X_{2} + \dots + c_{p}X_{p}$
 $\mathbf{made by S} = \mathcal{O} + \mathcal{O} \operatorname{Cherg}(\mathbf{VHHU}, \operatorname{Tauxan})$
 $\mathbf{made by S} = \mathcal{O} + \mathcal{O} \operatorname{Cherg}(\mathbf{VHHU}, \operatorname{Tauxan})$
 $\mathbf{n} = \mathbf{a} + \mathbf{b'} \mathbf{S} = \mathbf{b} + \mathbf{b} + \mathbf{b} + \mathbf{b} + \mathbf{b} = \mathbf{b} + \mathbf{b} + \mathbf{b} + \mathbf{b} = \mathbf{b} + \mathbf{b} + \mathbf{b} + \mathbf{b} = \mathbf{b} + \mathbf{b} + \mathbf{b} + \mathbf{b} + \mathbf{b} + \mathbf{b} = \mathbf{b} + \mathbf{b} + \mathbf{b} + \mathbf{b} + \mathbf{b} + \mathbf{b} + \mathbf{b} = \mathbf{b} + \mathbf{b}$